
Python for Scientific Computations and Control 1

Python for Scientific Computations and
Control

Final Assignment

Andres Gonzalez Padilla

Python for Scientific Computations and Control 2

Contents

1 Introduction 3

2 Analysed Data 3
2.1 Respiratory Time Series . 3
2.2 Electro-cardiogram Signal . 4

3 Implementing a Predictive Model 4
3.1 Artificial Neural Network and Learning Algorithm 4
3.2 Parameters for the neural network . 6
3.3 Prediction future Values of the Respiration Time Series Signal 6
3.4 Mean Absolute Error for the Predicting model 9

4 Discord Discovery 9
4.1 Brute Force algorithm . 9
4.2 Parameters for the Brute Force Discovery 12

5 Working with PyQtGraph library in Python environment 13
5.1 Comparison in the methods applied . 13
5.2 Using PyQt as Matplot . 14
5.3 Plotting examples . 15

6 References 16

Python for Scientific Computations and Control 3

1 Introduction

Signal processing has become a core feature for the development of new tools in the
biomedical ambit. From cardiology to oncology, the analysis of time series can be used for
forecasting or finding anomalies. The objective of this work is two investigate two different
methods implemented in Python that should be ready to work with any input signal. The
first implementation is predictive and consists of a neural network that uses Levenberg-
Marquardt with adaptive momentum for training. Levenberg-Marquardt algorithm, also
known as damped least-squares, uses an interpolation between Gauss-Newton algorithm
and the method of gradient descent for optimization. The second implementation is used
to detect anomalies in the given data and is grounded in the Adaptive Window Based
Discord Discovery (AWDD) which itself is inspired by Brutal Force Discord Discovery
(BFDD) and Heuristic Discord Discovery (HDD). In addition, the new library PyQtgraph
will be investigated and compared to the usual Matplotlib.

2 Analysed Data

2.1 Respiratory Time Series

The data analysed was selected in accordance to the objective. For the prediction method,
a respiratory time series (RTS) representing the position of a lung tumor is analysed and
was acquired at Hokkaido University Hospital at 30 Hz sampling. The signals have a
length of 18.6 seconds and are shown in figure 1.

Python for Scientific Computations and Control 4

Figure 1: Respiratory Time Series for lung tumor.

2.2 Electro-cardiogram Signal

The data for the Discord Discovery and Brute Forces was taken from the Physionet
Databank and represents the case of Premature Ventricular Contraction which is suitable
for anomaly detection. The length of the data is quite long (1805 seconds) so the code
permits the user to select the time range as well as the number of windows for the analysis.
The signals for seconds 3 through 10 is shown in figure 2.

Figure 2: Respiratory Time Series for lung tumor.

3 Implementing a Predictive Model

3.1 Artificial Neural Network and Learning Algorithm

Artificial neural networks can be used to predict future values of a given signal by analysing
to recent history of the signal and by using a learning algorithm.

Python for Scientific Computations and Control 5

These models mimic the "real life" behaviour of neurons and the electrical messages they
produce between input, processing by the brain and the final output from the brain.

There are several types of Neural Networks, the type of architecture used in the present
modelling is called Feedforward neural network. This architecture is the most simple type
since information flows in one direction only. It can consist of several layers (perceptrons)
or only one. For this method, only one input vector is used for one layer of output nodes.

Although the N.N. used is feedforward, in the method implemented the process is repeated
a number of times (epochs) by putting it inside a cycle. The new output will be the input
for the next iteration to progressively decrease the error obtained.

An input vector x(k) consisting of data form the signal’s history is used in a weighting
function with the coefficients wi. The output vector y(k) of the function is then compared
to the real values and the error is calculated. Using the error between real data and
model output the weights are updated with the Levenberg-Marquardt algorithm in order
to reduce future error.

x(k) ⇒ f(x,w) −→ y(k)

Specifically for the method implemented, the function of the layer is simply a dot multi-
plication between the input and weights vectors.

The Levenberg-Marquardt algorithm for a linear model works as follows. The Jacobian
matrix is made of all input vectors with the length m.

J =

1 x1(1) x1(1) . . . xm(1)
1 x2(2) x2(2) . . . xm(2)
...
1 x1(N) x2(N) . . . xm(N)

 (3-1)

Training the N.N. is by comparing the results to the real data. The weight increment is
calculated with the error e between real data and model output and the so called learning
rate µ in the following way:

dw =
((Jᵀ · J) + 1

µ
1

)−1

· Jᵀ

 · e (3-2)

The updated weight after a learning period is then:

w = w + dw . (3-3)

Python for Scientific Computations and Control 6

With this procedure the model is able to learn after each learning period and can fit the
model better after it.

3.2 Parameters for the neural network

The user defined parameters look like this in the code:

epochs = 30

mu = 0.01

L = 15

pr = 5

The epochs is the number of times the weight vector will be updated. It requires a certain
minimum amount of updates until the system is unable to further improve the results.

Mu is the learning rate used in Levenberg-Marquardt. Should be less than the unit.

L is the length of input and output vector; it should be considerably smaller compared to
the total length of the data.

The prediction range (pr) is the number of samples ahead the model will predict. It
should be big enough to get relevant results but small enough for them to be reliable.
The larger the range, the bigger the risk of getting large error.

The weights vector is initialized randomly.

3.3 Prediction future Values of the Respiration Time Series Signal

A simple artificial single-layer neural network is implemented for prediction of future
values of the RTS signal. The length of the input vector and so the number of nodes is
15 and the learning rate is set to µ = 0.01. The prediction range which represent the
number of samples predicted ahead is selected with a value in concordance to the input
vector. As the prediction range is further increased the forecast result can get worse; in
figure 3 an acceptable result is seen for a prediction range of 5.

Python for Scientific Computations and Control 7

Figure 3: Simple predictive model and real data.

To improve results a second model was implemented. This advance model receives the
same signal but the input is divided in two. It gets the the recent history in the first
half of input and the other half of the input is the history of the signal one period ago
which is obtained from the lag value of the autocorrelation function where the correlation
coefficient attains its maximum. Taking into consideration the size of data, the period for
autocorrelation selected is 30 samples or 1 s. The model output for a prediction range of
5 is shown in figure 4.

Figure 4: Advanced predictive model and real data.

Python for Scientific Computations and Control 8

Figure 5: All models and real data with prediction range of 5 samples.

The comparison of performance of both models can be seen in figure 5. From the graph
it can be deducted that the advance model gets a better prediction than the simple one.
This is confirmed by figure 6 which compares the sum of errors of both implementations.
Although both models converge to the same error almost in the same period, for periods
before, the difference is considerable.

Figure 6: Sum of squared errors of all models at a prediction range of 5 samples.

Python for Scientific Computations and Control 9

3.4 Mean Absolute Error for the Predicting model

The mean absolute error is a statistical measure of how far estimates or forecasts are from
actual values. It is most often used in time series and the procedure is two subtract the
predicted value from the actual value in each row. Then take the absolute value of each
row and add up the absolute values. Finally divide by the total length of data. This
means:

MAE = 1
|T |

∑
(u,iεT)

|r̂ui − rui| (3-4)

Where r̂ui is the predicted value and rui is the true value.

The results for the implemented N.N.:

Simple Model: 0.383658186761

Advance Model: 0.406947280621

The results are almost the same, the advantage of the advance model, however, comes in
that it requires less epochs and therefore the N.N. itself is more efficient.

4 Discord Discovery

4.1 Brute Force algorithm

Time series discords are subsequences of longer time series that are maximally different
to all the rest of the time series subsequences. They thus capture the sense of the most
unusual subsequence within a time series. While discords have many uses for data min-
ing, they are particularly attractive as anomaly detectors because they only require one
intuitive parameter: the subsequence length n. In order to analyze the time series, all
possible subsequences can be extracted by sliding a window of size n across the whole
data.∑10

n=1
1

n2

The method uses the Euclidian distance which is defined as a function that has two
subsequences C and M as inputs and returns a nonnegative value R, which is said to

Python for Scientific Computations and Control 10

be the distance from M to C. For subsequent definitions to work we require that the
function D be symmetric, that is, Dist(C,M) = Dist(M,C). We also assume that the
two subsequences are of equal length n.

The Brute Force Discord Discovery method takes each possible subsequence and find the
distance to the nearest non-self match (non-overlapping subsequence). The subsequence
that has the greatest such distance value is the discord. The position of this discord is
saved and then displayed on top of the original graph. This is achieved with nested loops,
where the outer loop considers each possible candidate subsequence, and the inner loop
is a linear scan to identify the candidate?s nearest non-self match (check appendix).

For the ECG signal of choice, the data between 3 and 10 seconds was selected since there
is an anomaly appearance in the middle. The code receives from the user the number of
windows N which is automatically translated into the subsequence length n by dividing
the length of data over N. For analysis of the method a number of N = 10 is used since
there are 9 peaks in the time period selected. The code is run for the values n through
8n (on-growing windows) to compare the results when different amount of peaks as used
as sliding window. The first four plots, produced with the library Matplotlib, can be seen
in figure 7. The next four plots, produced with the library PyQtGraph, can be seen in
figure 8.

Python for Scientific Computations and Control 11

Figure 7: Anomaly detection plotting with matplotlib for the first 4 window lengths.

Python for Scientific Computations and Control 12

Figure 8: Anomaly detection plotting with PyQtGraph for window lengths 5 to 8.

It can be seen that the anomaly is detected in every case; the subsequence which corre-
sponds to the greater distance always is in the neighbourhood of the anomaly; however
for the first case where the window (subsequence length) is smaller than the anomaly, the
method fails. This means that the user should select a window length of at least 3 peaks
since the anomaly for Premature Ventricular Contraction occurs in a length between two
and three peaks.

4.2 Parameters for the Brute Force Discovery

For the Brute Force method, only the window size is needed. The user can also specify
the fragment of the data to be analysed by defining the beginning and end times which
turns out to be useful is there is an specific region where an anomaly is suspected.

Python for Scientific Computations and Control 13

The user defined parameters look like this in the code:

N_of_windows = 10

t_userin = 3

t_userfin = 10

5 Working with PyQtGraph library in Python environment

5.1 Comparison in the methods applied

The PyQtgraph is an alternative to Matplot library for Python. It has been addressed
that PyQt is faster and more versatile specially because it includes the feature of plotting
live data somewhat easily.

In the previous methods, the plot was done with both libraries and PyQt has both advan-
tages and disadvantages. The annotated code used for plotting the Brute Force method
is as follows:

Plotting in MatPlotlib.

figure()

plot(t, y, ’b’, tbest, ybest, ’r’)

legend((’real data’, ’anomaly’))

grid(), title(’Signal 1 - ECG’)

show()

Plotting in PyQtGraph (multiple plots).

Create window with title:

win = pg.GraphicsWindow(title="Plotting PV-ECG") # plot t vs y in red

#win.setWindowTitle(’Plotting PV-ECG’) #alternative for title input

Python for Scientific Computations and Control 14

Enable antialiasing for prettier plots:

pg.setConfigOptions(antialias=True)

Plot in red and add title:

p1 = win.addPlot(title="Signal 1 PV-ECG and Anomaly")

p1.plot(t, y, pen=’r’)

Add second plot on top in white color:

p1.plot(tbest,ybest, pen=(255,255,255,200))

Show grid?

p1.showGrid(x=True, y=True)

Create Region Selection and add it on plot:

lr = pg.LinearRegionItem([t[Loc],t[Loc + num -1]])

lr.setZValue(-10)

p1.addItem(lr)

The final product of PyQt looks more professional and it is true that the individual
plotting of the graphs was quicker which turns out useful for these type of graphs when
several features are shown.

Also, it is possible to modify the graph (zoom in, move, change color or export) easier
than Matplot library.

However, when generating multiple graphs inside a loop (for example for different window
sizes), it would usually skip one or more plots randomly. Running the code several times
was necessary, or decreasing the number of plots which made the process slower.

5.2 Using PyQt as Matplot

The following code can be used for simple plotting using Qt for a user already familiar
with Matplot library:

Python for Scientific Computations and Control 15

User defined function:

def qplot(t,y,color, labelx, labely, qtitle):

Plotting in PyQtGraph (multiple plots)

win = pg.GraphicsWindow(title=qtitle) # plot t vs y in red

#win.setWindowTitle(’Plotting PV-ECG’)

Enable antialiasing for prettier plots

pg.setConfigOptions(antialias=True)

plot

p1 = win.addPlot(title=qtitle)

p1.plot(t, y, pen=color)

p1.setLabel(’left’, labely)

p1.setLabel(’bottom’, labelx)

Plot command for main:

Plotting with defined function with pyqtgraph

qplot(t,y,’r’, ’X axis’, ’Y axis’, ’Insert Title’)

5.3 Plotting examples

These are the basic plots explored. See Appendix for coding. A nice feature is the sliding of
region highlighted which can be linked to another graph showing only the region selected.
This turns out useful for live showing of results (this can be seen in the last two plots).

Python for Scientific Computations and Control 16

Figure 9: Basic plots achieved with PyQtGraph library.

6 References

[1] Keogh, E., Lin, j., & Lee, S. (2006). Finding the most unusual time series
subsequence: algorithms and applications. Knowledge and Information Systems, 18.

Python for Scientific Computations and Control 17

Appendix
Python Code for Brute Force

Python assignment - Andres Gonzalez Padilla
analyzing position of a lung tumor data, creating a predictive model
data was acquired at Hokkaido University Hospital at 30 Hz sampling.

imported in spyder
#from numpy import *
#from matplotlib import *
#from matplotlib.pyplot import *
#from scipy import fft

from numpy.linalg import inv
from numpy.random import randn
from pylab import *

Respiration data, array
yrts = loadtxt(’RTS_30Hz.txt’)
tfinal = len(yrts)/30
t = linspace(0, tfinal, len(yrts))

Neural Network Predictive Model
#Initializing
yr = yrts # real data for the model
mu = 0.01 # learning rate
L = 15 # length of input and output vector
N = len(yr) # length of total data
x = ones(L) # initializing input
w = randn(L) / L # initializing weighting with random values
epochs = 30 # number of learning epochs
dwdy = zeros((N, L)) # initializing weighting derivative
I = eye(L) # identity matrix
pr = 5 # prediction range (number of samples ahead)

levenberg-marquardt method
y = zeros(N) # initializing model output
e = y.copy() # initializing error
SSE = zeros(epochs) # initializing sum of squared errors

Python for Scientific Computations and Control 18

#y[0:L + 1] = yr[0:L + 1] # initial condition for dynamic model
for epoch in range(epochs):

for j in range(L - 1 - pr, N - pr):
x[1:] = yr[range(j, j - L + 1, -1)] #input
y[j + pr] = dot(x, w) #output
e[j + pr] = yr[j + pr] - y[j + pr]
dwdy[j + pr] = x

J = dwdy
dw = dot(dot(inv(dot(J.T, J) + 1 / mu * I), J.T), e)
w = w + dw
SSE[epoch] = sum(e * e)

print(SSE[epoch])
print(’Simple Model Finished’)

##MAE simple model
MAEsimple = sum(abs(yr-y))/size(y)

Advance Model with referring to values one period ago
yadv = zeros(N) # initializing combinated model output
eadv = zeros(N) # initializing error for combimodel
SSEadv = zeros(epochs) # initializing sum of squared errors for combimodel
odd = 0
if (L != 2 * (L / 2)):

odd = 2 # correction of input at odd length of input vector
for epoch in range(epochs):

for j in range(L - 1 - pr , N - pr):
x[1:] = yr[range(j, j - L + 1, -1)]
if (j > 30 + 3 * L / 4 - 1): # c

x[L / 2:] = yr[range(j - (30-L/4), j - (30+L/4) - odd, -1)]
yadv[j + pr] = dot(x, w)
eadv[j + pr] = yr[j + pr] - yadv[j + pr]
dwdy[j + pr] = x

J = dwdy
dw = dot(dot(inv(dot(J.T, J) + 1 / mu * I), J.T), eadv)
w = w + dw
SSEadv[epoch] = sum(eadv * eadv)

print(SSEadv[epoch])
print(’Advance Model Finished’)

Python for Scientific Computations and Control 19

##MAE advance model
MAEadvance = sum(abs(yr-yadv))/size(y)

print(MAEsimple)

print(MAEadvance)

plotting

plotting original data
figure(1)
plot(t, yr, ’b’)
grid(), title(’Signal 1 - RTS’)

figure(2)
plot(t, yr, ’k’, t, y, ’b’)
grid(), title(’Simple predictive Model’)
legend((’real data’, ’simple model’))
xlabel(’time [s]’)

figure(3)
plot(t, yr, ’k’, t, yadv, ’c’)
grid(), title(’Advanced predictive Model’)
legend((’real data’, ’advanced model’))
xlabel(’time [s]’)

figure(4)
plot(t, yr, ’k’, t, y, ’b’, t, yadv, ’c’)
grid(), title(’Predictive models’)
legend((’real data’, ’simple’, ’advanced’))
xlabel(’time [s]’)

figure(5)
plot(SSE)
plot(SSEadv, ’c’)
grid(), title(’Sum of squared errors’)
legend((’simple’, ’advanced’))
xlabel(’learning period’)

Python for Scientific Computations and Control 20

show()

Python Code for Brute Force

Python Code for PyQtGraph library

-*- coding: utf-8 -*-
"""
Created on Sun Apr 27 22:40:13 2014

@author: Andres
"""

Basic Plot

-*- coding: utf-8 -*-
"""
This example demonstrates many of the 2D plotting capabilities
in pyqtgraph. All of the plots may be panned/scaled by dragging with
the left/right mouse buttons. Right click on any plot to show a context menu.
"""

#import initExample ## Add path to library (just for examples; you do not need this)

from pyqtgraph.Qt import QtGui, QtCore
import numpy as np
import pyqtgraph as pg

#QtGui.QApplication.setGraphicsSystem(’raster’)
#app = QtGui.QApplication([])
#mw = QtGui.QMainWindow()
#mw.resize(800,800)

win = pg.GraphicsWindow(title="Basic plotting examples")
win.resize(1000,600)
win.setWindowTitle(’pyqtgraph example: Plotting’)

Enable antialiasing for prettier plots
pg.setConfigOptions(antialias=True)

Python for Scientific Computations and Control 21

GRAPH NUMBER 1

p1 = win.addPlot(title="Basic array plotting", y=np.random.normal(size=100))

GRAPH NUMBER 2
p2 = win.addPlot(title="Multiple curves")
p2.plot(np.random.normal(size=100), pen=(255,0,0))
p2.plot(np.random.normal(size=100)+5, pen=(0,255,0))
p2.plot(np.random.normal(size=100)+10, pen=(0,0,255))

GRAPH NUMBER 3
p3 = win.addPlot(title="Drawing with points")
p3.plot(np.random.normal(size=100), pen=(200,200,200), symbolBrush=(255,0,0), symbolPen=’w’)

GRAPH NUMBER 4
win.nextRow()
p4 = win.addPlot(title="Parametric, grid enabled")
x = np.cos(np.linspace(0, 2*np.pi, 1000))
y = np.sin(np.linspace(0, 4*np.pi, 1000))
p4.plot(x, y)
p4.showGrid(x=True, y=True)

GRAPH NUMBER 5
p5 = win.addPlot(title="Scatter plot, axis labels, log scale")
x = np.random.normal(size=1000) * 1e-5
y = x*1000 + 0.005 * np.random.normal(size=1000)
y -= y.min()-1.0
mask = x > 1e-15
x = x[mask]
y = y[mask]
p5.plot(x, y, pen=None, symbol=’t’, symbolPen=None, symbolSize=10, symbolBrush=(100, 100, 255, 50))
p5.setLabel(’left’, "Y Axis", units=’A’)
p5.setLabel(’bottom’, "Y Axis", units=’s’)
p5.setLogMode(x=True, y=False)

GRAPH NUMBER 6 ("LIVE" PLOT)
p6 = win.addPlot(title="Updating plot")
curve = p6.plot(pen=’y’)
data = np.random.normal(size=(10,1000))

Python for Scientific Computations and Control 22

ptr = 0
def update():

global curve, data, ptr, p6
curve.setData(data[ptr%10])
if ptr == 0:

p6.enableAutoRange(’xy’, False) ## stop auto-scaling after the first data set is plotted
ptr += 1

timer = QtCore.QTimer()
timer.timeout.connect(update)
timer.start(50)

GRAPH NUMBER 7
win.nextRow()
p7 = win.addPlot(title="Filled plot, axis disabled")
y = np.sin(np.linspace(0, 10, 1000)) + np.random.normal(size=1000, scale=0.1)
p7.plot(y, fillLevel=-0.3, brush=(50,50,200,100))
p7.showAxis(’bottom’, False)

GRAPH NUMBER 8
x2 = np.linspace(-100, 100, 1000)
data2 = np.sin(x2) / x2
p8 = win.addPlot(title="Region Selection")
p8.plot(data2, pen=(255,255,255,200))
#p8.plot(x2, data2, pen=(255,255,255,200))
lr = pg.LinearRegionItem([400,700])
lr.setZValue(-10)
p8.addItem(lr)

GRAPH NUMBER 9
p9 = win.addPlot(title="Zoom on selected region")
p9.plot(data2)
def updatePlot():

p9.setXRange(*lr.getRegion(), padding=0)

def updateRegion():
lr.setRegion(p9.getViewBox().viewRange()[0])

lr.sigRegionChanged.connect(updatePlot)
p9.sigXRangeChanged.connect(updateRegion)

Python for Scientific Computations and Control 23

updatePlot()

Start Qt event loop unless running in interactive mode or using pyside.
if __name__ == ’__main__’:

import sys
if (sys.flags.interactive != 1) or not hasattr(QtCore, ’PYQT_VERSION’):

QtGui.QApplication.instance().exec_()

	Introduction
	Analysed Data
	Respiratory Time Series
	Electro-cardiogram Signal

	Implementing a Predictive Model
	Artificial Neural Network and Learning Algorithm
	Parameters for the neural network
	Prediction future Values of the Respiration Time Series Signal
	Mean Absolute Error for the Predicting model

	Discord Discovery
	Brute Force algorithm
	Parameters for the Brute Force Discovery

	Working with PyQtGraph library in Python environment
	Comparison in the methods applied
	Using PyQt as Matplot
	Plotting examples

	References

