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Summary 

 

The work briefly reviews history of artificial neural networks from 

publishing  the first mathematical model of neuron in 1943 toward the 

specific area of nonconventional neural architectures. The core of the non-

conventionality of the discussed neural architectures consists in distinct 

conceptions of nonlinearity of neuronal models, which are different from 

conventional neuronal models with linear synaptic neural operation. The 

particular contribution of the author to the field is the introduction of  novel 

conception of nonconventional neural units (HONUs) and their 

classification according to three fundamental principals for modeling of 

dynamical systems; these are the customable nonlinearity via polynomial 

order of the synaptic operation, the order of dynamics of state space 

representation of a neuron, and the implementation of adaptable time delays 

that further enhances approximation capability for systems with high order 

of dynamics. This novel conception for neural units shall be understood as a 

natural merge of the early and more recent developments in artificial neural 

networks together with the conservative and well established approaches in 

the field of modeling and control engineering. Such a unifying classification 

of neuronal models as of standalone neural units while still mimicking the 

biological analogy had not been found in literature before. During 

applications to real world problems, the introduced neural units, esp. the 

static and discrete-time dynamic QNU, proved to be attractive from the 

point of tradeoff between the nonlinear strength of artificial neural networks 

and the practical usability of NN optimization and correct functionality with 

avoidance of local minima problem because of the linear nature of 

optimization problem of HONU for a given training data. 

When using non-heuristic learning algorithms, which are considered 

suitable for small scale neural networks, standalone HONU substantially 

outoperforms perceptron type networks in approximation of  nonlinear 

dynamical systems. 

Further theoretical research on HONU can consist in investigation of 

networking of HONU. For applied research, HONUs are perspective tool 

for new and very fast hardware solutions of control, such as using the field 

programmable arrays (FPGA), chipset on board and embedded board 

solutions. 
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Souhrn 

 

Tato práce stručně shrnuje historii umělých neuronových sítí od prvního 

modelu umělého neuron v roce 1943 směrem ke specifické kategorii 

nekonvenčních neuronových sítí. Podstata nekonvenčnosti diskutovaných 

neuronových architektur spočívá v odlišné koncepci nelinearity 

neuronových modelů, které jsou odlišné od konvenčních umělých neuronů 

s lineární synaptickou operací. Konkrétním příspěním autora do oblasti je 

představení nové koncepce nekonvenčních neuronových jednotek (HONU) 

a jejich klasifikace podle tří fundamentálních principů pro modelování 

dynamických systémů; jsou to uživatelsky nastavitelná kvalita nelineární 

aproximace stupněm polynomu synaptické operace, řád dynamiky stavové 

formulace neuronu, a typ implementce adaptovatelného dopravního 

zpoždění buďto na vstupu neuronu a/nebo v jeho stavové zpětné vazbě, což 

podstatně zvyšuje kvalitu aproximace systémů s vyším řádem dynamiky 

nebo s dopravními zpožděními. Tato nová koncepce by měla být chápána 

jako přirozené sjednocení původních i posledních trendů neuronových sítí 

spolu s konzervativními  a dobře zavedenými koncepty modelování a řízení 

dynamických systémů. Podobná kompletní jednoticí koncepce klasifikace  

samostatných  neuronových  jednotek při snaze zachovat vztah k analogii 

biologického neuronu  nebyla v literatuře ještě nalezena. 

Při aplikacích na reálných datech a systémech se nekovenční neuronové 

jednotky, zejména statická a dynamická HONU, ukázaly jako atraktivní 

z hlediska vyváženosti mezi kvalitou nelineární aproximace, praktičností 

optimalizačního algoritmu, a správnou funkčností sítě a to při prakticky 

minimálním efektu lokálních minim, který je v případě HONU teoreticky 

eliminován lineární podstatou optimalizační úlohy HONU pro příslušnou 

trénovací množinu dat. Při použití neheuristických algoritmů učení, které 

jsou obecně považovány za vhodné  pro neuronové sítě menších rozměrů, 

samostatné jednotky výrazně překonávaly neuronové sítě typu perceptron 

v aproximaci nelineárních dynamických systémů. 

Případný následující základní výzkum HONU může přirozeně spočívat ve 

zkoumání nových neuronových sítí s jednotkami  HONU. 

Pro aplikovaný výzkum jsou jednotky HONU velmi perspektivní například 

i pro velmi rychlé úlohy řízení s využitím programovatelných hradlových 

polí (FPGA) a příbuzných hardwarových aplikací. 
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1 INTRODUCTION 
It is known that human brain can have more than 100 billion neurons, 

which have complicated interconnections, and these neurons constitute a 

large-scale signal processing and memory network. Even though the 

computational power of computers is still exponentially increasing, it is still 

a long multidisciplinary race of sciences to obtain a cognitive computing 

machine that would approach the cognitive capabilities of human brain. 

However, the mathematical study of a single neural model and its various 

extensions is the first step in the design of a complex neural network for 

solving a variety of problems in the fields of signal processing, pattern 

recognition, control of complex processes, neurovision systems, and other 

decision making processes.  

In the first half of 20th century, the cross-fertilization of physiology and 

mathematics resulted in publication of the famous mathematical model of a 

neuron by McCulloch and Pitts in 1943 [1] that initiated research of novel 

computational disciplines of science. Together with the boom of computers 

since 1980’, we have arrived to a very extensive area of artificial neural 

networks (ANN) and to the area of optimization methods devoted to   

learning techniques of ANN such as genetic algorithms (GA) and much 

more of other more or less heuristic optimization methods (i.e. differential 

evolution and memetic computing or adaptive resonance theory). 

It may be mentioned that techniques of ANN and their learning techniques 

have grown for the necessity to model and control complex systems that are 

not possible to be analyzed via mathematical-physical analysis. In other 

words, it is not possible to analyze many real systems by comprehensive 

decomposition into simpler interconnected subsystems – this conforms to 

one of generally accepted engineering definition of complexity of real world 

systems [2][3]. The real systems are naturally complex and not closed ones, 

and they are further nonstationary that is caused by immeasurable 

perturbations or due to nonlinearity that may also be a reason why real 

systems are difficult to be modeled; the sensitivity to small perturbations of 

nonlinear system may cause large variation of system behavior as it is 

known form the theory of deterministic chaos. On the other hand, the theory 

of deterministic chaos shows that very complicated behavior can be found  

in relatively simple (rather complicated than complex) mathematical models  

such as logistic equation, Duffing oscillator or Lorenz system. 

ANN are, in their nature, rather a deterministic tool that relies on 

availability of properly processed and configured  training data because 

uncertainty in training data has negative impact to optimization and learning 

capabilities of ANN. Therefore, it is important to mention the foundation of 
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fuzzy logic by Lotfi Zadeh in 1960’, which has grown to another branch of 

CI that primarily focus uncertainty and that today includes also areas as 

neuro-fuzzy systems, type-2 fuzzy sets, or granular computing approaches.  

In 1980’, world has thought of artificial neural networks as of part of 

artificial intelligence (AI) that involved also other substantial and by-nature 

inspired computation techniques, i.e., genetic algorithms (GA) and fuzzy 

systems. Later in 1990’, one can notice that it was more common to talk 

about NN, GA, or FS as of disciplines of Computer Science (CS, e.g., IEEE 

Computer  Society) while AI appeared to be understood more broadly. 

Today, we can notice that NN, GA, FS and major frameworks of 

computational algorithms that are covered by umbrella of Computational 

Intelligence (CI, e,g, IEEE Computational Intelligence Society), while the 

Computer Science may be seen as rather more inclining toward HW and 

SW issues of computers, their networking and performance including e.g., 

cloud computing, mobile computing, bioinformatics, and many others.  

Even though the fields of CI and CS are still not clearly separable, we may 

notice that CI inclines more toward research of computational and cognitive 

algorithms of artificial intelligence while CS inclines toward the hadware-

like solutions that can be used for implementations of CI. Except general 

areas of NN, GA, FS, we may mention another additional disciplines of CI 

such as self-organizing maps, Boolean networks, support vector machines, 

spiking neural networks, particle swarm optimization, differential evolution, 

memetic computing, adaptive resonance theory, affective computing, 

quantum computing, type-2 fuzzy sets, granular computing, 

For engineering tasks of modeling and control of dynamical systems, the 

most common tools are supervised neural networks of smaller scales (about 

with number of inputs <1000).  

2 FROM CONVENTIONAL TO POLYNOMIAL NN 
Returning back to the middle of 20th century, the first bio-inspired 

mathematical model of artificial neuron [1] had linearly aggregated neural 

inputs, i.e. linear synaptic neural, which was followed by a hard-limited 

threshold activation function, i.e. somatic operation, that allows neural 

network for classification purposes. The later introduced Perceptron model 

of a neuron [4] had also linear somatic operation; however, the somatic 

operation changed to a sigmoidal type of functions.  

The next milestone in neural network area was the upgrade of static 

neuronal models to dynamic (recurrent) versions (Hopfield in 1982 [5]) and 

proposal of recurrently interconnected neural networks with Perceptron type 

of neurons. Therefore, the conventional neural networks can be basically 

classified into categories of static feedfoward networks and dynamical 
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(recurrent) networks with various feedback configurations (hidden recurrent 

layers, tapped delayed feedbacks of neural outputs). Further, the neural 

networks can be classified according to if they are computed in continous-

time domain or discrete time domain [6]. 

From the above mentioned foundations, ANN has grown to a vast field of 

theoretical science today, while real implementations of ANN is a 

multidisciplinary task including proper data acquisition and signal 

processing. As an aside, a practically useful technique for neural networks 

is the technique of so called PCA neural networks that can reduce the 

dimensionality of vector or external inputs [7][8]. Other interesting earlier-

appearing neural network architectures are product neural units by Durbin 

& Rumelhart [29] and later logarithmic neural networks by Hines [30]. 

Another nonlinearly powerful approach in neural networks is support vector 

machines (SVM) founded by Vapnik and Lerner in [18]; they are dependent 

on proper selection of kernel functions that increase dimensionality of 

feature vectors to allow separation of data clusters by linear discriminants 

that is impossible in lower dimensional spaces. 

Since 1970’, there appeared novel direction in neural network field, i.e., so 

called polynomial neural networks (PNNs) or higher-order neural networks 

(HONNs). Basically, both the PNNs and HONNs represent the same style 

of computation in artificial neural networks where neurons involve 

polynomials, or the neurons are polynomials themselves, or where synaptic 

connections between neurons involve higher-order terms (i.e. higher-order 

polynomials). Nevertheless, the use of HONN notation seems to take over 

in popularity over PNN in most recent publications. For the early and 

important work on polynomial approximation in area of neural networks, 

we refer to work of Ivakhnenko [11] and his method known as Group 

Method of Data Handling (GMDH). Heuristically and with consideration of 

least square polynomial fitting to training data, GMDH technique builds 

very high-order polynomial (i.e. Ivakhnenko polynomial) to approximate a 

system model. Importantly, the technique considers also the optimal 

complexity polynomial evaluation that validates the Ivakhnenko polynomial 

against later data than just against the merely training ones. More recent and 

significant publications devoted to PNN that follows the Ivakhnenko 

concepts are the works of Nikolaev and Iba [27][28] that provides an 

extensive studies of optimization algorithms for PNN from direct least 

square computation of weights through backpropagation techniques to the 

use of genetic algorithms. The particular concepts and works that shall be 

referenced as framed within HONNs (rather than within PNN) can be found 

in works of Shin & Ghosh [20], Softky & Kammen [21], Taylor & 

Commbes [22], Chen & Manry [23], Schmidt & Davis [24], 
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Kosmatopoulos, Polycarpou, Christodoulou and Ioannou [25], and 

Heywood & Noakes [26].  

3 HIGHER ORDER NEURAL UNITS  
Up to 2003, literature had not clearly nor systematically distinguished 

between polynomial neural networks, higher order neural networks or a 

single neural unit with polynomial synaptic operation. Also, there was no 

such unified approach to artificial neurons while it was apparent that 

conventional concept of single artificial neurons resulting from works of 

McCulloch and Pitts, Rosenblatt or Hopfield could be naturally enhanced in 

their quality for approximation of nonlinear systems and dynamic systems 

and while not significantly diverging from neuronal biological analogy.  

On the other hand and up to 2003, there were emerging suitable 

fundamental mathematical approaches such as the Tailor polynomial, 

gradient optimization methods (backpropagation technique, gradient 

descent rule, and Levenberg-Marquardt algorithm), and well established 

engineering approach of time delay systems (e.g. works authored or co-

authored by Zítek, Kučera, Víteček) that are of fundamental importance to 

modeling of dynamical systems and control engineering problems.  

The following subsections includes the author’s contribution to the field of 

neural networks, which is a merge of the contemporary neural network 

approaches with more or less traditional engineering approaches that results 

in novel classification, and thus new concepts of nonconventional neural 

units. Moreover, published results of on real systems are shown to support 

the theoretical achievements. 

3.1 New Classification of Artificial Neurons 
The novel proposed classification of artificial neural units, as published in 

[40] [51], is based on three very fundamental mathematical and engineering 

attributes: 

a) the nonlinearity of the aggregating operation ν of neural inputs, i.e. 

fHONNU( ) as in Fig. 2, 

b) the order of dynamics of state space representation of a neuron (i.e., the 

number of time integrations of aggregated variable ν ,  applies to 

continuous dynamic HONU),  

c) and the type of implementation of adaptable time delays within a neural 

unit. 

The principal of classification is sketched in Fig. 1 and Fig. 2, where only 

the most important types are shown for brevity. 
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Systematic classification according to nonlinear aggregation and neural 

dynamics is sketched in Fig. 3 while the classification by Time Delays and 

Nonlinear Aggregation is sketched in Fig. 4. 

3.2 Static HONU 
 This subsection focuses on static HONU, and on enhancements of gradient 

learning rules that are the part of derivations introduced in [33] and that are 

also discussed in [34]. Let r denote a polynomial order of HONU and 

consider somatic neural ( )φ ν ν= (without loss of generality for standalone 

HONU), then neural output y of static HONU at time k is alternatively given 

as 

 ( ) , , 0
0 ...

, where neural bias 1
n n n

i j i j

i j i

y x x x w x

= =

= ⋅ =∑∑ ∑ K KK L , (1) 
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Fig. 3: Classification of nonconventional continuous artificial neural units according 

to a) aggregating nonlinearity fHONNU=ν ,and b) the order of dynamics. 

 
Fig. 4: Classification of basic time-delay dynamic neural units according to a) 

aggregating nonlinearity ν and c) the type of time delay implementation.  
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where T stands for matrix or vector transposition. 

Recently in [33][34], flattening operation has been introduced for general 

r
th-order HONU so a general r

th order HONU can be expressed in a long 

vector representation. The novel flattening approach for HONU can be 

demonstrated on QNU from (2) as follows 

 0 1 0,0 0,1 , ,
T

i j n n i j n ny x x x x x x w w w w   = ⋅ = ⋅   rowx colW K K K K (3) 

where rowx is the long row vector representation of polynomial terms of 

synaptic neural operation (including lower orders due to bias x0=1), and 

colW is the long column vector representation of otherwise r-dimensional 

weight array W. Without the loss of generality, the long vector 

representation in (3) is generally applicable to arbitrary polynomial order r 

and highlights the advantage of HONU, i.e., that the optimization of HONU 

is a linear problem when training data are substituted in y and rowx. 

Benefiting from the in-parameter linearity of HONU and considering (3), 

neural weights of static HONU can be directly calculated by least square 

method leading to a variation of the Wiener-Hopf equation for HONU and 

for an arbitrarily polynomial order r as follows  

 
 ( )

1−
= ⋅ ⋅ ⋅ pcolW colX rowX colX y

, (4) 
where colX represents a corresponding matrix of polynomially correlated 

input patterns and yp is corresponding  vector of targets. In case of real data  

where matrix colX may be not well conditioned, it is practical to train static 

HONU  by Levenberg-Marquardt (L-M) algorithm as 

 
1

1

µ

−
 

= ⋅ + ⋅ ⋅ ⋅ 
 

∆colW colX rowX I colX e  (5) 

where e is the standard vector (or matrix) of neural output errors, µ is 

learning rate , and rowX=colXT already represents the Jacobian matrix. It is 

apparent from (5) for HONU, that the Jacobian matrix becomes only once 

calculated constant depending merely on neural inputs, so the whole 

training can rapidly accelerate in comparison to other neural networks 

where Jacobian matrix and the inverse matrix has to be calculated each 

training epoch.  
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As regards the gradient descent adaptation of static HONU, e.g., as for  

nonlinear adaptive filtering, the above introduced notation allows HONU to 

directly implement gradient descent regularization techniques such as the 

normalized gradient descent [12] and Benveniste’s updates [13] as follows  

 ( )
2

( )
2

k

k

µ
η

ε
=

+rowx
, ( )

( ) ( )
k

k k

µ
η

ε⋅
=

+rowx colx
,  (6) 

and further also an algorithm by Farhang and Ang [14], Mathews’ algorithm 

[16], or the generalized normalized gradient descent algorithm (GNGD) of 

Mandic [15] as follows 

 ( ) ( 1) ( ) ( 1)
( 1) ( )

2
( 1)

2

2( ( 1) )

k k k k
k k

k

e e

k
ε ε γ µ

ε

− ⋅ ⋅ −
+ −

+ −

⋅
= ⋅

−

rowx colx

colx
,  (7) 

where the minimum value of the regulization constant ε is derivable from 

the Hurwitz stability of a priori error ( )ke  to a posteriori error ( )ke%  

mapping (as in [19] e.g. ), which is is for static HONU as follows 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )k k k k k k k kreale y k e eη+∆ ⋅ = ⋅ ⋅= − − ⋅rowW rowW colx rowx colx%

 ( ) ( ) ( ) 1
2

k k k
µ

ε
 

⋅ ⋅ 
 

> −rowx colx   (8) 

and robust GD variations according to [17] [19] are also feasible.  

3.3 Time-Delay Dynamic Neural Units (TmD-DNU) 
This subsection demonstrates the conception of continuous-time dynamic  

neural units TmD-DNU with linear synaptic operation ((9) as published in 

[44] [52] [53]) and the modification of gradient descent adaptation approach 

also for adaptable time delay neural parameters w4 and w3j. 

 2
4

2 2
( )min

1

( )
( ) ( ) ( ), ( ) ( )

n

1 2j j 3j

j

dx t
w x t w w u t w y

dt
t x tτ φ

=

+ + − = ⋅ − =∑  (9) 

The feasibility of gradient descent adaptation of adaptable time delays of 

linear TmDNUs results from possibility to evaluate the partial derivative of 

Laplace quasipolynomial type transfer function of the above TmdDNU (9). 

Then the state feedback time delay w4 , e.g., can be adapted according to the 

gradient descent rule that is derived using the backpropagation chain rule 

for partial derivatives according to following scheme  

 
2

( ) ( ) ( ) (
( ) ( )

( )

)( )
2k -1 TmDNU

i
i i

t t
t s

t

e G s
w e L U

w x w
µ µ

φ
⋅
  ∂ ∂ ∂

∆ = − =   
∂ ∂ ∂  

   (10)  
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where s stands for the Laplace operator, and L
-1 denotes inverse Laplace 

transform, and GTmDNU denotes the Laplace transfer function of the internal 

dynamics of a unit with linear synaptic operation.  

Even though the above concept of TmD-DNU is highly potential for 

approximation of systems with high order of dynamics or systems with time 

delays via rigorously derived gradient descent updates (10), this continuous 

time concept is still of much academic nature in comparison to discrete time 

HONUs; it is sensitive to initial setup of weights, and it appeared more 

practical to combine gradient descent and genetic algorithm to identify time 

delay parameters of HONU as it was done for approximation of double tube 

heat exchanger in [50] or later in the contemporary research of our PhD 

student. 

3.4 Recurrent HONU  
Recurrent HONUs, esp. discrete time ones, are the most practically useful 

concept of the presented nonconventional neural units. The performance 

comparison of standalone recurrent HONUs to linear models and to MLP   

Tab. 1: Fundamental implementation examples of static and dynamic QNU and 

supervised learning rules for updating individual weights [34][48]. 
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Fig. 5: Prediction of chaotic MacKey-Glass equation (normalized data) by the 

discrete recurrent QNU (Tab. 1); the 11 samples (sampling 1 second) 

prediction is superimposed on original data and the middle line is the error 

between original and predicted values; dynamic QNU has surprising 

prediction accuracy. 
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Fig. 6: The typical situation when QNU is almost always trained to the minimum of 

high accuracy and without getting stacked in some less accurate local minima 

(SSE…sum of square errors). 

types of static and recurrent neural networks can be found in publications 

[31][34][42][48][49], where the superiority of standalone HONUs over the 

conventional MLP networks is apparent. 

 There are two supervised training techniques that are widely considered as 

useful for small scale recurrent neural networks; these are the real time 

recurrent learning (RTRL introduced by Williams and Zipser in 1989 [9]) 

and backpropagation through time (BPTT introduced by Werbos in 1990 

[10]).  The RTRL technique is a dynamic version of gradient descent 

adaptation rule that does not neglect recurrent calculations of Jacobian 

matrix. RTRL, e.g., for QNU is shown in Tab. 1. The BPTT technique is a 

batch training technique suitable for small scale dynamical neural networks, 

and it is presented as a technique of unfolding a recurrently computed 

neural architecture in time. However and unfortunately, it is not usually 

comprehensibly mentioned in literature that BPTT can be implemented as a 

combination of RTRL technique and the Levenberg-Marquardt algorithm 
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that is a very efficient training technique for recurrent HONU [34]. Fig. 6 

compares performance of dynamical QNU (HONU of r=2) with dynamical 

linear neural unit (LNU, i.e., HONU of r=1) and with a multilayer 

perceptron (MLP) neural network with a single hidden recurrent layer when 

adapted by RTRL to Mackey-Glass chaotic time series. However, Fig. 6 

sketches a typical situation when a linear model can not reach acceptable 

accuracy because of its linearity, MLP neural network (RNN) may reach 

acceptable precision; however, for the risk of getting stuck in a local 

minima, and QNU reaches high accuracy and converges fast without any 

indication of stacking in local minima and it appeared also in real time 

implementations 

3.5 Weight-Update Stability of Static HONU 
This subsection presents a novel approach to evaluation of gradient 

descent weight-update stability of HONU that has been recently introduced 

in [33]. The long vector operator approach as introduced in subsection 3.2 

(and in [33]) is used further. The weight-update system by gradient descent 

learning rule for update of the weights of HONU at sampling time k may be 

given as 

 ( )( 1) ( )k k p
y

y yµ+
∂

= + ⋅ − ⋅
∂

colW colW
colW

, (11) 

where yp is the target, y is neural output, µ is the learning rate (scalar), and  

 
0,0 0,1 ,

T

n n

y y y y

w w w

 ∂ ∂ ∂ ∂
=  

∂ ∂ ∂ ∂  colW
K . (12) 

For static QNU, e.g., the derivative of neural output with respect to a single 

general weight of QNU is as follows 

 
( )

i j
ij ij ij

y
x x

w w w

⋅∂∂ ∂
= = ⋅ = ⋅

∂ ∂ ∂

rowx colW colW
rowx , (13)  

then the neural weight-update system for a weight of static HONU is as 

 ( )( 1) ( ) ( ) ,k k kij ij p i jw w y x xµ+ = + ⋅ − ⋅ ⋅ ⋅rowx colW  (14) 

and the column weight update formula for all weights can be expressed as 

follows 

 ( )( 1) ( ) ( ) .k k kpyµ+ = + ⋅ − ⋅ ⋅colW colW rowx colW colx  (15) 

Let’s denote the long vector multiplication term as follows 

 = ⋅S colx rowx .  (16) 

Considering that colx=rowxT
 contain external inputs and that yp is training 
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target, we clearly see from (15) that the stability condition of the weight-

update system of static HONU at each time k is classically resulting as 

follows 

 
( ) 1ρ µ− ⋅ ≤I S . (17) 

where ρ(.) is spectral radius, and I is an identity matrix of diagonal length 

equal to the number of neural weights.  

It can be also concluded that because of the in-parameter linearity that 

allows HONU to be expressed in long vector operation, and because of the 

resulting fact that stability of weight update system of static HONU depends 

merely on magnitudes of neural inputs (16) (17), the gradient descent 

adaptation of HONU can also adopt the efficient techniques that are 

applicable to linear filters. These techniques that are recognized as efficient 

to maintain stability during gradient descent adaptation are known as the 

normalized least mean square algorithm (NLMS), or the Benveniste’s 

learning rate updates, algorithm by Farhang and Ang, Mathews’ algorithm, 

and generalized normalized gradient descent algorithm (GNGD) ( Mandic 

et al.2009) . 

3.6 Weight-Update Stability of Recurrent HONU 
Recurrent HONU feeds its step delayed neural output back to its input. 

The individual weight update of recurrent HONU by fundamental gradient 

descent (RTRL) can then be given using the above introduced operators and 

for any polynomial order as follows 

 ( )

( 1) ( ), , , ,

( )
( ) ( ) ( )

, ,

,

k ki j i j

k ns
k n k kp s

i j

w w

y
y

w
µ

+

+
+

= +

∂
+ ⋅ − ⋅ ⋅

∂
rowx colW

K K

K

 (18)

where ns is the discrete prediction interval, and the individual derivatives of 

neural output are for recurrent HONU as follows  

 
( ) ( ) ( )

( ) ( )

, , ,

,
k n k ks

k k

i j i j i j

y

w w w

+  ∂ ∂ ∂
 = +
 ∂ ∂ ∂ 

rowx colW
colW rowx  (19) 

where weight indexing is shown as if for QNU, and here 

( ) ,k i jw∂ ∂ ≠rowx 0  because the neural input x of recurrent architecture is 

concatenated with delayed neural outputs, and it can be expressed for all 

derivatives of neural output in a long-column vector as 

 
( ) ( )

( ) ( )
k n ks

k k
y +∂ ∂ 

= + 
∂ ∂ 

rowx
colW colx

colW colW
, (20) 
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where for the example of QNU 
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where J represents the recurrently calculated Jacobian matrix with 

dimensions nw×nw, where nw is the total number of weights, which is also 

equal to the number of elements of rowx or colW.   

 ( ) ( ) ( )k n k kp s= y +⋅ − ⋅ ⋅R J J colW rowx . (22) 

If we introduce a diagonal matrix of learning rates M instead of a single µ 

and separate the parts of the update recurrent system as follows   

 
( )( )( 1) ( ) ( ) ( ) .k k k k np sy+ += + ⋅ − ⋅ ⋅ ⋅+colW I M R S colW M colx , (23)  

then the stability condition for adaptation of recurrent HONU by RTRL 

technique via evaluation of spectral radius ρ() is as follows 

 ( )( )( ) 1kρ + ⋅ − ≤I M R S  (24)  

where S is defined in (17) and the time indexing of the learning rate matrix 

M(k) indicates the time variability of individual learning rates. More 

detailed derivations for weight-update stability of both static and recurrent 

HONU was published recently in [33]. For a single learning rate to all 

weights, Fig. 7 demonstrates the use of the weight update stability criteria 

during adaptation to Mackey-Glass time series. The first violations of the 

stability condition (24) is detected at around k=650, while the onset of 

unstable oscillations of neural output can be seen late after k>670.  

It can be concluded here that another advantage of HONU as of nonlinear 

adaptive model is that their weight update stability can be evaluated via 

monitoring of spectral radius of matrix of weight update dynamics, that is 

analogical to linear systems, which is again resulting from the in-parameter 

linearity of HONU.  
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Fig. 7: Unstable adaptation –significantly violated stability condition (24) well 

before unusually large oscillations and divergence of neural output can be 

seen. 

4 HONUS AND REAL SYSTEM IMPLEMENTATIONS  

4.1 Static HONU for Process Data Reconciliation 
Conventional MLP networks and HONU were studied and applied to 

neural network inspired data reconciliation [35][45][58] of hot steam 

turbine loop data and energetic boiler data (thermal plant Komořany, I. & C. 

energo). At every sampling moment, there were available 18 process 

variables such as steam pressures, temperatures, flows, and actual turbine 

power. The provided data had been averaged to consider steady state 

models of process data. Using multiple instances of static QNU and 

multiple instance of various configurations of feedforward MLP network 

and Levenberg-Marquardt algorithm, each of the 18 variables was 

individually and redundantly modeled (inspired by bootstrapping) and 

always the remaining 17 variables fed the neural network inputs. Because of 

complexity of this real system, it was not possible to identify the only 

relevant inputs to a model and all process variables were used on inputs, 

excluding the modeled one.  
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Fig. 8: Redundant modeling of hot steam flow by instances of single QNU and 

feedforward MLP neural networks for data reconciliation [45], QNU (darkest 

points) have smaller variance of neural outputs than MLPs.  

 
Fig. 9: The feed forward quadratic neural network (QNN). 

Fig. 8 shows redundant modeling of hot steam flow steady states using 

other process variables, the solid line is the measured variable (steam flow) 

running in time (via horizontal axes) and the darkest points are redundantly 

modeled values by QNU; the lighter points are redundant values by MLP 

networks, and it shows that MLP had much larger variance of outputs than 

outputs of QNU that confirms the advantages of HONU over MLP 

regarding the testing accuracy.  
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To minimize to computational burden of static QNU that exponentially 

increases with the number of inputs, the feed-forward quadratic neural 

network (QNN) has been developed as a tool for data reconciliation of hot 

steam turbine loop process data in Fig. 9 and in (25) as follows 

( )( )
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1
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 (25) 

where proper details on the architecture and the training technique can be 

found in [46] (please notice that QNN becomes QNU for m=n). 
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Fig. 10: Testing redundant static feedforward QNN models of the hot steam flow in 

a turbine loop on a new (testing) data by, m=3,4,…8, each 5x, total 30xQNN. 

The proposed QNN architecture allows us to customize the number of total 

neural weights. In [46], it was shown how parameter m given in (25) affects 

the total numer of neural weights of QNN and that directly affects the 

accuracy of training, i.e., parameter m directly affects the duality of 

nonlinear approximation of QNU. The above introduced concept is 

straightforwardly applicable to HONUs of arbitrary order. 
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4.2 Lung Tumor Motion Prediction by HONU 
During continuing cooperation with biomedical-engineering specialists 

from Tohoku University since 2009 [59][60], also static and dynamic 

HONUs have been studied for real time prediction of lung tumor motion 

along three body axes during a patient respiration and with the objective to 

reach 3-D mean absolute error (MAE) <1 mm for 1 second prediction 

horizon. So far (2012), neither recurrent neural networks, nor sophisticated 

autoregressive models, nor support vector machine techniques have been 

found performing with better accuracy of online prediction than the static 

QNU with Levenberg-Marquardt algorithm in a sliding window retraining 

approach [37][47][49][56][59][60]. Also the Jacobian matrix of QNU is a 

constant (contrary to MLP networks) and it depends merely on neural inputs 

significantly, and that accelerates real time computation where the sliding 

window retraining is carried out at every sample. Further, when Levenberg-

Marquardt is implemented for neural weights individually, we may 

completely avoid matrix inversion in the update rule (there is more research 

needed on this topic, which is attractive and suitable even for undergraduate 

students). 

 

 

 

 
 

 

 

 

 

Fig. 11: The real time 1second prediction of lung tumor motion by QNU with real-

time retraining in a sliding window; the left picture shows located lung tumor, 

and the axes show the online prediction of tumor position during respiration 

(error is the middle line at each axis) . 

Next two figures show the typical comparison of estimated distribution of 
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2-D MAE of online prediction by MLP network vs. QNU and there is 

apparent that QNU has a smaller spread of error than the MLP network. 
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Fig. 12: Estimated distribution of 2-D mean absolute error by MLP network for data 

in Fig. 11. 
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Fig. 13: Estimated distribution of 2-D MAE by QNU for data in Fig. 11. 
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4.3 Adaptive Control of Laboratory System 
As another result of a supervised student work, dynamic QNU was 

implemented for an adaptive control of a real laboratory system in Master’s 

thesis [55] with consequent publication of results in [31] and [48]. This 

student work was the practical implementation of the early introduced 

concept of QNU for adaptive control by Bukovsky et al [54] in 2003. 

Except the superiority of the control performance of adaptive QNU over 

conservative and linearly limited PID controller (Fig. 14), the student’s 

work [55] demonstrates that the concept of HONUs is attractive and 

comprehensible to students.  
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Fig. 14: Comparison of the state feedback QNU control with classical PID control  

of a real  (laboratory) system (PID control has the overshoots)  

4.4 NOx Prediction of Pulverized Firing Boiler at EMĚ I 
Within cooperation with I. & C. Energo, a.s.. [57], the neural networks also 

for  prediction of NOx emissions was studied for process data validation 

and for possible control of the emissions of the pulverized firing boiler at 

Elektrárna Mělník 1 (Fig. 15). The requirement was to achieve an accurate 

model that would not involve measured O2, NOx, or CO as inputs; this was 

a unique requirement for which no solution had been known nor had it been 

found in literature. The pulverized boiler is highly nonstationary because of 

varying technical conditions inside the combustion chamber, because of 

varying and unknown quality of coal powder, and also because of the 

measurement outages that happen quite often on hourly basis.  Therefore it 
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was not principally likely to obtain neural network model that would 

reliably predict emissions of NOx on a long term basis. For those reasons, it 

was concluded that a possible use of even very sophisticated  

optimization algorithms would not help to obtain reliable long term 

predictive model without online retraining. 

Pulverized firing boiler K6 EMĚ1

Parameters: 230 t/h, 540°C, 9,4 MPa, retyped to 250 t/h  
Fig. 15: The photo and parameters of the studied boiler at powerplant Mělník 1  (an 

ideally clean combustion chamber is on the right picture) 

After implementations and studies of performance of various predictive 

models from adaptive linear filters via static and dynamic MLP network, 

and static and dynamic HONUs on this boiler [38], the need for customable 

neural architecture was concluded while it was preferable to maintain real 

time computational efficiency for frequent retraining about every 30 

minutes or less on a machine with common performance parameters (the 

input vector length >200; one minute sampling).  
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tertiary air 

valves, + 
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ventilator  
Fig. 16: The data preprocessing before each reconfiguration and retraining of neural 

network [32]. 

To handle the nonstationary nature of the studied boiler in EMĚ1 and after 

certain understanding to mutual dependencies of the measured input 

variables, we arrived to the data preprocessing technique that is briefly 

sketched in Fig. 16. 
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Fig. 17: The discrete-time recurrent neural network that was implemented for NOx 

prediction without any of measured O2, NOx, or CO on its input. 
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Fig. 18: Detail of NOx prediction; temporary NOx measurement outage occurred 

after sample k=2.82E+4; the output of the dynamic neural network 

substituted the measurement outage, the good neural network prediction is 

conditioned by a good retraining data prior the measurement outage of NOx.; 

sampling=1min, prediction horizon 3 minutes. 

Then the nonconventional neural network in Fig. 17 was found acceptable 

for 3-minute NOx prediction (Fig. 18). The network has a hidden recurrent 

layer of perceptron neurons; the recurrent hidden layer introduces a filtering 

character of input measurement outages, it decreases the dimensionality of 

inputs to consequent QNU, and it limits and thus assures stability of the 

hidden layer (for the discrete-time networks). QNU was chosen as the 

output neuron for its nonlinear quality of approximation, and there are also 

tapped delay lines of predicted NOx to neural input because the measured 

NOx, when introduced as an external input, appeared to disqualify the 
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network from proper prediction (then the network learnt just to blindly 

follow the previously measured NOx, that is common problem of improper 

use of ANN).The network was retrained every 30 minutes by 

backpropagation through time algorithm, which was implemented as a 

combination of RTRL technique and the Levenberg-Marquardt batch 

training [34] with recent measured data history of 298 samples (5 hours). 

Each retraining took less than 3 minutes of real computation time in Matlab 

on a PC (Win7, i7) and that is well suitable for real time implementations 

on a commonly available HW. 

5 CONCLUSIONS 
The paper briefly reviews history of artificial neural networks with focus on 

nonconventional neural architectures. The core of the non-conventionality 

of the discussed neural architectures consists in distinct conceptions of 

nonlinearity of neuronal models, which are different from conventional 

neuronal models of linear synaptic neural operation. The most commonly 

referenced works of authors that sketches the story of nonconventional 

neuronal models are in [1]–[30] and they are discussed in first sections of 

this paper. The author’s contributions to the discussed topics can be found 

in [31]–[54] plus one supervised defended Master’s thesis [55] (2008) and 

plus one co-supervised submitted PhD thesis [56] (09/2012); the works are 

discussed and referenced throughout later sections of this paper as well. The 

particular contribution of the author is the introduction of nonconventional 

neural units and their classification according to three fundamental aspects 

of modeling dynamical systems; these are the customable nonlinearity via 

polynomial order of the synaptic operation, the order of dynamics by the 

number of integrations of the synaptic output, and the implementation of 

adaptable time delays that further enhances approximation capability for 

systems with high order of dynamics. This introduction of neural units can 

be understood as a natural merge of early and more recent developments in 

artificial neural networks together with the conservative and well 

established approaches in the field of modeling and control engineering. 

Such a unifying classification of neuronal models as of standalone neural 

units while still mimicking the biological analogy has not been found in 

literature before. In the discussed applications to real world problems, the 

introduced neural units, esp. discrete-time static and dynamic HONU and 

their networks, appeared as practically useful. HONU can be used as 

standalone units or can be used in networked architectures. Even as 

standalone neural units, HONUs significantly outperformed conventional 

static and dynamic MLP neural networks when trained by non-heuristic 

adaptive algorithms that are suitable for small scale neural networks (such 

as real time recurrent learning or backpropagation through time) and when 
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non heavy computational optimization techniques are needed. Fig. 19 and 

Fig. 20 demonstrate important properties of HONU that have been approved 

through many simulation and real data experiments and implementations. 
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Fig. 19: QNU can be trained fast, significantly more precisely than linear models, 

and does not suffer from local minima issue for a given training data as 

nonlinear neural networks do when simple and feasible learning algorithms 

are used [31] [41][48]. 

 
 Fig. 20: HONUs are reasonable from the point of tradeoff between nonlinearity and 

the ability to learn only the prevailing governing laws in data. 

too strong approximating model can fit also 
erroneous data, but it is inappropriate in 
real time for non-training data

too strong approximating model can fit also 
erroneous data, but it is inappropriate in 
real time for non-training data

erroneous

data sample

appropriate model ignores 
erroneous data and adapts to 

important governing laws

appropriate model ignores 
erroneous data and adapts to 

important governing laws

a process correct 
function

a process correct 
function

„correct“

measured 

training data

„correct“

measured 

training data

An intuitive sketch of the overfitting problem with 
conventional neural networks



29 

It shall be recalled that the introduced concept of HONU is the concept of 

standalone neural units. Therefore, the theoretical research of novel neural 

networks built of HONU and with utilization of their all customable power 

is one interesting area for further research. 

For applied research, HONUs are also a perspective tool for new and very 

fast hardware solutions of control, such as using the field programmable 

arrays (FPGA), chipset on board and embedded board solutions. 

Of course, the performance of neural networks including HONUs on real 

systems is still substantially affected by availability of reasonable training 

data, which practically implies that a proper solution by neural networks 

turns in the end into a complex and customized approach, where certain 

level of understanding to the particular process and to data and to their 

measurement is inevitable. 

At this very end, I would like to thank kind readers for their time and to 

beg them for a pardon for a fairly limited scope of the presented reviews, as 

it is impossible to concentrate here all topics that would deserve to be 

mentioned. 
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