
Python for Scientific Computations and Control 1

Python for Scientific Computations and
Control

Project Report

Georg Malte Kauf

Python for Scientific Computations and Control 2

Contents

1 Introduction 3

2 Tkinter Graphical User Interface 3
2.1 Creating the Master Frame . 3
2.2 Using Grid Geometry Manager . 4
2.3 Implementing the Menu Bar . 4
2.4 Implementing Label, Button, Checkbutton and Entry Widgets 5
2.5 Implementing a Matplotlib Figure and Toolbar 6

3 Program’s Functions and Methods 7
3.1 Loading and Saving Data . 7
3.2 Signal Processing Tools . 7

3.2.1 Resampling . 7
3.2.2 Moving Average Filter . 7
3.2.3 Coarse Graining Filter . 8
3.2.4 Fast Fourier Transformation . 8
3.2.5 Autocorrelation Analysis . 8

3.3 Other Functions . 8

4 Potential for Improvement 9

Python for Scientific Computations and Control 3

1 Introduction

Aim of this report is to show and explain the signal processing application SigPro which
has been programmed in python using the Tkinter toolkit. It was made to provide basic
signal processing in a user-friendly graphical user interface.

2 Tkinter Graphical User Interface

2.1 Creating the Master Frame

The Tkinter python module is an easily to use but yet powerful graphical user interface
toolkit. To create a graphical user interface (GUI) it is necessary to create a master
frame in which all the other widgets are placed. This is done by the following code lines:

frame = Frame(master)
frame.grid()

which are referring to a root widget. The whole application is packed into a class which
is recommended. While creating an instance of this class by

root = Tk()
gui_frame = mainFrame(root)

the root widget is passed to the class as an argument and is within the class called
master as it can be seen here:

def __init__(self, master):

which is the code line which starts the initial method while creating an instance of the
class mainFrame. In the parent widget Frame(master) all children widgets are placed.

Finally to execute and show all Tkinter widgets created by the root widget root it is
necessary to call a main loop.

root.mainloop()

Python for Scientific Computations and Control 4

2.2 Using Grid Geometry Manager

Tkinter provides simple but effective tools like the grid geometry manager which has been
used in this application. With this manager all used widgets can easily be arranged using
a column and row grid with the possibility to extend the widget over several columns or
rows. For example the used checkbutton is arranged with the code line:

self.checkbut.grid(row = 9, column = 0, columnspan = 2)

where the options row and column define the position in the grid and columnspan extends
the button over several columns which is also possible for rows. When the option sticky
is used the widget’s orientation in its grid cell can be defined. Every widget must be
placed with the grid manager to be seen in the Tkinter main frame. There are other
tools to place widgets within a master widget but only one type should be used since
problems will occur using two different types of geometry manager.

Only the grid geometry manager was used in this application except for the prompt
messages where pack was used. But that is possible since they were not placed in the
same master frame where grid was used.

2.3 Implementing the Menu Bar

Essential for every GUI is some kind of menu where the user is guided by. That is why
also this GUI has a menu bar with different tabs and functions. To implement these in
the main frame the following procedure is used. A master widget for the menu is created

menubar = menu(Master)

where all sub menu functions are implemented in. Then there is a pulldown menu created
and after that there are commands added, e.g.

editmenu = Menu(menubar, tearoff=0)
editmenu.add_command(label="Undo", command=self.undo)
editmenu.add_command(label="Redo", command=self.redo)
menubar.add_cascade(label="Edit", menu=editmenu)

for the edit pulldown menu. The same way more menu tabs can be added. In the end
the menu must be added to the master frame.

Python for Scientific Computations and Control 5

master.config(menu=menubar)

2.4 Implementing Label, Button, Checkbutton and Entry Widgets

The Label widget is a very easy to implement one. An instance of the Label class is
created and after that with the grid geometry manager added to the master frame. For
example

label1 = Label(master, text="Loading and Saving Data")
label1.grid(row=3, column=0, columnspan=4)

whereas more optional arguments can be passed to change e.g. the script color.

The Button widget is used to execute a defined command when the user clicks on it.
The command to create a button is for example

self.button = Button(
master, text=’Save Data’,
command=self.save, width=20
)

where the argument width defines the button width which is also possible for the hight
and the command argument defines the method or the like which should be executed.
By the grid manager the button is placed within the frame.

Similar is the procedure to implement a checkbutton although the variable which can
be changed by activating or deactivating the checkbutton must be defined before.

self.checkvar = IntVar()

and then the actual checkbutton is created.

self.checkbut = Checkbutton(
master, text="Using Origninally Loaded Data",
variable=self.checkvar
)

Python for Scientific Computations and Control 6

An entry field is used to let the user insert for example a file name or a number. The
variable can then later be accessed. An example is

self.e_resampling = Entry(master)

which is later accessed by the command

self.e_resampling.get()

2.5 Implementing a Matplotlib Figure and Toolbar

The Matplotlib figure in the program is one of the most important features. The user
can immediately see how the current signal looks like. To implement the figure the
module matplotlib.backends.backend_tkagg imported as tkagg is used which also creates
the toolbar of the matplotlib figure. The matplotlib.figure module is imported as mplfig.
A canvas is used to display the plot figure after defining a plot figure name

self.fig = mplfig.Figure()
self.axes = self.fig.add_subplot(111)
self.axes.grid(TRUE)
self.canvas = tkagg.FigureCanvasTkAgg(self.fig, master = master)
self.canvas.get_tk_widget().grid(row=0, column=4, rowspan=25,)
self.canvas.draw()

and then it is placed in the grid and drawn.

The navigation toolbar which is necessary to zoom in or out in the plot figure or even
to save the figure is also created with matplotlib.backends.backend_tkagg in a previously
created toolbar frame

self.toolbarframe=Frame(master)
self.toolbarframe.grid(row=25, column=4, sticky=’NWE’)
self.toolbar = tkagg.NavigationToolbar2TkAgg(self.canvas,

self.toolbarframe)
self.toolbar.grid(row=26,column=4, sticky=’NWE’)

and positioned by the grid manager.

Python for Scientific Computations and Control 7

3 Program’s Functions and Methods

3.1 Loading and Saving Data

Every command is executed by the user by clicking either on the button or in the menu
button. Doing so the method is called. Before the signal processing can start data has
to be loaded into the program. This tool was made for processing data with two columns
or rows so for example one row of time data and one row of values. The data is loaded
by

x = loadtxt(varname)

where varname is the content of a entry field. After that time and values are split and
finally saved to current and originally loaded data. It is possible for the user to decide
if he wants to use the data loaded in the beginning or to continuously process the signal
by clicking on the checkbutton. Also the data from one step before is always saved so
that the user can execute an undo command to revoke one command. It has to be said
that the file has not to be a .txt file.

Furthermore it is possible to browse a file in the directories by clicking in the menu on
open and it is possible to save data to a specific file by browsing by clicking in the menu
on save. Otherwise by clicking in the window on save data the file will be saved in the
current directory.

3.2 Signal Processing Tools

3.2.1 Resampling

Very important for signal processing and following usage of data is it to reduce data
volume or simplify it. For this aim the resampling function was implemented which just
uses every e.g. second sample as it is wished by the user who can type the resampling
rate directly into the entry field.

3.2.2 Moving Average Filter

A moving average filter is a tool to reduce noise in a signal and making the signal
smoother. This is done by calculating the mean value of the next n samples of every
sample. The number n can be typed by the user in the corresponding entry field.

Python for Scientific Computations and Control 8

3.2.3 Coarse Graining Filter

A coarse graining filter is a combination of moving average filter and resampling. It is
simultaneously done and reduces noise and making the signal very smooth as the name
says.

3.2.4 Fast Fourier Transformation

The fast Fourier transformation is a powerful tool to analyse a signal and to compare it
to others. The mainly used frequencies of the analysed signal are shown in the frequency
spectrum when this function is used.

3.2.5 Autocorrelation Analysis

The correlation coefficient is a value between −1 and 1 and indicates how much two
signals are linear depending on each other. A value of 1 means that the two signals
are absolutely linear dependent and −1 means a absolute reverse dependency. The
autocorrelation function is the correlation coefficient of one and the same signal for
different lags meaning for different distances between samples. Thus the periodicity
can easily be seen in the autocorrelation function plot which is displayed pressing the
autocorrelation button.

3.3 Other Functions

Some further functions of the program are as mentioned before the loading and saving
feature of processed signals even with the option to browse between directories. Also
mentioned was the option to undo every processing step and use the previously loaded
data by activating the checkbutton.

Very useful are the undo and redo functions. The user has with it the possibility to revoke
the last step of processing or redo it again. This step is only possible once though since
it should be sufficient only to reach the last state to undo one command and also the
last data need to be saved to a variable.

Furthermore it is possible for the user to call this report as a manual by pressing the
manual button in the menu and with that reading this documentation including the
source code.

Python for Scientific Computations and Control 9

The plot figure and the corresponding toolbar are of course also fully functional.

4 Potential for Improvement

In this section some aspects shall be discussed that can be improved in the program.
One thing that is of course the range of functions of the program. Right now there are
only a few functions and it is only possible to process one signal at once. Later versions
of this program should provide more complex processing functions.

Another aspect is the layout. At current state there was done almost no special effort in
making the layout more than functional. Thus there is no change of background color
or script font. This could be improved to make the program more user-friendly.

Maybe the most important and difficult to change aspect is the usage of global variables
in the program. The loaded data, the current data, and the undo variables are all
defined as global so every method can access them easily. But especially for memory
usage aspects or even because of the chance to overwrite them it is not recommended
to use global variables. Since the size of the data and with that the space in memory
reserved for these variables changes all the time when loading or resampling the data
global variables should not be used. The next version of this program must consider this
problem.

Python for Scientific Computations and Control 10

Appendix
Python Code

python gui application using Tkinter

main

from Tkinter import *
from numpy import *
import matplotlib.pyplot as plt
import matplotlib.figure as mplfig
import matplotlib.backends.backend_tkagg as tkagg
import os
import tkFileDialog
from scipy import fft

global variables, careful!
loaded original data
x1 = 0 # time
x2 = 0 # values
current used data
c1 = 0 # time
c2 = 0 # value
undo variable
u1 = 0 # time
u2 = 0 # value
undo = False

class mainFrame:

def __init__(self, master):

frame = Frame(master)
frame.grid()

def hello():
msg = "Welcome to SigPro! This Application is made for " \

"easy signal processing and basic investigations of data!"
print msg

menubar = Menu(master)

Python for Scientific Computations and Control 11

create a pulldown menu, and add it to the menu bar
filemenu = Menu(menubar, tearoff=0)
filemenu.add_command(label="Open", command=self.browsingopenfile)
filemenu.add_command(label="Save", command=self.browsingsavefile)
filemenu.add_separator()
filemenu.add_command(label="Exit", command=master.quit)
menubar.add_cascade(label="File", menu=filemenu)

create more pulldown menus
editmenu = Menu(menubar, tearoff=0)
editmenu.add_command(label="Undo", command=self.undo)
editmenu.add_command(label="Redo", command=self.redo)
menubar.add_cascade(label="Edit", menu=editmenu)

helpmenu = Menu(menubar, tearoff=0)
helpmenu.add_command(label="About", command=hello)
helpmenu.add_command(label="Manual", command=self.openmanual)
menubar.add_cascade(label="Help", menu=helpmenu)

display the menu
master.config(menu=menubar)

inplementing labels and buttons
label1 = Label(master, text="Loading and Saving Data")
label1.grid(row=3, column=0, columnspan=4)

load data widgets
label0 = Label(master, text="Filename: ")
label0.grid(row=4)
self.e_file = Entry(master)
self.e_file.grid(row=4, column=1)
self.button = Button(

master, text=’Load’, command=self.loaddata, width=20
)

self.button.grid(row=4, column=2)

saving data widgets
label2 = Label(master, text="Filename: ")
label2.grid(row=5, column=0)
self.e_save = Entry(master)
self.e_save.grid(row=5, column=1)
self.button = Button(

master, text=’Save Data’,
command=self.save, width=20

Python for Scientific Computations and Control 12

)
self.button.grid(row=5, column=2)

checkbutton
self.checkvar = IntVar()
self.checkbut = Checkbutton(

master, text="Using Origninally Loaded Data",
variable=self.checkvar
)

self.checkbut.grid(row = 9, column = 0, columnspan = 2)

Filtering widgets
label3 = Label(master, text="Signal Filtering Tools")
label3.grid(row=15, columnspan=4)

resampling
label3_1 = Label(master, text="Resampling")
label3_1.grid(row=16)
label3_1_1 = Label(master, text="Resampling Rate: ")
label3_1_1.grid(row=16, column=1)
self.e_resampling = Entry(master)
self.e_resampling.grid(row=16, column=2)
self.button = Button(

master, text=’Resample’, command=self.resample, width=20
)

self.button.grid(row=16, column=3)

moving average filter
label3_2 = Label(master, text="Moving Average Filter")
label3_2.grid(row=17)
label3_2_1 = Label(master, text="n = ")
label3_2_1.grid(row=17, column=1)
self.e_maf = Entry(master)
self.e_maf.grid(row=17, column=2)
self.button = Button(

master, text=’Filter’, command=self.mafilter, width=20
)

self.button.grid(row=17, column=3)

coarse graining filter
label3_3 = Label(master, text="Coarse Graining Filter")
label3_3.grid(row=18)
label3_3_1 = Label(master, text="tau = ")
label3_3_1.grid(row=18, column=1)

Python for Scientific Computations and Control 13

self.e_cgrain = Entry(master)
self.e_cgrain.grid(row=18, column=2)
self.button = Button(

master, text=’Filter’, command=self.fcgrain, width=20
)

self.button.grid(row=18, column=3)

FFT widgets
label4 = Label(master, text="Fast Fourier Transformation")
label4.grid(row=22)
self.button = Button(

master, text=’FFT’, command=self.fastfourier, width=20
)

self.button.grid(row=22, column=2)

autocorrelation widgets
label5 = Label(master, text="Autocorrelation Signal")
label5.grid(row=24)
self.button = Button(

master, text=’Autocorrelation’, command=self.autocorr, width=20
)

self.button.grid(row=24, column=2)

creating matplotlib figure
self.fig = mplfig.Figure()
self.axes = self.fig.add_subplot(111)
self.axes.grid(TRUE)
self.canvas = tkagg.FigureCanvasTkAgg(self.fig, master = master)
self.canvas.get_tk_widget().grid(row=0, column=4, rowspan=25,)
self.canvas.draw()

creating toolbar frame
self.toolbarframe=Frame(master)
self.toolbarframe.grid(row=25, column=4, sticky=’NWE’)
creating a toolbar for saving, zooming etc. (matplotlib standard)
self.toolbar = tkagg.NavigationToolbar2TkAgg(self.canvas,

self.toolbarframe)
self.toolbar.grid(row=26,column=4, sticky=’NWE’)

methods
loading data
def loaddata(self):

global x1, x2, c1, c2
varname = self.e_file.get()

Python for Scientific Computations and Control 14

self.saveundovar()
#print varname
x = loadtxt(varname)
x1 = x[:,0]
x2 = x[:,1]
self.plotit(x1, x2)
saving variables to global current variables
c1 = x1
c2 = x2

def plotit(self, x, y):
self.axes.cla() # clear all, delete former plot
self.axes.plot(x, y)
self.axes.grid(TRUE)
self.canvas.draw() # draw figure

def save(self):
name = self.e_save.get() # getting file name
d = open(name, ’w’) # open file
savetxt(d, array([c1, c2]).T) # save current data
d.close() # closing file

def resample(self):
global c1, c2
[t,y] = self.choosedata()
resrate = int(str(self.e_resampling.get())) # getting sample rate
if (resrate <= 0):

self.promptmessage(’math’)
else:

self.saveundovar()
r1 = zeros(len(range(0, len(t), resrate)))
r2 = zeros(len(range(0, len(y), resrate)))
for i in range(0, len(t), resrate): # resampling

j = i / resrate
r1[j] = t[i]
r2[j] = y[i]

self.plotit(r1, r2)
saving variables to global current variables
c1 = r1
c2 = r2

def mafilter(self):
global c1, c2
[t,y] = self.choosedata()

Python for Scientific Computations and Control 15

n = int(str(self.e_maf.get())) # number of samples to use for mean
if (n <= 0):

self.promptmessage(’math’)
else:

self.saveundovar()
z = zeros(len(y))
for i in range(0, len(y)):

z[i] = mean(y[i:i + n - 1])
self.plotit(t, z)
saving variables to global current variables
c1 = t
c2 = z

def fcgrain(self):
global c1, c2
[t,y] = self.choosedata()
tau = int(str(self.e_cgrain.get())) # getting scaling factor
if (tau <= 0):

self.promptmessage(’math’)
else:

self.saveundovar()
N = len(t) # data lenght
Ntau = N / tau # grained data length
xtau = zeros(Ntau)
for j in range(0, Ntau): # coarse graining

xtau[j] = mean(y[j * tau:(j + 1) * tau - 1])
ttau = zeros(len(xtau))
for i in range(0, len(xtau)):

ttau[i] = tau * t[i] # time reconstruction
self.plotit(ttau, xtau)
saving variables to global current variables
c1 = ttau
c2 = xtau

def fastfourier(self):
global c1, c2
self.saveundovar()
[t,y] = self.choosedata()
frespec = abs(fft(y))
self.axes.cla() # clear all, delete former plot
self.axes.plot(frespec)
show half of the spectrum
self.axes.set_xlim(([0, len(frespec) / 2]))
setting limit y-axis

Python for Scientific Computations and Control 16

self.axes.set_ylim(([0, max(frespec[2:])]))
self.axes.grid(TRUE)
self.canvas.draw() # draw figure
saving variables to global current variables
c1 = range(int(ceil(0.5 * len(t))))
c2 = frespec[0:int(ceil(0.5 * len(t)))]

def autocorr(self):
global c1, c2
self.saveundovar()
[t,y] = self.choosedata()
r = zeros(int(ceil(0.5 * len(t))))
r[0] = 1
for lag in range(1, len(r)):

x = y[lag - 1:-1]
z = y[0:-lag]
meanx = mean(x) # mean value for x
meanz = mean(z) # mean value for z
stdx = std(x) # standard deviation for x
stdz = std(z) # standard deviation for z
vp = zeros(len(x))
for i in range(0, len(x)):

vp[i] = (x[i] - meanx) * (z[i] - meanz)
r[lag] = sum(vp) / len(vp) / stdx / stdz

c1 = range(0, len(r))
c2 = r
self.plotit(c1, c2)

def openmanual(self):
os.popen(’.\BoardingPass.pdf’)

def browsingopenfile(self):
global c1, c2, x1, x2
self.saveundovar()
fnameopen = tkFileDialog.askopenfilename(

filetypes = [("txt-files", ".txt"),("all files",".*")]
) # browse file to be opened

x = loadtxt(fnameopen)
initially loaded data
x1 = x[:,0]
x2 = x[:,1]
self.plotit(x1, x2)
current data
c1 = x1

Python for Scientific Computations and Control 17

c2 = x2

def browsingsavefile(self):
global c1, c2
fnamesave = tkFileDialog.asksaveasfilename(

filetypes = [("all", ".*")]
)

d = open(fname, ’w’) # open file
savetxt(d, array([c1, c2]).T) # save data
d.close() # closing file

def choosedata(self):
global c1, c2
if (self.checkvar.get() == 1):

t = x1
y = x2

else:
t = c1
y = c2

return [t,y]

def saveundovar(self):
global c1, c2, u1, u2, undo
u1 = c1
u2 = c2
undo = False

def undo(self):
global c1, c2, u1, u2, undo
if (undo == False):

auxvar1 = c1
auxvar2 = c2
c1 = u1
c2 = u2
u1 = auxvar1
u2 = auxvar2
undo = True
self.plotit(c1, c2)

else:
self.promptmessage(’undo’)

def redo(self):
global c1, c2, u1, u2, undo
if (undo == True):

Python for Scientific Computations and Control 18

auxvar1 = c1
auxvar2 = c2
c1 = u1
c2 = u2
u1 = auxvar1
u2 = auxvar2
undo = False
self.plotit(c1, c2)

else:
self.promptmessage(’undo’)

def promptmessage(self, reason):
top = Toplevel(

)
top.title(’Error!’)
if (reason == ’math’):

msgtext = ’Use a non-zero, non-negative integer value!’
elif (reason == ’undo’):

msgtext = ’undo/redo function has already been used!’
else:

msgtext = ’Unexpected Error!’
msg = Message(top, text=msgtext, fg = ’red’)
msg.pack()
promptbutton = Button(top, text=’OK’, command=top.destroy)
promptbutton.pack()

root = Tk()

gui_frame = mainFrame(root)

root.mainloop()
root.destroy()

