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Abstract

This paper introduces a new software for adaptdentification and controller tuning, with
the use of higher-order neural units and gradieascknt based techniques (including back-
propagation through time). The software allows tiser to load real process data offline and
to identify the plant or control loop as a wholeurthermore the software experimentally
investigates potentials for optimisation of thetcohloop response, via a non-linear adaptive
state-feedback controller. The software is aimedaaguick tool for students, scholars and
practitioners who wish to check potentials for apsation of their control loop (utilising
available process data and non-linear controller).
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1. Introduction

The work of my research together with the softwapglication presented in this paper is
motivated by the development of Linear and Quadrhigural Units (LNUs) and (QNUS)
respectively [1][2]. So far such neural units featpromising theoretical studies for adaptive
identification and control [9]-[11] along with swessful real implementation in the Automatic
Control laboratory at CVUT [11] as recalled in Figd.
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Figure 1: Demonstration of Quadratic Neural Unit as a conkeolon the Bathyscaphe
System (picture adopted from [11]), real impleménta of QNU with gradient
descent was superior to PID control.

Here we can see that real implementation of therdN@ontroller [11] is indeed the most
desirable controller for the given process datdlofiong more closely to the desired
behaviour of the system than the linearly limitetD Pcontroller. Given this, further
motivation arises in applying and extending thigoathm for application to other real
engineering processes.

The designed algorithms that | implemented, furtiee the software that | programmed, are
based on the above algorithms and referenced wihirissan attempt to provide users with a
more unified tool where real data can be loaded theduser can see what could be the
potentials for further optimization of a controloj® by these gradient descent based
approaches [1]-[11].

Of course, there might be differences between sitral and real functioning of the
implemented controller (e.g. as observed in [1hpyertheless the developed software is
aimed to indicate the potentials for optimisatidhe process control.

2. Description of Implemented Algorithms

The background behind the adaptive control utilisethis software application is the well-
known Gradient Descent (GD) method applied to dynaadaptive models. The applied
learning rule for dynamic neural units is basedrmmemental and batch training techniques.
The incremental (sample-by-sample) adaptation sedhaon Real Time Recurrent Learning
(RTRL) technique [3]. The batch adaptation is bagedmnodification of Back-Propagation
Through Time (BPTT) technique [4] implemented a®mbination of RTRL with the famous
Levenberg-Marquardt algorithm as shown in [8].

In the implemented software, both these learnimaprigues (RTRL and BPTT) can be
independently used, or combined to adaptively ifieatsystem, i.e. either a plant or even a
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whole control loop, and to adaptively tune the oolfér to demonstrate potentials for further
optimisation of the control process.

So far, the whole application has been designeccdosidering only single-input single-
output systems.

2.1 Gradient Descent Adaptation

The Gradient Descent algorithm is one of the moestddmental learning rules behind neural
units such as LNU and QNU (e.g. [1][2]) used thiomgt the program. This method is
suitable for both online and offline tuning of statnd more importantly for this paper,
dynamic models. The essence of this algorithm iedon the model of the plant, however it
can also be utilised in tuning a controller suchtlas neuron type controller (Neuro-
Controller) [9]-[11].

Firstly we introduce the general form of the LNWpectively QNU, as expressed via the
following polynomial forms;

Y= D KW S Vg W X W XS WX (1)
i=0

wherew is updatable vector of neural weights anid vector of inputs in the case of a purely
static model, or as here also previous outputsesponding to a dynamic model. Similarly,
the quadratic neural unit can be expressed asasjlo

Y= D XX W) = Wo % %+ W, % 6.t W, X =rowx.colW )

Adopting the long vector notation according to F§J[QNU can be expressed as;

WO,O

WO,l

y=[%% %X %%. x¥. = rowx.colW, (3)

W

n,n

whererowx andcolW are long-vector representations of the input veatat weight matrix
of the quadratic neural unit in general.

The goal behind this algorithm is adaptation of rakwveights, this is the key behind the
learning process of the model. This is achievedwaalifications of the fundamental gradient
descent formula for the LNU and QNU respectivelyaiows;

ay(Kk)
ow

W, =W+ .e(K. (4)

where p represents the learning rate of the weaglptationg(k) represents current error

between real and calculated output. The final te%ﬁﬁ corresponds to the partial
W

derivatives of the neural unit output, respectiveeséich neural weight. As for the QNU, the
Gradient Descent algorithm is as follows;

oy(k+1)

colW(k +1) =colW (k) + z.e(k).
(k+1) (k) + ue(k) ScolW

(®)
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2.2 Learning Rate Normalisation of Dynamic Linear & Quadratic Neural Units

A key element behind the Gradient Descent algoritgmmentioned in equation (4) & (5) is
the learning rate p. It is worth mentioning in mdegail the theories associated in tuning this
variable due to the key role it plays when tuningelar and Quadratic Units respectively in
the sense of not only Plant Identification but adsoa Neuro-Controller. This learning rate
essentially corresponds to the speed of learninthioneural unit, should p be high, then so
too is the rate of learning for the neural modehaldgically setting p to a smaller value
dictates slower learning for the model. This caratieantageous as the model is allowed to
process the learning more effectively ie; analdgicdumans where the longer time is given
to learn, the more easily can a human rememberintfogmation. Thus through every
adaptation step “k”, the model is trained to repneshe behaviour of the process for which its
data was provided.

Often we may find that for different process ddtes ibetter to normalise the learning rate
due to problems associated with instability during learning of the neural units. In theory
[6], the fundamental normalisation of the learniate is given as follows;

U
= 6
4 || rowx (k) || +& ©)

where |[rowx(K) | is the Euclidean norm of the vectoowx, furthermoree represents a

normalisation constant, which is updatable oveptataon step “k”. However in this software
it was apparent that a more simplified versionhi$ tearning rate normalisation can be used
as follows;

- M
7 XK +1 @

However the above holds only for LNU’s. Extendihgstfor quadratic neural units, where the
general form of which was already defined as peraggn (3) we must first distinguish the
following, that is;

colx = rowx’ (8)
When looking at the already introduced equatiorthef gradient descent algorithm as per

equation (5), the learning rate p may be repladadhe normalized learning rate to improve
stability of learning for certain applications big model, as follows;

_ U
1 oK) colx(k)” +1 ®



STOC 2013 - Studentské Bir&i a odbornainnost
25. dubna 2013, FAI UTB ve Z#in

2.3 Extension of Gradient Descent Method on the Nea-Controller

To understand the mechanics behind the gradiecedeslgorithm, as applied to the Neuro-
Controller setup, we should first consider the oardcheme (loop) as follows;

u . y
d NeuralUnit | ——
as Model
'
vik]
< vk-1]
Neural Unit Wk —ngr]
As a Controller [¢ i
(v.8) il
;f|.‘;—uq=-|— Wk —nge]

Figure 2: Control Scheme of the Neuro-Controller.

wherer, is adaptable proportional gain. In Figure 2 asvabeove see two main neural unit
blocks denotedv.x andv. §. In this control scheme bloak.x refers to the plant identifier
(used similarly to learn the behaviour for the giywocess data) and §. is thus the Neuro-
Controller used to manipulate the newly feed inptd the neural model for control. In this
case the neural weight update would be dictatectheagradient descent algorithm in the
following way;

ay(K)

Vi =Vt puered @-a— (10)
V.

wherev, are adaptable neural weights of the Neuro-contralf@leregk) is the error between

the desired value of the plant (denot®dnd the real plant output value at samgpl€he most
crucial component behind equation (10) is hiddethiwithe partial derivativea:;ﬂ, via
\V/

application of the chain rule we may derive thealfiform of this derivative for use in the
programming algorithm as;

QZW.%:—W.a—q (11)
ov ov ov

0 . . . .
where a—q corresponds to the partial derivatives from theuid-Controller equation with
vV

respect to the updatable weights In order to understand computation of this phrtia
derivative we must define matrik. For example as represented in Figure 2, we maneléfi

as,
E=[MK ¥k1 §k2 Bk-lylk [dR] -[y& [d&] [ y® ] (12)

Thus for this case, the partial derivative withpes to the updatable Neuro-Controller
weightsv,, yields that in fact?:E.Analogically this result was applied in the present
vV

software, where the length of previous resultsy @ adaptable via the edit entitleddy’
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within the Neuro-Controller panel. Similarly tooetHength of previous samples for the
difference of desired to model output (d-y) is adafe via the parametenge”.

2.4 Real Time Recurrent Learning, Back-PropagationThrough Time

Throughout this software there are two key methaideeight training or learning utilised.
These methods are known as Real Time Recurrentioggaf3] or shortly RTRL and Back-
Propagation Through Time [4], shortly BPTT. So tae gradient descent algorithm was
introduced above as per equation (4) for DLNU amqaa¢ion (5) for DQNU. These equations
are in essence the Real Time Recurrent Learningeber what is key to distinguish is that
this only applies for dynamic adaptive models, wehadaptation is achieved over sample by
sample.

Thus another approach for adaptive learning is tiact train, rather than over each sample,
over a series of runs or epochs of the neural ghgor The advantage of this is evident for
instance in noisy data. Here rather than learniitg moise over sample by sample as in the
RTRL method, we can train over each run or “Bateliifere by the main governing law
interests in training of the input and output faicke run. This is thus referred too as Batch
training or furthermore Back-Propagation Througm&i(BPTT). To understand this method
in more depth we must introduce a very key equa#iocording to Levenberg-Marquardt
algorithm as follows;

A =" +%.I)’1JT.e. (13)

Here the weight update algorithm would thus bewdated as w=waAw. In equation (13) the
term I, is simply an identity matrix. denotes the Jacobian matrix of derivatives fomtioelel
polynomial equation. In our case for this softwdhe partial derivative of the model

ay(k)

in the sense of DQNW;olx. Thus an extension to equation (13) for batch tngniBPTT)
would be for LNU as follows;

polynomial with respect to the adaptable weighte; , simply equals ta for DLNU or

Aw = (xT.x+i.I)‘1xT.e
U

and for QNU as follows;

Aw = (colx" .colx+£. N~*.colx".e (14)
U

3. Results

3.1 Designed Software

The presented software in this paper was crea@dython 2.6.6 programming language,
with use of the graphical interface library wxPythd@he Interface features two distinctive
tabs on the main window, which refer to controlagblant (process) and furthermore control
for a Plant for example as part of a proportior@itml loop (P-Loop). It should be stressed
that the version presented in this paper is a prpé&p with further developments to be added
in the close future.
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Figure 3: Main Interface of Software — Option for only plafata.

The above figure (Figure 3) shows the current laywithin the “Control of Plant Only”
window. Here the frame is split to 3 distinct panélhe first allows the user to check their
uploaded process data is in the path of the progranthe “Check Loaded Data” button.
Following this is the “Plot Data” button, enablitige user to see a visualisation of their
uploaded process data. After the visualisationhef data is created, the user may require
resampling of the data, for the purpose of confrbls an edit titled “Resampling” is featured
on the bottom of this first panel.

The following panels of this program are dividedoirfPlant Identification” and “State
Feedback Controller (Neuro-Controller)”. Here tlseiumust fill in the learning rate for usage
of gradient descent algorithm and furthermore epoéis the values of the learning rate and
number of epochs differ between the RTRL and BPEIhwods, separate edits are placed for
each, within each panel. There is also a featuretife user to define the length of the
variables used in the model polynomial equatiomdHe respective controller, all of which is
explained under section 2 in “Description of Impkarted Algorithms”.

Control may be calculated for the following optianr®LNU Plant Identification with DLNU
Neuro-Controller, DLNU Plant Identification with M) Neuro-Controller, DQNU Plant
Identification with DLNU Neuro-Controller and DQN®Ilant Identification with DQNU
Neuro-Controller. This thus gives the user the mptio compare behaviour of the different
methods, furthermore allowing the user to tunariost optimal control to their process data.
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Figure 4: Main Interface of Software — Option for data masl from control P-Loop.
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An extension to this software is seen in the sedabdunder Figure 4. Here the Plant may be
introduced as part of a Proportionally Controlledd shortly (P-Loop). The functions of this
panel are analogical to above. This panel proves dor such scheme as presented in the
Bathyscaphe results of the proceeding section.

3.2 Simulations Using the Designed Software

The results presented in this section are mairggtb@n a theoretical second-order plant, with
a pulsating signal for Input. Here only the mogjngicant results will be highlighted and
furthermore will be shown results of control forr@al process, which was that of the
Bathyscaphe system. In the sense of the theorgiioakess the following transfer function
defined our example Plant;
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Figure 5: Preview of loaded (process) data in a program ettt noise)
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Figure 6: Plant Identification (with noisy data) Using DLNUitiw BPTT Training mu=1,
epochs 100, For ny=5 and nu=5
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Figure 7: Plant Identification (with noisy data) Using DQNUtwBPTT Training mu=1,
epochs 100, For ny=5 and nu=5
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Figure 8: Neuro-Controller Using DQNU with BPTT Training m@id, epochs 100, nqy=4,
nge=4 (applied after Plant Identification)
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Application on Bathyscaphe Data

Tuned QNU Controller for real data from Bathyscaphe system
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Figure 9: Bathyscaphe Data- DQNU_RTRL Neuro-Controller UdD@NU_RTRL Plant
Identification (Control of Plant as P-Loop tab ujed

Tuned QNU Controller for real data from Bathyscaphe system
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Figure 10: DQNU_BPTT Neuro-Controller Using DQNU_BPTT Plant dgsigned program, there
are strong potentials for control optimization betsystem.
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Results of the developed software in Figure 9 aimglire 10 of the system Bathyscaphe
indicate large potential for control optimizatiorf ds control loop, and indeed the
Bathyscaphe system had been (with the same remladalt gradient-descent based principle)
optimized in [10] (Figure 1 above) and QNU contolvas superior to PID and working in
the full range of output values.

4. Conclusions

As analysed in the results section of this papercese see a direct reflection of several
theories presented in section 2. As seen in tha pdentifications, with proper tuning of the
key parameters of the DQNU, we find that it caniend faster adaptation and consequently
obtain a more precise model over the same epochtheaDLNU adaptation. Another
phenomenon witnessed was the smooth behavioureoBRII'T training method for noisy
data, which as mentioned in section 2, is due & rtlain governing law of this method
concerning the input and output of the neural anér the epochs rather than over sample-by-
sample.

The essence of this software is to investigate tagapontrol potentials for the process data;
it was found that all though the DLNU_RTRL Neuror@woller with DLNU RTRL training,
provided an acceptable result with clean data (oise), the DQNU with BPTT training,
followed by a Neuro-controller via. DQNU with BPT$eemed to work best when regarding
noisy data and was thus shown in the results seatove. However as mentioned previously
in this paper, this result like all produced vigtboftware is a tool for seeing the potentials of
control via gradient descent based algorithms dn tshould be checked with the real
system, whether such control is really possible real application on the investigated
engineering process.

List of Used Symbols

u- Learning Rate,

&- Input vector into Neuro-Controller
e- Normalisation Constant
r,-Estimated gain of P-controller

n - Normalised Learning Rate
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