
Introduction to Django and
MariaDB

Jesús Cabo Culebras

Francisco Javier García Ruiz

Introduction to Django and MariaDB 1

Infrastructure: What have we chosen and why?

MariaDB
MariaDB is a open source database management system, that manage the data and

the way to access to it. It is a fork of MySQL, created after the acquisition of Sun

Microsystems by Oracle, and one of the main goals of this software is to be compatible

with mysql, but including new features focused in performance. MariaDB is rapidly

increasing its market share due it is totally free and open source and its compatibility with

MySQL.

We chose MariaDB because is really easy to work with it if you have worked with

MySQL and because probably MariaDB will take advantage over MySQL shortly.

Django
Django is a web framework that helps to create webpages easily. It is found

between database layer and web layer (HTML) and it makes a connection among them. To

perform this communication it is used Python language.

Actually, a database is allocated in a server and to make a connection a php file is

used, writing that file in php language. Using Django we realise a .py file where are

developed the main functions that will be call from a HTML client file. With this strategy,

the developer do not create a huge HTML file and it is not understandable very often

because it could be written in different language as javascript, php and html.

Although Django helps you with the connection with the database, it comes with an

object-relational mapper (transformation of data between an Object Oriented model and a

Relational database) in which you describe your database layout in Python code.

Introduction to Django and MariaDB 2

Installation
We used clean installation of Debian 6 as OS, but the installation is similar in the

rest of Linux systems.

Install MariaDB
To download MariaDB we have to go to the official webpage (link) and follow the

instructions to add the repository and install mariadb-server. In our case we have to follow

the next steps:

1. First, run the following command to install the signing key:
sudo apt-key adv --recv-keys --keyserver keyserver.ubuntu.com 0xcbcb082a1bb943db

2. You now need to create a custom MariaDB sources.list file. To do so, copy and

paste the following into a file under /etc/apt/sources.list.d/ (we suggest naming the

file MariaDB.list or something similar), or add it to the bottom of your

/etc/apt/sources.list file.
MariaDB 5.5 repository list file

deb http://mirror.vpsfree.cz/mariadb/repo/5.5/debian squeeze main

deb-src http://mirror.vpsfree.cz/mariadb/repo/5.5/debian squeeze main

3. Once the key is imported and the repository added you can install MariaDB with:
sudo apt-get update

sudo apt-get install mariadb-server

Configure MariaDB
To access to the MariaDB query evaluator, we have to use the command

mysql -u user -p

and, inside the database management system, create a database and an user for it
create database equipment;

use equipment;

 create user 'userName' identified by 'password ;

grant all privileges on equipment.* to userName;

to create the structure we have created a SQL file. If the file is named createDB.sql

we should use the next command:
mysql -u root -p < createDB.sql

Introduction to Django and MariaDB 3

https://www.google.com/url?q=https%3A%2F%2Fdownloads.mariadb.org%2Fmariadb%2Frepositories%2F&sa=D&sntz=1&usg=AFQjCNHpfJ8nVsl0FSj97Y6qchxxuEwwvg
http://www.google.com/url?q=http%3A%2F%2Fmirror.vpsfree.cz%2Fmariadb%2Frepo%2F5.5%2Fdebian&sa=D&sntz=1&usg=AFQjCNHDe7h4ObxDpU0znUijC_M6pB8cyQ
http://www.google.com/url?q=http%3A%2F%2Fmirror.vpsfree.cz%2Fmariadb%2Frepo%2F5.5%2Fdebian&sa=D&sntz=1&usg=AFQjCNHDe7h4ObxDpU0znUijC_M6pB8cyQ

Install Django
We have several ways to install Django over a Linux platform. The easiest way is to

install it using the package management system of the operative system.
aptitude install python-django

But this method installs an old version (1.2.3), so we will use a manual way. First we have

to install some requisites.

1. Install CURL to download files
apt-get install curl

2. Install SETUPTOOLS. It is a requirement for PIP
sudo apt-get install python-setuptools

3. Install PIP. PIP is a tool for installing and managing Python packages. We have to

download PIP package with curl and execute it with python (assuming python is

installed on the system)
curl -O https://raw.github.com/pypa/pip/master/contrib/get-pip.py

[sudo] python get-pip.py

4. Install DJANGO. We will install Django using PIP. We will install the MySQL

connector too(valid for MariaDB).
pip install Django

apt-get build-dep python-mysqldb

pip install MySQL-python

Configuring Django
To create project, where we will define the some configuration parameters, we

have to execute the following command. It will create the structure in the current

directory, in our case we will name the project ‘equipment’.
django-admin.py startproject <projectName>

The next step is to define some configuration parameters related with the connection with

the database in the file <projectName>/settings.py. Change the following keys in the

DATABASES 'default' item to match your database connection settings.

● ENGINE – Either 'django.db.backends.postgresql_psycopg2',

'django.db.backends.mysql', 'django.db.backends.sqlite3' or

'django.db.backends.oracle'. Other backends are also available.

● NAME – The name of your database. If you’re using SQLite, the database will be a

file on your computer; in that case, NAME should be the full absolute path,

Introduction to Django and MariaDB 4

https://www.google.com/url?q=https%3A%2F%2Fwww.evernote.com%2Fref%2Fsettings%2F%23std%3Asetting-DATABASES&sa=D&sntz=1&usg=AFQjCNHlRJ9BmqPYw9bELBzLlwq38Uqbwg
https://www.google.com/url?q=https%3A%2F%2Fwww.evernote.com%2Fref%2Fsettings%2F%23std%3Asetting-DATABASE-ENGINE&sa=D&sntz=1&usg=AFQjCNE0NGw0HD25blh8sRU6E41R-cJYRw
https://www.google.com/url?q=https%3A%2F%2Fwww.evernote.com%2Fref%2Fsettings%2F%23std%3Asetting-NAME&sa=D&sntz=1&usg=AFQjCNG2lUtXgXolrH_eHC5jHfmtu17QZg

including filename, of that file. If the file doesn’t exist, it will automatically be

created when you synchronize the database for the first time (see below). When

specifying the path, always use forward slashes, even on Windows (e.g.

C:/homes/user/mysite/sqlite3.db).

● USER – Your database username (not used for SQLite).

● PASSWORD – Your database password (not used for SQLite).

● HOST – The host your database is on. Leave this as an empty string (or possibly

127.0.0.1) if your database server is on the same physical machine (not used for

SQLite).

In our case the result will be something like this:
DATABASES = {

 'default': {

 'ENGINE': 'django.db.backends.mysql',

 'NAME': 'equipment',

 'USER': 'admin1',

 'PASSWORD': 'admin',

'HOST': '', # Empty for localhost through domain sockets or '127.0.0.1' for

localhost through TCP.

 'PORT': '', # Set to empty string for default.

 }

}

And we have to define the timezone and language parameters
Local time zone for this installation. Choices can be found here:

http://en.wikipedia.org/wiki/List_of_tz_zones_by_name

although not all choices may be available on all operating systems.

In a Windows environment this must be set to your system time zone.

TIME_ZONE = 'Europe/Prague'

Language code for this installation. All choices can be found here:

http://www.i18nguy.com/unicode/language-identifiers.html

LANGUAGE_CODE = 'en-gb'

After configure it we have to synchronize the Django with the database. Manage.py is in

the project directory.

Introduction to Django and MariaDB 5

https://www.google.com/url?q=https%3A%2F%2Fwww.evernote.com%2Fref%2Fsettings%2F%23std%3Asetting-USER&sa=D&sntz=1&usg=AFQjCNG4HHpJhyYDjP-dffkHWNGncS48fQ
https://www.google.com/url?q=https%3A%2F%2Fwww.evernote.com%2Fref%2Fsettings%2F%23std%3Asetting-PASSWORD&sa=D&sntz=1&usg=AFQjCNE-fr64RkjDvSfK3RG8-pM6VWrJeQ
https://www.google.com/url?q=https%3A%2F%2Fwww.evernote.com%2Fref%2Fsettings%2F%23std%3Asetting-HOST&sa=D&sntz=1&usg=AFQjCNGHovrrRVtidZGtlg_w0uVqVPUebg

python manage.py syncdb

This command will ask us to create a user and password, we create a python-superuser

named 'admin1' pass 'admin' for example.

Importing a project
To import a project we have to copy our complete project to whichever directory

and we can start working with it. We have to keep in mind that we must have all Django

installed, as well as the database, and reconfigure the settings.py file with new values if is

required.

Database
The picture below is representing the database design through E-R model that will

be explained in the next section. Is an example about rooms at the university, the owners

of the rooms (attendants) and the equipment that it is the rooms and it could be book by

different persons.

In this model it is also possible seeing cardinality between different entities. This

will be important at time to create different tables, or classes modules in Django, to work

with this database.

Introduction to Django and MariaDB 6

Creating an application

Once we have the project correctly configured we can create an application. To do it

we have to execute the command: python manage.py startapp <appName>

python manage.py startapp equipmentApp

The structure of the project and application and the files that we need to configure are the

next:

● projectName/

○ settings.py : configure DB, timezone, etc.

○ urls.py : redirection of the requests

● applicationName/

○ models.py : definition of the model (data structure) and relation with the DB

○ urls.py : sends the requests to the corresponding view

○ views.py : application logic

○ templates/applicationName/

■ *.html : html templates

Database and Django Relation

In order to create the DB structure, and use the object-relational mapper included in

Django, we have two ways:

1. Create the classes in the models.py file and autogenerate the SQL file

Create the classes in models.py

In settings.py, in the INSTALLED_APPS label add the name of the project

'equipmentApp’

and execute the following commands

python manage.py sql equipmentApp

Introduction to Django and MariaDB 7

python manage.py syncdb

One simple example of a class can be

class TutorialRoom(models.Model):

room_id = models.CharField(max_length=100)

description = models.TextField()

and will be converted to

CREATE TABLE `tutorial_tutorialroom` (

 `id` integer AUTO_INCREMENT NOT NULL PRIMARY KEY,

 `room_id` varchar(100) NOT NULL,

 `description` longtext NOT NULL);

2. Create the structure in the database and autogenerate the models.py file

python manage.py inspectdb > models.py

Replace the new model.py in ./equipmentApp/models.py

Clean up the information (ex. undesired classes) and resynchronize the database

python manage.py syncdb

In the project we will use the second possibility because we already have the database

done. We can try and play with the model with an interpreter.
python manage.py shell

>>> from equipmentApp.models import Room # Import the model classes we just wrote.

No rooms are in the system yet.

>>> Room.objects.all()

[]

Create a new Room.

>>> r = Room(room_id="J345", description="Laboratory")

Save the object into the database. You have to call save() explicitly.

>>> r.save()

Creating the views

The views are the implementation of the logic of the application. It receives a

request and returns a response. A really simple example can be:

Introduction to Django and MariaDB 8

def index(request):

 message=”Hello, world!”

 return HttpResponse(message)

Connecting it with urls files

Using the urls files we define where have to go the requests.

In the project urls.py file we define to wich application have to go the request. So to make

the application work we send the requests to the correct application’s urls file.
equipment/urls.py

urlpatterns = patterns('',

url(r'^equipment/', include('equipmentApp.urls'))

And in the application urls file we send the requests to the appropriate views function
equipmentApp/urls.py

 from django.conf.urls import patterns, url

 from equipmentApp import views

url (regular expression, function, indicator)

urlpatterns = patterns('', url(r'^$', views.index, name='index'))

HTML templates

The templates are html files with inlaid python code that add functionality. We have

to indicate in the file settings.py where are the templates located
TEMPLATE_DIRS = (

 '/home/admin1/equipment/equipmentApp/templates'

One example of a part of a template that lists the rooms is
<body>

<h1 id="title">Rooms Registered</h1>

{% if rooms %}

<ul class="light-box">

{% for room in rooms %}

{{room}}

{% endfor %}

Introduction to Django and MariaDB 9

{% else %}

<p>No rooms registered</p>

{% endif %}

The object rooms is passed as context by the view. Lets see an example:

def index(request):

rooms = Room.objects.all()

context = {'rooms':rooms}

return render(request,'equipmentApp/index.html', context)

We pass to the render the object context (key-value dictionary) with all the Room records

in the database and are sent to the template.

Trying it
Django includes a web server for developing purposes.

python manage.py sql runserver

And then we can access through a web browser using the local url that will go to the index

defined in the urls.py file
http://127.0.0.1:8000/equipmentApp/

Interesting links
Resources and more information

https://mariadb.org/

http://djangoproject.com

Installation information

https://downloads.mariadb.org/mariadb/repositories/

http://www.pip-installer.org/en/latest/installing.html#using-the-installer

Introduction to Django and MariaDB 10

https://www.google.com/url?q=https%3A%2F%2Fmariadb.org%2F&sa=D&sntz=1&usg=AFQjCNFPI42FYDIcx71SC_dCLpaqx1QycQ
http://www.google.com/url?q=http%3A%2F%2Fdjangoproject.com&sa=D&sntz=1&usg=AFQjCNEUzTJD1JYiEvNPHf2Ki4_Tp34BMQ
https://www.google.com/url?q=https%3A%2F%2Fdownloads.mariadb.org%2Fmariadb%2Frepositories%2F&sa=D&sntz=1&usg=AFQjCNHpfJ8nVsl0FSj97Y6qchxxuEwwvg
http://www.google.com/url?q=http%3A%2F%2Fwww.pip-installer.org%2Fen%2Flatest%2Finstalling.html%23using-the-installer&sa=D&sntz=1&usg=AFQjCNHfOcLJhGzxAAviZOixaAhXUVTADg

