
NumPy for Matlab Users
Contents

1. Introduction
2. Some Key Differences
3. 'array' or 'matrix'? Which should I use?

1. Short answer
2. Long answer

4. Facilities for Matrix Users
5. Table of Rough MATLAB-NumPy Equivalents

1. General Purpose Equivalents
2. Linear Algebra Equivalents

6. Notes
7. Customizing Your Environment
8. MATLAB packages/tools and equivalent for use with NumPy
9. Links

Introduction
MATLAB® and NumPy/SciPy have a lot in common. But there are many
differences. NumPy and SciPy were created to do numerical and scientific
computing in the most natural way with Python, not to be MATLAB® clones. This
page is intended to be a place to collect wisdom about the differences, mostly for
the purpose of helping proficient MATLAB® users become proficient NumPy and
SciPy users. NumPyProConPage is another page for curious people who are
thinking of adopting Python with NumPy and SciPy instead of MATLAB® and
want to see a list of pros and cons.

Some Key Differences

In MATLAB®, the basic data type is
a multidimensional array of double
precision floating point numbers.
Most expressions take such arrays
and return such arrays. Operations on
the 2-D instances of these arrays are
designed to act more or less like
matrix operations in linear algebra.

In NumPy the basic type is a
multidimensional array. Operations on
these arrays in all dimensionalities
including 2D are elementwise operations.
However, there is a special matrix type
for doing linear algebra, which is just a
subclass of the array class. Operations on
matrix-class arrays are linear algebra
operations.

MATLAB® uses 1 (one) based
indexing. The initial element of a

Python uses 0 (zero) based indexing. The
initial element of a sequence is found
using a[0].

Page 1 of 17NumPy for Matlab Users -

22/01/2015http://wiki.scipy.org/NumPy_for_Matlab_Users?action=print

sequence is found using a(1). See
note 'INDEXING'

MATLAB®'s scripting language was
created for doing linear algebra. The
syntax for basic matrix operations is
nice and clean, but the API for adding
GUIs and making full-fledged
applications is more or less an
afterthought.

NumPy is based on Python, which was
designed from the outset to be an
excellent general-purpose programming
language. While Matlab's syntax for some
array manipulations is more compact than
NumPy's, NumPy (by virtue of being an
add-on to Python) can do many things that
Matlab just cannot, for instance
subclassing the main array type to do both
array and matrix math cleanly.

In MATLAB®, arrays have pass-by-
value semantics, with a lazy copy-on-
write scheme to prevent actually
creating copies until they are actually
needed. Slice operations copy parts of
the array.

In NumPy arrays have pass-by-reference
semantics. Slice operations are views into
an array.

In MATLAB®, every function must
be in a file of the same name, and you
can't define local functions in an
ordinary script file or at the
command-prompt (inlines are not real
functions but macros, like in C).

NumPy code is Python code, so it has no
such restrictions. You can define
functions wherever you like.

MATLAB® has an active community
and there is lots of code available for
free. But the vitality of the
community is limited by
MATLAB®'s cost; your MATLAB®
programs can be run by only a few.

NumPy/SciPy also has an active
community, based right here on this web
site! It is smaller, but it is growing very
quickly. In contrast, Python programs can
be redistributed and used freely. See
Topical Software for a listing of free add-
on application software, Mailing Lists for
discussions, and the rest of this web site
for additional community contributions.
We encourage your participation!

MATLAB® has an extensive set of
optional, domain-specific add-ons
('toolboxes') available for purchase,
such as for signal processing,
optimization, control systems, and the
whole SimuLink® system for
graphically creating dynamical
system models.

There's no direct equivalent of this in the
free software world currently, in terms of
range and depth of the add-ons. However
the list in Topical Software certainly
shows a growing trend in that direction.

MATLAB® has a sophisticated 2-d
and 3-d plotting system, with user
interface widgets.

Addon software can be used with Numpy
to make comparable plots to MATLAB®.
Matplotlib is a mature 2-d plotting library
that emulates the MATLAB® interface.

Page 2 of 17NumPy for Matlab Users -

22/01/2015http://wiki.scipy.org/NumPy_for_Matlab_Users?action=print

PyQwt allows more robust and faster user
interfaces than MATLAB®. And mlab, a
"matlab-like" API based on Mayavi2, for
3D plotting of Numpy arrays. See the
Topical Software page for more options,
links, and details. There is, however, no
definitive, all-in-one, easy-to-use, built-in
plotting solution for 2-d and 3-d. This is
an area where Numpy/Scipy could use
some work.

MATLAB® provides a full
development environment with
command interaction window,
integrated editor, and debugger.

Numpy does not have one standard IDE.
However, the IPython environment
provides a sophisticated command prompt
with full completion, help, and debugging
support, and interfaces with the
Matplotlib library for plotting and the
Emacs/XEmacs editors.

MATLAB® itself costs thousands of
dollars if you're not a student. The
source code to the main package is
not available to ordinary users. You
can neither isolate nor fix bugs and
performance issues yourself, nor can
you directly influence the direction of
future development. (If you are really
set on Matlab-like syntax, however,
there is Octave, another numerical
computing environment that allows
the use of most Matlab syntax
without modification.)

NumPy and SciPy are free (both beer and
speech), whoever you are.

'array' or 'matrix'? Which should I use?

Short answer

Use arrays.

• They are the standard vector/matrix/tensor type of numpy. Many numpy
function return arrays, not matrices.

• There is a clear distinction between element-wise operations and linear
algebra operations.

• You can have standard vectors or row/column vectors if you like.

The only disadvantage of using the array type is that you will have to use dot
instead of * to multiply (reduce) two tensors (scalar product, matrix vector
multiplication etc.).

Page 3 of 17NumPy for Matlab Users -

22/01/2015http://wiki.scipy.org/NumPy_for_Matlab_Users?action=print

Long answer

Numpy contains both an array class and a matrix class. The array class is
intended to be a general-purpose n-dimensional array for many kinds of numerical
computing, while matrix is intended to facilitate linear algebra computations
specifically. In practice there are only a handful of key differences between the
two.

• Operator *, dot(), and multiply():
◦ For array, '*' means element-wise multiplication, and the dot()

function is used for matrix multiplication.
◦ For matrix, '*' means matrix multiplication, and the multiply()

function is used for element-wise multiplication.
• Handling of vectors (rank-1 arrays)

◦ For array, the vector shapes 1xN, Nx1, and N are all different
things. Operations like A[:,1] return a rank-1 array of shape N, not a
rank-2 of shape Nx1. Transpose on a rank-1 array does nothing.

◦ For matrix, rank-1 arrays are always upconverted to 1xN or Nx1
matrices (row or column vectors). A[:,1] returns a rank-2 matrix of
shape Nx1.

• Handling of higher-rank arrays (rank > 2)
◦ array objects can have rank > 2.
◦ matrix objects always have exactly rank 2.

• Convenience attributes
◦ array has a .T attribute, which returns the transpose of the data.
◦ matrix also has .H, .I, and .A attributes, which return the conjugate

transpose, inverse, and asarray() of the matrix, respectively.
• Convenience constructor

◦ The array constructor takes (nested) Python sequences as
initializers. As in, array([[1,2,3],[4,5,6]]).

◦ The matrix constructor additionally takes a convenient string
initializer. As in matrix("[1 2 3; 4 5 6]").

There are pros and cons to using both:

• array

◦ You can treat rank-1 arrays as either row or column vectors. dot
(A,v) treats v as a column vector, while dot(v,A) treats v as a row
vector. This can save you having to type a lot of transposes.

◦ Having to use the dot() function for matrix-multiply is messy --
dot(dot(A,B),C) vs. A*B*C.

◦ Element-wise multiplication is easy: A*B.
◦ array is the "default" NumPy type, so it gets the most testing, and

is the type most likely to be returned by 3rd party code that uses
NumPy.

Page 4 of 17NumPy for Matlab Users -

22/01/2015http://wiki.scipy.org/NumPy_for_Matlab_Users?action=print

◦ Is quite at home handling data of any rank.
◦ Closer in semantics to tensor algebra, if you are familiar with that.
◦ All operations (*, /, +, ** etc.) are elementwise

• matrix

◦ Behavior is more like that of MATLAB® matrices.
◦ Maximum of rank-2. To hold rank-3 data you need array or

perhaps a Python list of matrix.
◦ Minimum of rank-2. You cannot have vectors. They must be cast as

single-column or single-row matrices.
◦ Since array is the default in NumPy, some functions may return an
array even if you give them a matrix as an argument. This shouldn't
happen with NumPy functions (if it does it's a bug), but 3rd party code
based on NumPy may not honor type preservation like NumPy does.

◦ A*B is matrix multiplication, so more convenient for linear algebra.
◦ Element-wise multiplication requires calling a function, multipy
(A,B).

◦ The use of operator overloading is a bit illogical: * does not work
elementwise but / does.

The array is thus much more advisable to use, but in the end, you don't really have
to choose one or the other. You can mix-and-match. You can use array for the
bulk of your code, and switch over to matrix in the sections where you have nitty-
gritty linear algebra with lots of matrix-matrix multiplications.

Facilities for Matrix Users
Numpy has some features that facilitate the use of the matrix type, which
hopefully make things easier for Matlab converts.

• A matlib module has been added that contains matrix versions of common
array constructors like ones(), zeros(), empty(), eye(), rand(), repmat(),
etc. Normally these functions return arrays, but the matlib versions return
matrix objects.

• mat has been changed to be a synonym for asmatrix, rather than matrix,
thus making it concise way to convert an array to a matrix without copying
the data.

• Some top-level functions have been removed. For example numpy.rand()
now needs to be accessed as numpy.random.rand(). Or use the rand() from
the matlib module. But the "numpythonic" way is to use
numpy.random.random(), which takes a tuple for the shape, like other
numpy functions.

Table of Rough MATLAB-NumPy Equivalents

Page 5 of 17NumPy for Matlab Users -

22/01/2015http://wiki.scipy.org/NumPy_for_Matlab_Users?action=print

The table below gives rough equivalents for some common MATLAB®
expressions. These are not exact equivalents, but rather should be taken as hints
to get you going in the right direction. For more detail read the built-in
documentation on the NumPy functions.
Some care is necessary when writing functions that take arrays or matrices as
arguments --- if you are expecting an array and are given a matrix, or vice versa,
then '*' (multiplication) will give you unexpected results. You can convert back
and forth between arrays and matrices using

• asarray: always returns an object of type array
• asmatrix or mat: always return an object of type matrix
• asanyarray: always returns an array object or a subclass derived from it,

depending on the input. For instance if you pass in a matrix it returns a
matrix.

These functions all accept both arrays and matrices (among other things like
Python lists), and thus are useful when writing functions that should accept any
array-like object.
In the table below, it is assumed that you have executed the following commands
in Python:

from numpy import *

import scipy as Sci

import scipy.linalg

Also assume below that if the Notes talk about "matrix" that the arguments are rank
2 entities.
THIS IS AN EVOLVING WIKI DOCUMENT. If you find an error, or can fill
in an empty box, please fix it! If there's something you'd like to see added, just
add it.

General Purpose Equivalents

MATLAB numpy Notes

help func
info(func) or help(func) or func? (in

Ipython)
get help on the function
func

which func (See note 'HELP') find out where func is
defined

type func source(func) or func?? (in Ipython) print source for func (if
not a native function)

a && b a and b

short-circuiting logical
AND operator (Python
native operator); scalar
arguments only

a || b a or b

Page 6 of 17NumPy for Matlab Users -

22/01/2015http://wiki.scipy.org/NumPy_for_Matlab_Users?action=print

short-circuiting logical
OR operator (Python
native operator); scalar
arguments only

1*i,1*j,1i,1j 1j complex numbers

eps spacing(1)
Distance between 1 and
the nearest floating
point number

ode45
scipy.integrate.ode

(f).set_integrator('dopri5')

integrate an ODE with
Runge-Kutta 4,5

ode15s

scipy.integrate.ode(f).\

set_integrator

('vode', method='bdf', order=15)

integrate an ODE with
BDF

Linear Algebra Equivalents

The notation mat(...) means to use the same expression as array, but convert to
matrix with the mat() type converter.
The notation asarray(...) means to use the same expression as matrix, but
convert to array with the asarray() type converter.

MATLAB numpy.array numpy.matrix Notes

ndims(a) ndim(a) or a.ndim

get the number
of dimensions
of a (tensor
rank)

numel(a) size(a) or a.size
get the number
of elements of
an array

size(a) shape(a) or a.shape get the "size"
of the matrix

size(a,n) a.shape[n-1] get the number
of elements of
the nth
dimension of
array a. (Note
that
MATLAB®
uses 1 based
indexing while
Python uses 0
based
indexing, See

Page 7 of 17NumPy for Matlab Users -

22/01/2015http://wiki.scipy.org/NumPy_for_Matlab_Users?action=print

note
'INDEXING')

[1 2 3; 4 5 6]
array([[1.,2.,3.],

[4.,5.,6.]])

mat([[1.,2.,3.],

[4.,5.,6.]]) or
mat

("1 2 3; 4 5 6")

2x3 matrix
literal

[a b; c d]
vstack([hstack([a,b]),

 hstack([c,d])])
bmat('a b; c d')

construct a
matrix from
blocks a,b,c,
and d

a(end) a[-1] a[:,-1][0,0]

access last
element in the
1xn matrix a

a(2,5) a[1,4]

access element
in second row,
fifth column

a(2,:) a[1] or a[1,:] entire second
row of a

a(1:5,:) a[0:5] or a[:5] or a[0:5,:] the first five
rows of a

a(end-4:end,:) a[-5:]
the last five
rows of a

a(1:3,5:9) a[0:3][:,4:9]

rows one to
three and
columns five
to nine of a.
This gives
read-only
access.

a([2,4,5],[1,3]) a[ix_([1,3,4],[0,2])]

rows 2,4 and 5
and columns 1
and 3. This
allows the
matrix to be
modified, and
doesn't require
a regular slice.

a(3:2:21,:) a[2:21:2,:] every other
row of a,
starting with
the third and
going to the
twenty-first

Page 8 of 17NumPy for Matlab Users -

22/01/2015http://wiki.scipy.org/NumPy_for_Matlab_Users?action=print

a(1:2:end,:) a[::2,:]

every other
row of a,
starting with
the first

a(end:-1:1,:) or
flipud(a)

a[::-1,:]
a with rows in
reverse order

a([1:end 1],:) a[r_[:len(a),0]]

a with copy of
the first row
appended to
the end

a.' a.transpose() or a.T transpose of a

a'
a.conj().transpose() or
a.conj().T

a.H
conjugate
transpose of a

a * b dot(a,b) a * b
matrix
multiply

a .* b a * b multiply(a,b)
element-wise
multiply

a./b a/b
element-wise
divide

a.^3 a**3 power(a,3)
element-wise
exponentiation

(a>0.5) (a>0.5)
matrix whose
i,jth element is
(a_ij > 0.5)

find(a>0.5) nonzero(a>0.5)

find the
indices where
(a > 0.5)

a(:,find(v>0.5)) a[:,nonzero(v>0.5)[0]]
a[:,nonzero

(v.A>0.5)[0]]

extract the
columms of a
where vector v
> 0.5

a(:,find(v>0.5)) a[:,v.T>0.5] a[:,v.T>0.5)]

extract the
columms of a
where column
vector v > 0.5

a(a<0.5)=0 a[a<0.5]=0

a with
elements less
than 0.5
zeroed out

a .* (a>0.5) a * (a>0.5)

Page 9 of 17NumPy for Matlab Users -

22/01/2015http://wiki.scipy.org/NumPy_for_Matlab_Users?action=print

mat

(a.A * (a>0.5).A)

a with
elements less
than 0.5
zeroed out

a(:) = 3 a[:] = 3
set all values
to the same
scalar value

y=x y = x.copy()
numpy assigns
by reference

y=x(2,:) y = x[1,:].copy()
numpy slices
are by
reference

y=x(:) y = x.flatten(1)

turn array into
vector (note
that this forces
a copy)

1:10

arange(1.,11.) or
r_[1.:11.] or
r_[1:10:10j]

mat(arange

(1.,11.)) or
r_[1.:11.,'r']

create an
increasing
vector see note
'RANGES'

0:9

arange(10.) or
r_[:10.] or
r_[:9:10j]

mat(arange(10.))

or
r_[:10.,'r']

create an
increasing
vector see note
'RANGES'

[1:10]'
arange(1.,11.)

[:, newaxis]
r_[1.:11.,'c']

create a
column vector

zeros(3,4) zeros((3,4)) mat(...)

3x4 rank-2
array full of
64-bit floating
point zeros

zeros(3,4,5) zeros((3,4,5)) mat(...)

3x4x5 rank-3
array full of
64-bit floating
point zeros

ones(3,4) ones((3,4)) mat(...)

3x4 rank-2
array full of
64-bit floating
point ones

eye(3) eye(3) mat(...)
3x3 identity
matrix

diag(a) diag(a) mat(...)

Page 10 of 17NumPy for Matlab Users -

22/01/2015http://wiki.scipy.org/NumPy_for_Matlab_Users?action=print

vector of
diagonal
elements of a

diag(a,0) diag(a,0) mat(...)

square
diagonal
matrix whose
nonzero values
are the
elements of a

rand(3,4) random.rand(3,4) mat(...)
random 3x4
matrix

linspace(1,3,4) linspace(1,3,4) mat(...)

4 equally
spaced
samples
between 1 and
3, inclusive

[x,y]=meshgrid

(0:8,0:5)

mgrid[0:9.,0:6.] or
meshgrid(r_[0:9.],r_

[0:6.]

mat(...)

two 2D arrays:
one of x
values, the
other of y
values

ogrid[0:9.,0:6.] or
ix_(r_[0:9.],r_[0:6.]

mat(...)
the best way to
eval functions
on a grid

[x,y]=meshgrid

([1,2,4],

[2,4,5])

meshgrid([1,2,4],[2,4,5]) mat(...)

ix_([1,2,4],[2,4,5]) mat(...)

the best way to
eval functions
on a grid

repmat(a, m, n) tile(a, (m, n)) mat(...)
create m by n
copies of a

[a b]

concatenate((a,b),1) or
hstack((a,b)) or
column_stack((a,b)) or
c_[a,b]

concatenate

((a,b),1)

concatenate
columns of a
and b

[a; b]

concatenate((a,b)) or
vstack((a,b)) or
r_[a,b]

concatenate

((a,b))

concatenate
rows of a and
b

max(max(a)) a.max() maximum
element of a
(with ndims(a)

Page 11 of 17NumPy for Matlab Users -

22/01/2015http://wiki.scipy.org/NumPy_for_Matlab_Users?action=print

<=2 for
matlab)

max(a) a.max(0)

maximum
element of
each column
of matrix a

max(a,[],2) a.max(1)

maximum
element of
each row of
matrix a

max(a,b) maximum(a, b)

compares a
and b element-
wise, and
returns the
maximum
value from
each pair

norm(v)

sqrt(dot(v,v)) or
Sci.linalg.norm(v) or
linalg.norm(v)

sqrt(dot

(v.A,v.A)) or
Sci.linalg.norm

(v) or
linalg.norm(v)

L2 norm of
vector v

a & b logical_and(a,b)

element-by-
element AND
operator
(Numpy
ufunc) see
note
'LOGICOPS'

a | b logical_or(a,b)

element-by-
element OR
operator
(Numpy
ufunc) see
note
'LOGICOPS'

bitand(a,b) a & b

bitwise AND
operator
(Python native
and Numpy
ufunc)

bitor(a,b) a | b bitwise OR
operator
(Python native

Page 12 of 17NumPy for Matlab Users -

22/01/2015http://wiki.scipy.org/NumPy_for_Matlab_Users?action=print

and Numpy
ufunc)

inv(a) linalg.inv(a)
inverse of
square matrix
a

pinv(a) linalg.pinv(a)
pseudo-inverse
of matrix a

rank(a) linalg.matrix_rank(a)
rank of a
matrix a

a\b
linalg.solve(a,b) if a is square
linalg.lstsq(a,b) otherwise

solution of a x
= b for x

b/a Solve a.T x.T = b.T instead solution of x a
= b for x

[U,S,V]=svd(a) U, S, Vh = linalg.svd(a), V = Vh.T
singular value
decomposition
of a

chol(a) linalg.cholesky(a).T

cholesky
factorization
of a matrix
(chol(a) in
matlab returns
an upper
triangular
matrix, but
linalg.cholesky
(a) returns a
lower
triangular
matrix)

[V,D]=eig(a) D,V = linalg.eig(a)

eigenvalues
and
eigenvectors
of a

[V,D]=eig(a,b) V,D = Sci.linalg.eig(a,b)

eigenvalues
and
eigenvectors
of a,b

[V,D]=eigs(a,k)

find the k
largest
eigenvalues
and
eigenvectors
of a

Page 13 of 17NumPy for Matlab Users -

22/01/2015http://wiki.scipy.org/NumPy_for_Matlab_Users?action=print

[Q,R,P]=qr(a,0) Q,R = Sci.linalg.qr(a) mat(...) QR
decomposition

[L,U,P]=lu(a)

L,U = Sci.linalg.lu(a) or
LU,P=Sci.linalg.lu_factor

(a)

mat(...)

LU
decomposition
(note: P
(Matlab) ==
transpose(P
(numpy)))

conjgrad Sci.linalg.cg mat(...)

Conjugate
gradients
solver

fft(a) fft(a) mat(...)
Fourier
transform of a

ifft(a) ifft(a) mat(...)
inverse Fourier
transform of a

sort(a) sort(a) or a.sort() mat(...) sort the matrix

[b,I] = sortrows

(a,i)
I = argsort(a[:,i]), b=a[I,:]

sort the rows
of the matrix

regress(y,X) linalg.lstsq(X,y)
multilinear
regression

decimate(x, q) Sci.signal.resample(x, len(x)/q)

downsample
with low-pass
filtering

unique(a) unique(a)

squeeze(a) a.squeeze()

Notes
Submatrix: Assignment to a submatrix can be done with lists of indexes using the
ix_ command. E.g., for 2d array a, one might do: ind=[1,3]; a[np.ix_
(ind,ind)]+=100.
HELP: There is no direct equivalent of MATLAB's which command, but the
commands help and source will usually list the filename where the function is
located. Python also has an inspect module (do import inspect) which provides
a getfile that often works.
INDEXING: MATLAB® uses one based indexing, so the initial element of a
sequence has index 1. Python uses zero based indexing, so the initial element of a
sequence has index 0. Confusion and flamewars arise because each has advantages
and disadvantages. One based indexing is consistent with common human
language usage, where the "first" element of a sequence has index 1. Zero based
indexing simplifies indexing. See also a text by prof.dr. Edsger W. Dijkstra.

Page 14 of 17NumPy for Matlab Users -

22/01/2015http://wiki.scipy.org/NumPy_for_Matlab_Users?action=print

RANGES: In MATLAB®, 0:5 can be used as both a range literal and a 'slice'
index (inside parentheses); however, in Python, constructs like 0:5 can only be
used as a slice index (inside square brackets). Thus the somewhat quirky r_ object
was created to allow numpy to have a similarly terse range construction
mechanism. Note that r_ is not called like a function or a constructor, but rather
indexed using square brackets, which allows the use of Python's slice syntax in the
arguments.
LOGICOPS: & or | in Numpy is bitwise AND/OR, while in Matlab & and | are
logical AND/OR. The difference should be clear to anyone with significant
programming experience. The two can appear to work the same, but there are
important differences. If you would have used Matlab's & or | operators, you
should use the Numpy ufuncs logical_and/logical_or. The notable differences
between Matlab's and Numpy's & and | operators are:

• Non-logical {0,1} inputs: Numpy's output is the bitwise AND of the inputs.
Matlab treats any non-zero value as 1 and returns the logical AND. For
example (3 & 4) in Numpy is 0, while in Matlab both 3 and 4 are considered
logical true and (3 & 4) returns 1.

• Precedence: Numpy's & operator is higher precedence than logical operators
like < and >; Matlab's is the reverse.

If you know you have boolean arguments, you can get away with using Numpy's
bitwise operators, but be careful with parentheses, like this: z = (x > 1) & (x < 2).
The absence of Numpy operator forms of logical_and and logical_or is an
unfortunate consequence of Python's design.
RESHAPE and LINEAR INDEXING: Matlab always allows multi-dimensional
arrays to be accessed using scalar or linear indices, Numpy does not. Linear indices
are common in Matlab programs, e.g. find() on a matrix returns them, whereas
Numpy's find behaves differently. When converting Matlab code it might be
necessary to first reshape a matrix to a linear sequence, perform some indexing
operations and then reshape back. As reshape (usually) produces views onto the
same storage, it should be possible to do this fairly efficiently. Note that the scan
order used by reshape in Numpy defaults to the 'C' order, whereas Matlab uses the
Fortran order. If you are simply converting to a linear sequence and back this
doesn't matter. But if you are converting reshapes from Matlab code which relies
on the scan order, then this Matlab code: z = reshape(x,3,4); should become z =
x.reshape(3,4,order='F').copy() in Numpy.

Customizing Your Environment
In MATLAB® the main tool available to you for customizing the environment is
to modify the search path with the locations of your favorite functions. You can put
such customizations into a startup script that MATLAB will run on startup.
NumPy, or rather Python, has similar facilities.

• To modify your Python search path to include the locations of your own
modules, define the PYTHONPATH environment variable.

Page 15 of 17NumPy for Matlab Users -

22/01/2015http://wiki.scipy.org/NumPy_for_Matlab_Users?action=print

• To have a particular script file executed when the interactive Python
interpreter is started, define the PYTHONSTARTUP environment variable to
contain the name of your startup script.

Unlike MATLAB®, where anything on your path can be called immediately, with
Python you need to first do an 'import' statement to make functions in a particular
file accessible.
For example you might make a startup script that looks like this (Note: this is just
an example, not a statement of "best practices"):

Make all numpy available via shorter 'num' prefix

import numpy as num

Make all matlib functions accessible at the top level via

M.func()

import numpy.matlib as M

Make some matlib functions accessible directly at the top

level via, e.g. rand(3,3)

from numpy.matlib import rand,zeros,ones,empty,eye

Define a Hermitian function

def hermitian(A, **kwargs):

return num.transpose(A,**kwargs).conj()

Make some shorcuts for transpose,hermitian:

num.transpose(A) --> T(A)

hermitian(A) --> H(A)

T = num.transpose

H = hermitian

MATLAB packages/tools and equivalent for use with
NumPy

• Plotting: matplotlib provides a workalike interface for 2D plotting; Mayavi
provides 3D plotting

• Symbolic calculation: swiginac appears to be the most complete current
option. sympy is a project aiming at bringing the basic symbolic calculus
functionalities to Python. Also to be noted is PyDSTool which provides
some basic symbolic functionality.

• Linear algebra: scipy.linalg provides the LAPACK routines
• Interpolation: [/ScipyPackages/Interpolate scipy.interpolate] provides

several spline interpolation tools
• Numerical integration: scipy.integrate provides several tools for integrating

functions as well as some basic ODE integrators. Convert XML vector field
specifications automatically using VFGEN.

• Dynamical systems: PyDSTool provides a large dynamical systems and
modeling package, including good ODE/DAE integrators. Convert XML
vector field specifications automatically using VFGEN.

• Simulink: no alternative is currently available.

Page 16 of 17NumPy for Matlab Users -

22/01/2015http://wiki.scipy.org/NumPy_for_Matlab_Users?action=print

NumPy for Matlab Users (last edited 2014-02-22 02:26:05 by AlanIsaac)

Links
See http://mathesaurus.sf.net/ for another MATLAB®/NumPy cross-reference.
See http://urapiv.wordpress.com for an open-source project (URAPIV) that
attempts to move from MATLAB® to Python (PyPIV
http://sourceforge.net/projects/pypiv) with SciPy / NumPy.
In order to create a programming environment similar to the one presented by
MATLAB®, the following are useful:

• IPython: an interactive environment with many features geared towards
efficient work in typical scientific usage very similar (with some
enhancments) to MATLAB® console.

• Matplotlib: a 2D ploting package with a list of commands similar to the ones
found in matlab. Matplotlib is very well integrated with IPython.

• Spyder a free and open-source Python development environment providing a
MATLAB®-like interface and experience

• SPE is a good free IDE for python. Has an interactive prompt.
• Eclipse: is one nice option for python code editing via the pydev plugin.
• Wing IDE: a commercial IDE available for multiple platforms. The

professional version has an interactive debugging prompt similar to
MATLAB's.

• Python(x,y) scientific and engineering development software for numerical
computations, data analysis and data visualization. The installation includes,
among others, Spyder, Eclipse and a lot of relevant Python modules for
scientific computing.

• Python Tools for Visual Studio: a rich IDE plugin for Visual Studio that
supports CPython, IronPython, the IPython REPL, Debugging, Profiling,
including running debugging MPI program on HPC clusters.

An extensive list of tools for scientific work with python is in the link: Topical
Software.

MATLAB® and SimuLink® are registered trademarks of The MathWorks.

CategoryCookbook CategoryTemplate CategoryTemplate CategoryCookbook
CategorySciPyPackages CategoryCategory

Page 17 of 17NumPy for Matlab Users -

22/01/2015http://wiki.scipy.org/NumPy_for_Matlab_Users?action=print

