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Abstract 

This bachelor’s thesis is a case study of approximation of the pneumatic muscle actuator 

model (PMA) in antagonistic connection with pulse width modulation (PWM) control input 

by means of artificial neural networks. Three different neural network architectures and 

their static and dynamical version were derived and programmed (open-source, Python) and 

tested for their ability to handle nonlinearity of PMA with PWM. 
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Notation 

k … discrete time index (with constant sampling) 

u … control input 

x … general input vector 

y … controlled variable 

yn … neural output  

 

 

 

 



 6 of 47 

1 Introduction 

When it comes to robot human interaction main things people must think of safety, 

compatibility and ease of operation. Common pneumatic cylinders are usually exploited to 

actuate robots to mimic some basic human motions. But it has been realized that because of 

their size and large weight these actuators are not very suitable and safe for most of the 

applications. That is why it’s more essential to use Pneumatic Muscle Actuators (PMA) that 

are very light weight, small-sized and compliant which make them suitable for applications 

involving robot human interaction. However, there are some certain shortcomings that 

make them not so widely used; their highly nonlinear and time dependent behavior can 

cause some crucial problems.  

This thesis is a case study of approximation of PMA model [8][9] using various neural 

networks when inflation and deflation is controlled by two valves with single control input 

via pulse width modulation [24].  

In the first section the design, construction and experimental testing of the pneumatic 

artificial muscles developed in different arrangements is reviewed. I also described the 

various methods of modeling PMA with a strong emphasis on the artificial intelligence 

approach.  

The main objective of the further work is to design the neural networks, capable of 

effectively approximating the given model of pneumatic muscle actuator; three different 

neural network architectures that would be trained and tested are proposed. In order to tune 

and optimize the networks parameters the suitable learning algorithms and an appropriate 

initial setup is chosen.  

Furthermore, I experimentally compared the designed neural networks in terms of 

efficiency and accuracy by calculating the values of Sum of Squared Errors and the 

Coefficient of Determination and most importantly in respect to their ability to approximate 

the specific nonlinearity of PWM actuated PMA [24]. 

The final goal is the summarization of all obtained results and their discussion, and to 

conclude whether the chosen methods of approximation are suitable and can be applicable 

in the field of PMA control.   
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2 State of the Art 

2.1 Review of Pneumatic Muscle Actuators  

As one can see from the recently published papers Pneumatic Muscle Actuators (PMA) 

have been widely used in the various fields such as industrial applications and robotics and 

apparently become quite popular over commonly used pneumatic cylinders and linear 

actuators. Apart from advantages mentioned above, the main reason of their increasing use 

is that these actuators are simple and easy to construct and predict. Typically, they are 

constructed from a thin walled rubber (latex or non-vulcanized rubber) cell and a braided 

sheath [1]. The left side of the rubber tube is shut while an air hose is implemented into the 

right end to inflate or deflate. Once the inner part of the rubber tube is inflated, it tends to 

expand and the diameter of the rubber-sheath, called usually the “muscle”, effortlessly 

increases. If one attaches a mechanical load to this end of the muscle and there will be an 

external work done at a higher rate on the load, he can end up achieving very high power 

rate. Since PMA are light in weight and most likely flexible, they can provide safe and soft 

interaction due to high performance and are more suitable for robot-human interactions 

applications. Clearly, they also have rather high power to weight ratio and big volume to 

weight ratio thus are suitable especially for wearable robotic applications [1]. However, 

despite the mentioned advantages, PMA have not been extensively used in the past due to 

its inherent drawbacks such as complexity of controlling and unpredictability of the system. 

Still, recent results show that there are certain ways of solving this task, for instance, neural 

network technique seems to be very effective to identify a broad category of complex 

problems concerning PMA. Summarizing, pneumatic muscle actuator is the general type of 

the family of inflates-deflates tube-like actuators that are designated by a decrease in 

actuator length when the pressure is applied and they have more significant advantages 

compared to other types of actuators.   

2.1.1 Modeling PMA with a Spring 

In paper [2] authors are dealing with a driving system that is supposed to be large when 

it comes to the large compressors which are usually exploited along with pneumatic 

actuators. They proposed the low-pressure, low-volume pneumatic actuator for 

manipulating a robot hand that can be used safely by people and a five-fingered robot hand 

where they would install those actuators. 

The driving force of the pneumatic artificial muscles differs when air becomes input 

from when air is output. It occurs due to the hysteresis characteristics of the pneumatic 

actuators [2]. To analyze that, authors in [2] built a model by using a spring element (see 

Fig.1), which signifies the driving force of the pneumatic pressure, and a damper element, 

which denotes the hysteresis part. They constructed a 1-link arm with one degree of 

freedom using pneumatic actuators; and also implemented a Proportional–Integral–

Derivative (PID) controller system in order to check the efficacy of the model in an 

experiment (see Fig.2). Each parameter of PID controller was defined so that integral 

squared error value is minimized and the overshoot becomes 5% or less of the actual value. 

The gains of the system were determined with a simulation that uses the mentioned 

above 1-link arm model, and after that using the obtained data the step response of the joint 

angle was examined.  

Authors also derived the characteristics of the relationship between the driving force and 

displacement obtained in the experiment at a pressure 100 kPa and velocity of 10×10-3 m/s. 

They assumed that the characteristics of the pneumatic actuator are easier to be analyzed 

this way. The coefficient of determination when the multiple regression analysis was 
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performed was equal to 0.95, which is a very high value showing the success of the 

experiment [2]. 

 

Fig.1 Spring and damper element model of pneumatic actuator, as shown in the paper 

[2] 

 

Fig.2 PID controller system (Experiment), as illustrated in [2] 

2.1.2 Arrangement in Antagonistic Connection 

Pneumatic muscles actuators can be also connected in the antagonistic manner. The 

pneumatic muscles act one against another and the final position of the actuator is given by 

steady state of all the forces according to different pressures in muscles. In papers [3][4] 

authors designed a model of the system consisting of ON/OFF solenoid valves and 

pneumatic muscle actuators in antagonistic connection. The designed model of the 

antagonistic actuator responds with different dynamics of the pneumatic artificial muscle by 

inflation and deflation of compressed air into or from muscle. 

Work of the designed PMA-based antagonistic actuators was realized by applying 

pressure in one of the artificial muscles and at the same time reducing pressure in the other 

(antagonistic) artificial one. Since both artificial muscles are active, they require 

synchronous pressure adjustment in both muscles. It’s a very complex procedure because 

the equilibrium condition between air pressure (/volume) increment in one artificial muscle 

and air pressure (/volume) decrement in the other artificial muscle has to be performed. 

Otherwise they could obtain the uneven motion of the actuator arm. 

Generally speaking, authors designed the antagonist actuator on the basis of theoretical 

analysis of the actuator function, mathematical description of the main actuator components 

and experimental measurements using the block diagram. The main drawback of PMA 

based antagonistic actuator is its non-linearity of the system, which causes the non-linearity 

of the end position of air filling pressure vessel in the muscles.  

Paper [4] also specifically suggests a dynamic model of the system consisting of four 

ON/OFF solenoid valves and two pneumatic artificial muscles in antagonistic connection. 

This model deals with different dynamic characteristics of the pneumatic artificial muscle 

actuated by inflation and deflation of compressed air into or from muscle. 
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Fig.3 The experimental setup for testing the antagonistic actuator, adopted from [3] 

The model in [4] was created in Matlab's Simulink software, and the main part of 

simulation model of pneumatic artificial muscle based actuator was subsystem of muscle 

nonlinearity and its dependence between pressure in muscle and air flow rate into or from a 

muscle. Another part of model is a subsystem of solenoid valve, where dependence between 

air flow rate and pressure difference in front of the valve and behind the valve was also 

used. Eventually they used a subsystem of actuator nonlinearity based on approximation of 

the measured static characteristics of the realized pneumatic muscle actuator for creating the 

model. Obtained model was simulated with various time dependent control signals of the 

inlet (outlet) solenoid valves and with different muscles parameters. 

2.2 Computational Intelligence Methods for PMA  

This subsection reviews mainly neural network approaches for PME; however, some 

other approaches as fuzzy systems or hybrid ones are reviewed as well. Here I will analyze 

and weigh pros and cons of different intelligence approaches of controlling the PMA. 

As was mentioned before, thanks to the obvious advantages of PMA such as high power 

to weight ratio and muscle like behavior, it is considered an appropriate and safe actuator to 

use in devices operating in human proximity compared to electric or hydraulic actuators. 

Recently, in various papers PMA were described as a suitable alternative to hydraulic and 

electric actuators in medical and rehabilitation robot applications. Commonly used tools 

such as analytical and numerical approaches are appropriate only for modeling a nonlinear 

system that is time independent. On the other hand, time varying nonlinear system 

characteristics can be best modeled using artificial intelligence-based regression models 



 10 of 47 

when training data is available. That is why the very first method I will analyze is the 

artificial intelligence approach. In paper [1], authors tried to accurately predict the uncertain 

and nonlinear characteristics of PMA using Artificial Intelligence (AI). In this research they 

made an attempt to analyze Mamdani Fuzzy Inference System (FIS) and Takagi-Sugeno 

(TS)-based fuzzy systems by means of analyzing the time series data obtained from a real 

system. They adjusted and tuned these models to achieve higher accuracy and analyzed 

their parameters, which were tuned using backpropagation through time algorithm (see 

section 3.4.4) where fuzzy parameters were tuned using three different methods: gradient 

descent method (GD), genetic algorithms (GA) and Modified Genetic Algorithm (MGA) 

[1]. They obtained the result that showed that the Takagi-Sugeno fuzzy inference system 

tuned by Modified Genetic Algorithm gives better accuracy and can also model the time 

dependent behavior of PMA. The designed TS fuzzy system was found to achieve better 

results in terms of precision and high deflection when compared to the previous methods in 

the past. From that one can conclude that the analytical and numerical approaches cannot 

entirely predict the muscle behavior because most of the research on PMA modeling had 

been performed for constant loading, and PMA has not been dealing with varying loads, 

that’s why there are numerous features that have to be taken into account.  

AI methods can also be used to deal with a higher degree of uncertainty and ambiguity, 

which appears as one of their advantageous characteristics as well. Fuzzy logic and ANN 

are the two well-known approaches generally suitable to establish a mapping between 

inputs and their associated outputs. Initially, there are two architectures used for ANN 

modeling, namely, feed forward network and recurrent networks (I will get to them more 

closely later on). It has been said in the literature that the recurrent networks have restricted 

performance compared to the feed forward architect of ANN [5], because the feedback loop 

of a recurrent network passes the data back and forth thus sometimes causes the instability 

of the system. That is why authors used a multilayered feed forward ANN as a tolerable 

compromise. Similarly, they described fuzzy logic system approach because of its better 

accuracy [5]. Speaking more in details, their multilayered feed forward networks were made 

up of three (or more during testing) layers consisting of input, output and one (or more) 

hidden layers. Algebraic computations were performed at the hidden layer before passing 

the inputs to the output layer. As always identification of correct weight matrices was the 

key to the accuracy of an ANN. In order to identify weight matrices and other key 

parameters of ANN, researchers used various learning methods such as Reinforced learning, 

Hebbian learning, Stochastic learning, Gradient Descent (GD) learning, etc. Eventually 

results obtained from the ANN and the fuzzy models were plotted and analyzed; the fuzzy 

model approach was found to be more accurate, because it could accurately predict the 

mapping between force, length, change in length and the pressure inside PMA. 

In another paper [6] authors developed an in-house pleated PMA that showed improved 

response time with rather low hysteresis. In order to deal with the non-linearity and 

transient nature of pneumatic muscle actuators, authors also proposed an Artificial Neural 

Network based approach. They came up with a so-called hybrid approach where they 

combined back propagation (BP) algorithm with Modified Genetic Algorithm (MGA) in 

order to optimize ANN model parameters. Results they obtained showed that the hybrid 

approach was able to model the PMA behavior closely; experiments they carried out 

validated the proposed ANN model and confirmed the advantage of the applied method. 

Simultaneously authors proposed an artificial neural network approach to model the non-

linear indigenously developed pleated pneumatic muscle actuators (PPMA). The trained 

ANN was able to represent the relationship between force, length, and pressure of the 

PPMA. The results obtained from the hybrid approach were analyzed in terms of their 

maximum deviation and convergence rate. It was found that the model developed in this 
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manner could also accurately predict the mapping between force, length, change in length 

and the pressure inside PMA.  

 

 

Fig.4 The overall system configuration used for the PMA and PPMA testing, adopted 

from [6] 

In paper [7] authors were engaged with the control of a 3-DOF robot arm actuated by 

pneumatic artificial muscles. Since the model is intensely non-linear, it was difficult to 

predict its behavior, so that they needed a stable and robust controlling method. In order to 

reduce the effects of nonlinearities and uncertainties, authors proposed a combined 

execution strategy based on neural network and the concept of sliding mode control (SMC). 

Dealing with this control structure, they used a simple two-layer feed forward neural 

network with online adaptive learning technique in order to analyze uncertain dynamics and 

eliminate the so-called “chattering phenomenon” in common SMC [7], and the algorithm 

was derived from Lyapunov stability analysis.  

The execution of Neuro-Sliding Mode technique showed that the trajectory following 

ability is good; the tracking errors converged to small values less than 0.04 degrees as it 

was required by the studies of stability analysis and the convergence time was less than 2 

seconds (see Table 1) [7]. The algorithm showed good performance when minimizing the 

nonlinearities in the robot system, and it was also trainable at improvement by supplying 

neural networks with more input signals in spite of robot nonlinearity and uncertainties 

caused by system dynamics. Thanks to the property of neural networks as universal 

approximators, authors were able to work with a two layer neural network in order to 

reconstruct unknown and unmodelled robot dynamics. It was shown through experiments 

that the proposed method has a good control performance for the highly nonlinear system, 

such as the PMA manipulator. 

 A muscle model analysis was split into two main parts, mechanical and pneumatic. 

Table 1 Comparison of Neuro-Sliding mode using NN and conventional Sliding mode 

control as shown in [7] 

 Neuro-Sliding Mode [7] 
Typical Sliding Mode 

Control 
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Response time 
Joint 1: 1.5 s 

Joint 2: 1.5 s 

Joint 1:3 s 

Joint 2:4.5 s 

“Chattering” Insignificant Significant 

Static Error 
Joint 1: 0.02 degree 

Joint 2: 0.04 degree 

Joint 1: 0.1 degree 

Joint 2: 0.4 degree 

 

 

Fig.5 The schematic diagram of experimental setup, adopted from [8] 

The general description of the model of the type of pneumatic muscle actuator is given in 

[8][9], authors came up with the illustrated above experimental setup. 

The main problem of authors’ work was to come up with a model of one degree-of-

freedom pneumatic artificial muscle-based actuator used for applications in industry (see 

Fig.5). This model was supposed to be a plant model defining its dynamics that could be 

used for the control system design using simulation. The aim behind the research was the 

design of control system for low-cost PMA-based system (the exploitation of on/off valves 

instead of proportional ones) using desirable nonlinear control techniques capable of 

dealing with the system’s nonlinear and hysteretic properties. The chosen method was to 

create an analytical model using so-called grey-box modelling (i.e. modelling using the 

combination of first principle modelling and experimental parameterization of the model). 

(More detailed information on what parameterization they used is thoroughly given in the 

source [8]) It turned out that there was a certain advantage in taking this method as a 

working one compared to a pure blackbox modelling (e.g. using neuro/fuzzy modeling 

techniques) in obtaining a model with clear physical interpretation (concerning the 

modelled physical laws as well as the model parameters) which implies its integrity suitable 

for modelling an actuator with muscles with different parameters. However, the limitations 

of this method are also evident when the obtained results were analyzed. Previously 
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mentioned simplifications in modelling resulted in a model with higher valued errors that 

would probably have been most likely the case for neuro/fuzzy techniques. It is evident that 

this model could not be used as a hundred percent suitable model but it is acceptable as a 

model used for PAM-based industrial design applications. In conclusion authors say that 

there is still a place for further refinement of the model in order to decrease the modelling 

errors so that the reliance on robustness of the control technique could be diminished. 

Fig.6 The simplified scheme of the hybrid adaptive fuzzy controller with system 

adaptation [9] 

Particularly in [9] authors proposed a fast hybrid adaptive control method, where they 

placed a conventional PD controller into the feed forward branch and a fuzzy controller into 

the so-called ‘adaptation’ branch. The fuzzy controller was supposed to compensate for the 

actions of the PD controller under chosen conditions (see Fig.6). The fuzzy controller of 

Takagi–Sugeno type was also modified by means a genetic algorithm using the dynamic 

model of a pneumatic muscle actuator. The results showed the capability of the designed 

system to provide robust performance under the conditions of varying inertia. They also 

confirmed that a fuzzy controller with a simplified fuzzy rule was capable of achieving very 

good performance (in terms of dynamics errors and uncertainties) even under conditions of 

a varying inertia moment. The signal adaptation also proved to be fast in achieving 

improved performance. 

3 Used Approaches 

In this section I will review and describe the possible approaches of approximating the 

model of PMA. 

The general scheme of our recurrent neural network model is depicted in Fig. 7. General 

input vector x is defined (as in [10]) as follows: 

 ( ) ( 1) ( 1) ( ) ( 1) ( 1)
T

n n n y uy k y k y k n u k u k u k n        x  (1) 

where u(k) denotes measured control input and yn(k) stands for neural output (i.e. neural 

model of controlled variable) both at reference time index k of a constant sampling. 

For neural network models later in this work, however, the augmented vector x will be 

used as: 

 
0 1x  

  
 

x
x

. (2) 

The main benefit of using this model is that it is able to make more accurate long-term 

predictions under similar conditions in comparison with the typical feedforward model, the 
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training approach in this model, which is consistent with either Levenberg-Marquardt 

algorithm or a variation of Backpropagation Through Time [10], is built on the trials and 

error correction learning rules and starts the training process using random initial weights. 

Neural Network 

Model of PMA

step

delays

( )

( 1)

( 1)

( )

( 1)

( 1)

n

n

n y

u

y k

y k

y k n

u k

u k

u k n

 
 

 
 
 

  
 
 
 
 
 
   

x

( 1)ny k

( )u k

 

Fig. 7: Principle scheme of recurrent neural network model for PMA. 

After determining the output of the model for the input presented in the training set, the 

error resulting from the difference between the model output and the expected values is 

calculated and it drives the system to keep on going until the finite number of training 

epochs is reached. 

3.1 Dynamic Linear Neural Unit 

The architecture of the DLNU used in this study is shown in the following equation: 

  ( 1)y k   w x  (3)  

where w vector of neural weight as follows 

 0 1 2 1 u yn nw w w w  
 
  

w , (4) 

Where the meaning of nu and ny is classified in Fig. 7 and sigmoid function ( )   is given as 

follows: 

  
1

( )
1 e

 





. (5) 

3.2 Dynamic Quadratic Neural Unit 

Recurrent QNU [10][11][14] is shown in the following equation where yn (k+n1+1) 

is the neural output (predicted value), W is upper triangular weight matrix augmented with 

neural bias w0,0 , n is the number of internal neural recurrent feedbacks, yr stands for real 

measured value, nr is the number of real values feeding the neural unit, k is index of discrete 

time, and T stands for vector or matrix transposition:  

 

 

1 11 1

1
0 0

( 1) ( ) ( )
r rn n n n

T
n ij i j

i j

y k n w x x 
   

 

         x W x  (6) 

 

1 1[ ( ) ( 1) ... ( 1) ( ) ( 1)]Tn n n r r ry k n y k n y k y k y k n      x   (7) 
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3.3 Dynamic MLP networks 

 

Fig.8 Dynamic MLP structure with one hidden layer 

The dynamic MLP network consists of layers of units, each of which carries out a 

relatively simple operation on its own inputs [12]. The very first layer is made up out of one 

node for each of the components of the dynamic input data. The neurons in this layer have a 

transfer function of unity, and their only goal is to spread the inputs to the units in the 

second layer. The outputs of first layer are connected to the inputs of the second layer. The 

outputs of the second layer are connected respectively to the inputs of the third layer, and so 

on. The final layer generates the output values of the MLP. In this manner, the layers 

between the first and last are not observable from outside the network, and are hence 

referred to as 'hidden layers'. The connections of the outputs of a layer to the inputs of the 

next layer have a weight mapped with them. The unit outputs are multiplied by these 

weights before coming to the inputs of the next layer. 

The complete characterization of a MLP demands a number of parameters. These 

include the number of layers, the number of nodes in each layer, the transfer function used 

by the nodes, and all the connection weights. Frankly there is no theoretical method for 

determining the optimum number of hidden layers; however, typically one hidden layer is 

sufficient for most practical applications as we will see later on. An example of the used 

dynamic MLP is shown in Fig.8. As for the number of nodes in each layer, the number of 

input layer nodes is equal to the dimension of the input vector. The number of output nodes 

is usually determined by the application. There is no conventional way to figure out the 

optimum number of hidden units; the usual practice is to use a trial and error approach, as 

that will be shown later. The computation performed by a node on its inputs is referred to as 

activation or somatic function. Out of the several activation functions that have been 
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proposed, the most popular is the logistic or sigmoid function (5). Typically, a threshold 

term is included in x. This threshold is accounted for by augmenting the number of nodes in 

the input and hidden layers with an additional node that has a constant output of 1. The 

function mapping ability of the MLP can be used to either learn the relationship between a 

set of real-valued inputs and real-valued outputs or binary-valued outputs. In the former 

case, the MLP functions as a multi-class classifier [12]. In the training batch, the desired 

outputs for a given input are all agreed to be set to zero, except for the node that 

corresponds to the correct category of the input. This node receives a desired output of one. 

After the network is trained and put into operation, the output node with the highest value 

(and perhaps also satisfying some threshold condition) is declared to be the class to which 

the input vector belongs. The connection weights are determined using a training algorithm.   

3.4 Learning algorithms 

There are various types of algorithms for training the neural network. Basically, the 

purpose of every algorithm is to estimate the local error at each neuron and systematically 

update the network weights. In this study, the neural networks were trained with the 

standard Levenberg-Marquardt (L-M) algorithm in case of static NN, and a variation of 

Backpropagation Through Time (BPTT)[10] in case of dynamic NN to estimate/assess their 

search efficiency and accuracy in the application for pneumatic muscle actuators. The 

details on the most common algorithms are given in the following paragraph. 

3.4.1 Gradient Descent Adaptation 

Fundamental gradient descent rule is as follows: 

Considering a static model: 

( ) ( , )ny k f x w    (9) 

with an error: 

( ) ( ) ( )real ne k y k y k  ,  (10) 

one gets weight increment derived from gradient descent formula  

 
2 ( )1 ( )

( )
2

n
i

i i

y ke k
w e k

w w
 


    

 
  (11) 

and weight update:  

 i i iw w w   (12) 

3.4.2 Levenberg- Marquardt Batch Training 

The Levenberg–Marquardt algorithm (LMA) is a variation of the Newton’s method and 

it gives a numerical solution to the problem of minimizing a function, generally nonlinear, 

over a space of parameters of the function.  This algorithm calculates weight updates taking 

into account all obtained data at once (batch training). 

Basic formula: 

For a single weight one can avoid inverse matrix [13]: 

1
( )

T

i
i

i i

J e
w

J J



 

 

    (13)    

where e-column vector of all errors, Ji- i-th column of Jacobian. 

For multiple weights the  use of inverse matrix is needed:  

1
( )


     T -1 T

w J J I J e    (14) 
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In order to train the neural network with L-M algorithm the following steps have to be 

taken: 

1  Define initial values for weights and a learning rate 

2  Insert data of all inputs to the network and calculate the corresponding network 

outputs and errors. Compute the sum of squares of errors over all inputs of e.  

3  Compute Jacobian matrix  

4  Calculate Δw  and update weights 

3.4.3 RTRL 

Real-time recurrent learning (RTRL) [16] is a gradient-descent based method which 

calculates the error gradient vector at every time step. It is therefore appears appropriate for 

online learning applications [19]. The effect of weight change on the network behavior can 

be noticed by simply differentiating the network dynamics by its weights.  

Basic RTRL learning rule for discrete dynamic neural networks [17][11][10] is based on 

application of gradient descent learning rule (11) to recurrent adaptive (neural) models,  

where partial derivatives of neural inputs 
( n )n s

ij

y k

w

 


 are recurrently calculated as auxiliary 

recurrently evolving variables, as it is indicated by the following example of Jacobian 

vector for weight wij as 

 
(k n 1) (k n 2) (k 1)

[0 ... 0...0]Tn s n s n
ij

ij ij ij ij

y y y
j

w w w w

       
 
   

x
.   (15) 

Regarding properties of RTRL, here we may cite from [19]: “high computational cost 

makes RTRL useful for online adaptation only when very small networks suffice.”  

However, the solved problem in this thesis uses still small network. 

3.4.4 A variation of BPTT 

A variation of Back propagation through time (BPTT) algorithm [10] can be implemented 

as a batch training gradient-based technique for training recurrent neural networks. It can be 

described as combination of Gradient Descent and Levenberg-Marquardt algorithm: 
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Small note concerning RTRL and BPTT: In very recent implementations of LNU and 

QNU during experimental analyses , it appeared that recurrent derivatives , as indicated in 

(15), can be neglected and RTRL and BPTT techniques work also fine for identification and 

control analysis, e.g. [20]. Therefore, the recurrent derivatives are further neglected in 

programming the codes in this thesis.  

3.5 Description of the Used PMA Model 

Simulation model of PMA based actuator was realized in Matlab’s Simulink 

environment [8][9]. The main part of the model PMA [8][9] enhanced with PWM [24] is 

depicted in Fig.9. 
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Fig.9 PMA model, adopted from [8][9] extended with PWM  

To illustrate a practical application of the techniques described in previous sections, the 

PMA model is considered to control pressure input by changing the valve position from -1 

to 1 (open/closed). 

The subsystem of the PWM looks as follows: 

 

Fig.10 Subsystem of PWM, model [8][9] with PWM extension [24] 

Real data obtained from the Simulink model of PMA by means of using PWM is 

illustrated in Fig.11. 

One of the specifics of the given PMA model is that it differs from the classical SISO 

(single input-single output) system because the pulse-width modulation technique was 

involved. 
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Fig.11 Real data obtained from the model 

 

Classical SISO system looks as follows: 

 

Fig.12 Classic SISO system, the output data usually reflects the input 

Our model of PMA[8][9][24], on the other hand, shows that output data doesn’t fully 

respond to changes in input data due to pulse-width modulation: 
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Fig.13 Input-output of our model [8][9][24] 

4 Experimental Analysis 

In this section I will outline the stages of designing the programs for training and testing 

of the neural networks explained in the previous chapters. Using the above theory, twelve 

different programs will be written in Python programming language for training and testing 

static and dynamic LNU, QNU, and MLP. Furthermore, I will calculate the Sum of Squared 

Errors and the Coefficient of Determination in order to compare the efficacy of the designed 

neural networks.   

There are many different attributes that have to be taken into consideration when dealing 

with neural networks, such as learning/training paradigms, network topology, and network 

function, special features, etc. Commonly used approaches for defining the outlines of 

selection of the initial setup can be found in [15]. In this case the assessment must include: 

selecting a common existing structure for which training algorithms are available; adapting 

an existing structure to suit the application, so that neural network would show better 

performance [23]. The architectures and learning algorithms of these networks are briefly 

described in the previous section. Here, in the experimental analysis for approximation 

purposes I decided to use various types of neural networks since it’s the fairest method to 

identify the most suitable one for this work.  

4.1 Used Criteria 

As the main identifiers of how well the neural network performs I will take two values 

that are: 

1. The so-called Sum of Squared Errors which is calculated as follows: 

2

0

( )
N

rSSE y - y ,  (17)        

where yr is a value from a real data, y is a value of a trained neural network that is to be 

predicted. 

SSE is a measure of the deviation between the given data set and a designed model. The 

smaller the SSE, the better our model fits to the data. 
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2. The second term that will be used is the Coefficient of Determination, also 

known as R squared, it shows the ‘goodness’ of fit of the neural network model. The higher 

the coefficient of determination, the greater dependence one sees between the real variable 

and a predicted one.  All in all, it acts as a total measure of the usability of a system.[21]  It 

is derived as follows: 

2
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,  (18)       

where 

_

y is a mean value of the renormalized data set. 

Author in [22] came up with following outlines concerning the coefficient of 

determination: 

1. A generalized coefficient of determination should be consistent with the 

classical coefficient of determination when both can be computed; 

2. Its value should also be maximized by the maximum likelihood estimation of a 

model; 

3. It should be, at least asymptotically, independent of the sample size; 

4. Its interpretation should be the proportion of the variation explained by the 

model; 

5. It should be between 0 and 1, with 0 denoting that model does not explain any 

variation and 1 denoting that it perfectly explains the observed variation; 

6. It should not have any unit. 

R
2
 >0.9 can be considered as a good overall fit. 

Later on, I will calculate these values and compare them in order to analyze the 

performance and efficiency of each network.  

 The data consisting of 1000 samples was normalized in order to reduce the noise and 

avoid inconsistency. During the update procedure I will use the Levenberg-Marquardt 

algorithm and the Back Propagation Through Time (see the previous section on learning 

algorithms). The network training process is performed by providing input-output data to 

each network, which targets minimizing the error by optimizing the network weights and 

performing the corresponding computations. 

Initial setup for Python codes (see full codes in Appendix): 

nyr---- range of the real output data y in dynamic model system  

nur --- range of input data u in dynamic model system 

nx=1+nyr+nur----(vector matrix x - first column in the Fig. 7) 

mu (  ) --- learning rate of the neural network, its optimal value was found 

experimentally for each network 

epochs--- number of epochs 

w=randn(nw)/nw---- we’ll set initial weights to some random values in range 

nw=nx. 
The learning rate and the random weight range are two basic network parameters that 

significantly affect the performance of the model by changing its weights. At first they can 

be set at default values and if the model is unstable they can be made smaller until it 

stabilizes. Later on, one will be able to see that changing the weight range or the learning 

rate does not necessarily result in large changes in model accuracy. The deviation in 

precision is approximately in the same range as that of the random start, which initializes 

the weights. Because of the variation in model performance caused by using different neural 

networks and learning algorithms respectively, I will run all network configurations at least 
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three or four times using the same predetermined random values, produced by the Python’s 

random number generator. Thus I will optimize the network parameters and network 

architecture based on the average of the several random starts. 

When the training is complete, I also would like to check the network performance and 

determine if anything needs to be changed to the training process, the network model or the 

data sets.  

At first the learning rate parameter was typically set to 0.01, but was adjusted every once 

in a while for each network so that the learning rate was decreased if the system become 

unstable and vice versa. 

The ‘SSE vs. the iteration number’ diagrams were also plotted and the smallest value of 

SSE was found. The weights derived at the error minimum for the train/test set were 

selected and considered as the optimal weights, since these give the best generalization 

properties. It was verified that the size of the training set (1000 samples) was large enough 

by examining the generalization properties as the number of samples of the training set was 

varied. Furthermore, in order to emphasize the specific nature of each learning algorithm 

and to avoid the neural network getting undesirable error values, every training procedure 

was repeated at least 5 or 6 times and the best fits of the those sessions were used. 

Considering the significant importance of the network architecture, in this part before 

exploiting different types of neural network models, some points related to the network 

architecture should be mentioned: in order to find the optimal number of neurons, an 

attempt was made to evaluate different networks with different number of neurons. 

Therefore, 2 to 15 neurons were used while search of the best fit; each network was trained 

at least 10 times and in order to compare their performance, the SSE in the test data (which 

included 50% of the whole data) was also set as the criteria. Finally, the optimal number of 

neurons was found individually for each one and the optimal number of hidden layers was 

determined to be 1 because the addition of unnecessary hidden layers can make the network 

too complex and use more epochs for training.  

Frankly, the neural network structure that gives the best possible result can only be 

determined experimentally, there is no other way to say if the network is capable of solving 

this task. The quality of a performance of a neural network is strongly dependent on the 

network parameters such as initial set of weights and learning time, which influences the 

networks’ capabilities to generalize the whole data; generalization is the ability of the 

neural network to ‘understand’ and process the data that it has not seen before. Later on I 

will focus on investigation of how well it learned from the training data and how it handles 

the brand new sets of values. The size and the characteristics of the training data set 

together with the number of iterations are the other factors affecting the generalization 

capabilities of a neural network, so it must be taken into consideration as well. 

4.2 Approximation of PMA with Linear Neural Unit  

4.2.1 Static LNU Using L-M Algorithm 

As in every preliminary theoretical research, the linear neural setting should be 

considered as the first simple case to be studied.  The advantage of the static linear neural 

unit is that the network can easily be built with a simple optimizing algorithm (e.g. 

Levenberg-Marquardt). Nonetheless, the static LNU also has several drawbacks for some 

applications. First, it may fail to produce a satisfactory solution because the training data 

can require more complex approach. Second, static LNU cannot cope well with major 

changes that were never learned in the training phase. 
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Fig.14 Static LNU trained with L-M Algorithm (nyr=12, nur=12,  =1, SSE=0.102, sampling=0.1 sec, epochs=100). The values 

of SSE and R
2
 are fine (see Table 2), however, the neural network doesn’t seem to learn well due to the specific 

behavior of our SISO system, it couldn’t capture the nonlinear character of the PMA’s input and output. 
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4.2.2 Dynamic LNU Using BPTT Algorithm 

 

Fig.15 Dynamic LNU trained with BPTT Algorithm (nyr=12, nur=12,  =0.0001, SSE=33.436, sampling=0.1 sec, epochs=300). 

As one can notice the values of SSE have increased, although I significantly decreased the learning rate in order to 

improve stability of the algorithm and the stability of neural network itself. Higher values of learning rate tend to 

disable the whole system.  
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4.3 Approximation of PMA with QNU 

4.3.1  Static QNU Using L-M Algorithm 

 

Fig.16 Static QNU using L-M algorithm (nyr=6, nur=6,  =0.1, SSE=0.164, sampling=0.1 sec, epochs=400).  
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4.3.2 Dynamic QNU Using BPTT Algorithm 

 

Fig.17 Dynamic QNU using BPTT algorithm (nyr=6, nur=6,  =0.0001, SSE=36.125, sampling=0.1 sec, epochs=400). I had to 

choose small learning rate in order to maintain approximation accuracy and tolerable values of SSE and R
2
. Also I 

noticed that the speed of convergence in this case highly depends on the size of training set and several other user-

defined parameters such as nyr, nur, etc. 
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4.4 Approximation of PMA with Static MLP Network  

4.4.1 Static MLP Using L-M Algorithm 

 

Fig.18 Static MLP using L-M algorithm (nyr=5, nur=10,  W=0.01,  V=0.005, SSE=0.169, sampling=0.1 sec, epochs=600). 

Here I was trying to adjust the learning rates ranging from 1 to 0.0001 and eventually found the most suitable one that 

helped me achieve the stable and acceptable result. This neural network showed the best performance in terms of 

efficiency and values of SSE and R
2
. Plus it has a tendency to compensate the specific behavior of the given SISO 

system (see Fig.13). 
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4.4.2 Dynamic MLP Network Using BPTT Algorithm 

 

Fig.19 Dynamic MLP network using BPTT algorithm (nyr=5, nur=10,  W=0.0,  V=0.005, SSE=5.653, sampling=0.1 sec, 

epochs=500). The results demonstrate that the number of neurons in the hidden layer were sufficient for the network to 

learn the training samples.  
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4.5 Testing of the Neural Networks 

To verify if the neural networks have adequately learned the input domain I will perform 

the testing procedure with similar data as that used in the training set (last 500 samples). The 

testing procedure is very important, because one needs to know if the trained neural 

networks meet the requirements to the solution of approximation of PMA. 

The results of the testing of the networks are shown in the following pictures. 

Testing of the Static LNU: 

 

Fig.20 Testing of Static LNU: SSE=0.528, sampling=0.1 sec 

When I applied the trained model of LNU on the independent data set I saw that the 

curve of the trained model was quite similar to the curve of the tested model, the value of R
2
 

was equal to ~0.99, which is supposed to indicate the close fit of both real and tested data 

(as a reminder: if R
2
 = 1, this means that there is a precise linear relationship between 

outputs of the neural network and the real data. If R
2
 is close to zero, then there is no linear 

relationship whatsoever). However, as in case of training I was still facing the problem of 

avoiding the specific nature of the input-output mapping of our SISO, even in the testing 

phase it was not possible to prevent the neural network’s output curve from simply 

following the input curve.  

 

Dynamic LNU:  

 

Fig.21 Testing of Dynamic LNU: SSE=38.209, sampling=0.1 sec. 
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Fig.21 shows the testing results for dynamic LNU, which basically suffers from poor 

capability for generalization. The slopes are very steep and the testing curve is pretty far 

from the actual (real) one.  The coefficient of determination also was quite small: ~0.23. 

Static QNU: 

The difference between the training and testing sets in case of the static QNU was smaller; it 

was trained with smaller learning rate than LNU which resulted in a lower SSE for both the 

training and testing. Thus, it yielded to the network with slightly better generalization ability. 

 

 

Fig.22 Testing of Static QNU: SSE=3.177, sampling=0.1sec. 

Dynamic QNU: 

 

Fig.23 Testing of Dynamic QNU: SSE=38.966, sampling=0.1 sec 

As it is seen in Fig.23, the SSE in this case significantly increased compared to the static 

QNU due to specific features of dynamic QNU, R
2
~0.35. 



 31 of 47 

Static MLP: The testing of static MLP showed better generalization capability, and the 

values of SSE and R
2 

in Table 3 indicates the superiority of static MLP over the rest of the 

tested neural networks, because only this network seemed to manage the behavior of PMA. 

 

Fig.24 Testing of Static MLP: SSE=5.837, sampling=0.1 sec 

Dynamic MLP: one of the main features I noticed about the testing of dynamic MLP is 

that it takes less time processing the data, although the accuracy of testing was worse than in 

case if static MLP: 

 

Fig.25 Testing of the Dynamic MLP: SSE=8.864, sampling=0.1 sec 
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5 Results on Comparison of Neural Networks 

In this section I will summarize and conclude which one of the neural networks showed 

the best ability to learn during training and the best ability to generalize during testing. To 

do so, I calculated the values of SSE and R
2
 that would help to decide whether the neural 

network was able to capture the characteristic behavior of the model of PMA. 

As it was mentioned before, SSE and R
2
 are the most commonly used criteria for 

comparing different models in accurate forecasting of the results. In many studies the SSE 

criterion is used as a measure of fitting accuracy of models and includes all the features of 

the other criteria including taking into consideration the outer data and comparing the 

accuracy of models as well as showing the error differences. Therefore, it was quite 

reasonable for me to build the assumptions on the basis of the mentioned criteria. The 

results of comparison have been presented in Table 2 and Table 3. As shown there, the static 

neural networks in general perform better in comparison with the dynamic neural network 

models.  

Table 2 Coefficients of Determination R
2
 and SSE for TRAINING of Neural 

Architectures 

Neural network Coefficient of determination Sum of Squared Errors 

LNU 0.996 0.102 

DLNU 0.294 33.436 

QNU 0.993 0.164 

DQNU 0.405 36.125 

MLP 0.958 0.169 

DMLP 0.504 5.653 

 Table 3  Coefficients of Determination R
2
 and SSE for TESTING of Neural 

Architectures 

Neural network Coefficient of determination Sum of Squared Errors 

LNU 0.994 0.528 

DLNU 0.238 38.209 

QNU 0.994 3.177 

DQNU 0.347 38.966 

MLP 0.980 5.837 

DMLP 0.986 8.864 

Using the obtained values of SSE and R
2
 from the tables above I created two diagrams 

that graphically show those values for each network (Fig.26 and Fig.27). 

As one could notice, the values of SSE and R
2 
presented above don’t necessarily reflect 

the real situation in the given case, because the majority of used neural network couldn’t 

handle the specific nature of the PMA, which occurred due to the use of pulse-width 

modulation (see Fig.15, Fig.17, Fig.19). 

For example the static LNU (Fig.14) has excellent values of SSE and R
2
, but it couldn’t 

apprehend the peculiar behavior of our SISO system, which makes it not a good choice for 

the approximation procedure. 

As for the network that performed better than others, I would say it was the static MLP 

(Fig.18), because it was able to capture the nonlinear action of the PMA model and 

practically handle its characteristic nature. The values of SSE and R
2
 were also quite good, 

so that it would make the static MLP by far the most suitable neural network for the given 

model. 

Other neural networks were not capable of dealing with the model, because it turns out 

they don’t perform well in terms of capturing nonlinearities and handling them, so when it 
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comes to the specific nonlinear behavior of PMA they are not the optimal solution for 

approximating techniques. 

 

Fig.26 SSE and R
2
 during training 

During testing: 

 

Fig.27 SSE and R
2
 during testing 

Conclusion 

After completion of all required sections in this thesis, a number of key points with 

respect to its main objectives can be outlined. The primary goal of this thesis was the 

practical comparison of the different neural networks for approximation of the pneumatic 

muscle actuator. First of all, I reviewed recently published papers on studies of PMA and 
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the ways to control it with a strong emphasis on the neural network approach. There are 

various methods for dealing with PMA, and, as one could notice, the neural networks are 

slowly gaining popularity in the field of PMA control due to their numerous advantages, 

such as performing less time consuming training, simplicity of implementation, ability to 

quickly detect complex nonlinear relationship between input and output data in case of the 

supervised training, and the possibility to choose the suitable training algorithms. The given 

model of PMA had the very specific issue concerning the behavior of the input-output 

system, which occurred to due the use of the pulse-width modulation, so that dealing with 

that issue was one of my main objectives as well. Next, I outlined the basic concepts of the 

most commonly used nowadays neural networks, namely LNU, QNU, and MLP, and the 

algorithms they could be trained with, because in order to achieve the desired results I had 

to choose ones that would be most suitable for this application. The next objective of this 

thesis was to carry out the experimental analysis on approximation of PMA where the 

attempt was made to find out which neural network shows better convergence and has a 

better ability to generalize. During the training phase I implemented Levenberg-Marquardt 

and a variation of Backpropagation Through Time algorithm to update weights and 

calculate new (trained) outputs. After the completion of training phase the testing procedure 

was performed in order to see if the neural networks were able to generalize the data. Then I 

also calculated the values of SSE and R
2
, so it could help out with the evaluation of the best 

approximated neural network. However, the main issue of this work was handling the 

nonlinearity of the given model of PMA that occurred due to the presence of the pulse-width 

modulation (PWM), so that values of SSE and R
2
 weren’t the solid factors I could 

completely rely on. For instance the Static LNU had excellent values of SSE and R
2
, but this 

neural network couldn’t deal with the nonlinearity of the model (Fig.14). As in case of 

Dynamic LNU, QNU, and MLP (Fig.15, Fig.17, Fig.19), these neural networks suffered 

from poor capability for training and generalization due to the same problem caused by 

PWM, however dynamic MLP indicated better capability to handle approximate PMA than 

QNU in this work.  As a conclusion I could say that the static MLP (Fig.18, Fig.24) showed 

the best performance during both training and testing compared to other tested neural 

networks, and the values of SSE and R
2 

also corresponds to this assumption. Importantly, 

the static MLP was best in dealing with the specific behavior of this specific SISO system, 

while others couldn’t seem to handle this issue (two-valve PWM actuated PMA). With this 

result I can see more research should be provided in the field of approximation by means of 

the neural network approach: larger sets of data can be used and other techniques can be 

implemented in order to apprehend the nonlinear behavior of the PWM actuated PMA.  

Practically, MLP networks resulted as the best candidate out of LNU and QNU for 

approximation of PWM actuated PMA in this case study and can be considered in a control 

design. 

References 

[1] Prashant, J., S. Q. Xie, Shahid, H., Kean, A.: “Modeling pneumatic muscle actuators: artificial 

intelligence approach”, International Journal of Information Acquisition Vol. 7, No. 2- 151, 

2010. 

[2] Tomoyuki M., Nobutaka T., Takayuki K., Yoichiro, N., Mitsumasa, S.: “Spring-damper model 

and articulation control of pneumatic artificial muscle actuators”, Robotics and 

Biomimetics (ROBIO), 2011 IEEE International Conference, 7-11 Dec. 2011. 

[3] Piteľ, J.: “Modelling of the PAM Based Antagonistic Actuator”, Cybernetic letters ISSN 

1802-3525, April 2008. 



 35 of 47 

[4] Borziková, J., Pitel, J., Tóthová, M., Sulc, B.: “Dynamic simulation model of PAM based 

antagonistic actuator”, Carpathian Control Conference (ICCC), 2011 12th International, 

25-28 May 2011. 

[5] AGARD lecture series, “Artificial Neural Network Approaches in Guidance and Control”, 40 

Chigwell Lane, Loughton, Essex, 1991. 

[6] Prashant, J., Xie, S.: “Artificial Neural Network based dynamic modelling of indigenous 

pneumatic muscle actuators”, Mechatronics and Embedded Systems and Applications 

(MESA), 2012 IEEE/ASME International Conference, 8-10 July 2012. 

[7] Boudoua, S., Hamerlain, F., Hamerlain, M.: “Neuro sliding mode based chatter free control 

for an artificial muscles robot arm”, Neural Networks (IJCNN), The 2010 International 

Joint Conference, 18-23 July 2010. 

[8] Hošovský, A., Havran, M.: “Dynamic modelling of one degree of freedom pneumatic muscle-

based actuator for industrial applications”, Tehnički vjesnik, Vol.19 No.3 Rujan, 2012. 

[9] Hošovský, A., Novák-Marcinčin, J., Piteľ, J., Boržíková, J., Židek, K.: “Model-based 

Evolution of a Fast Hybrid Fuzzy Adaptive Controller for a Pneumatic Muscle Actuator”, 

International Journal of Advanced Robotic Systems. ,p.1-11. - ISSN 1729-8806, Vol. 9 

(56)- 2012 

[10] Gupta, M., M., Bukovsky, I., Homma, N. , Solo M. G. A., Hou Z.-G.: “Fundamentals of 

Higher Order Neural Networks for Modeling and Simulation“, in Artificial Higher Order 

Neural Networks for Modeling and Simulation, ed. M. Zhang, IGI Global, 2012. 

[11] Bukovsky, I., Kei, I., Noriyasu, H., Yoshizawa, M., Rodriguez, R.: “Testing Potentials of 

Dynamic Quadratic Neural Unit for Prediction of Lung Motion during Respiration for 

Tracking Radiation Therapy”, Neural Networks (IJCNN), The 2010 International Joint 

Conference, 18-23 July 2010 

[12] Khotanzad, A., Chung, C.: “Application of multi-layer perceptron neural networks to vision 

problems”, Neural Computing & Applications, Volume 7, Issue 3, pp 249-259, 1998. 

[13] Rodriguez, R.: “Lung Tumor Motion Prediction by Neural Networks”, (Supervisor Ivo 

Bukovsky) Student's Conference STC, Faculty of Mechanical Engineering, CTU in Prague 

November 2012 

[14]  Bukovsky, I., Homma, N.,  Smetana, L., Rodriguez, R., Mironovova M., Vrana S.: “Quadratic 

Neural Unit is a Good Compromise between Linear Models and Neural Networks for 

Industrial Applications”, ICCI 2010 The 9th IEEE International Conference on Cognitive 

Informatics, Tsinghua University, Beijing, China, July 7-9, 2010. 

[15] Haykin, S.: Neural Network: a Comprehensive Foundation, second ed., Prentice Hall, 

Englewood, Cliffs, NJ, 2001. 

[16]  Ham, F.M., Kostanic, I.: Principles of Neurocomputing for Science and Engineering, 

McGraw-Hill, New York, 2001. 

[17]  R. J. Williams and D. Zipser, “A learning algorithm for continually running fully recurrent 

neural networks,” Neural Comput., vol. 1, pp. 270–280, 1989. 

[18] P. J.Werbos, “Backpropagation through time: What it is and how to do it,” Proc. IEEE, vol. 

78, no. 10, pp. 1550–1560, Oct. 1990. 

[19]  Jaeger, H.: A tutorial on training recurrent neural networks, covering BPPT, RTRL, EKF and 

the "echo state network" approach, 3
rd

 revision: April 2008 (online 5/2013, minds.jacobs-

university.de ... ESNTutorialRev.pdf  ) 

[20]  Benes, M.: “Software Application for Adaptive Identification and Controller Tuning”, 

(Supervisor Ivo Bukovsky) Student's Conference STC, Faculty of Mechanical Engineering, 

CTU in Prague 2013 

[21] Dodge, Y.: “The Concise Encyclopedia of Statistics”, Springer book archives, 2008 

[22] Nagelkerke, N. J. D.:"A Note on a General Definition of the Coefficient of Determination". 

Biometrika 78 (3), 1991. 



 36 of 47 

[23] Chiang, M.Y., Li-Chiu Chang: “Comparison of static-feedforward and dynamic-

feedbackneural networks for rainfall–runoff modeling”, Journal of Hydrology 290 297–

311, November, 2003. 

[24] Veselíny, M., Líška, O., Bukovský, I., Jobbágy, B.: “Viacnásobné využitie umelej inteligencie 

v modernom rehabilitačnom zariadení”, Automatizácia a riadenie v teórii a praxi ARTEP 

2013 workshop odborníkov z univerzít, vysokých škôl a praxe 20. 2. – 22. 2. 2013 Stará 

Lesná, SR. 



 37 of 47 

Appendix 

Static LNU: 
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Dynamic LNU: Same initial setup as in case of Static LNU, training is performed as 

follows: 

 
Testing of Dynamic LNU: 
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Static QNU: 
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Testing of Static QNU: 
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Dynamic QNU: 

 

 
Testing of dynamic QNU: 

 

 
 

Static MLP: 
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Testing of static MLP: 
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Dynamic MLP: 
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Testing of dynamic MLP: 
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