MATERIALS SCIENCE I

TENSILE TESTING OF STEEL

Student:

Date:

Year: Teacher:

Program:

a) Specimens and principles of tensile test

b) Properties determined from tensile test

c) Engineering and True stress-strain diagram

d) Distribution of deformation alongside the test specimen

TENSILE TEST (EN ISO 6892-1)

Tasks:

a) Perform tensile test using tensile specimen made of steel S235JR

b) Determine yield strength, ultimate strength, area of reduction and ductility of short and long proportional test bar.

c) Draw engineering and true stress-strain daigram of tested steel

d) Draw relation of deformation alongside test bar

Tested material:

According to EN: S235JR, where: $S \rightarrow$ structural steel, 235 \rightarrow minimum yield strength 235 MPa, JR \rightarrow material toughness (Charpy V-Notch impact test at 27J at room temperature)

Determination of measured quantity:

Initial length of specimen \rightarrow Long bar:

Yield strength:

Ultimate stregth:

Area of reduction:

Ductility:

Init dimer	tial nsions		Measure	ed values		Calculated values							
		F _e	F _m		L _u S ₀		R _e R _m		Su I	Z	*A **A _{11,3}		
											[]		
	*												
	**												

TABLE 1: Tensile test of steel S235JR – measured and calculated values

* short proportional bar, ** long proportional bar

Annotation:

Round off the values of yield strength, ultimate strength and ductility to the nearest whole number and area of reduction to 0,5.

Fig. 1: Schematic sketch of engineering and true strain-stress diagram of steel S235JR

Annotation:

Distinguish diagrams (including description of axes) with using colors. Mark yield strength, ultimate strength and area of elastic and plastic deformation.

segment	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Lui														
[]														
Ai														
[]														

TABLE 2: Distribution of deformation alongside the test specimen

* short proportional bar, ** long proportional bar

Measure single segment with 0,1 mm accuracy.

Fig. 2: Distribution of deformation alongside the test specimen

Annotation:

Mark ductility of short and long test specimen (A and A_{11,3}) in diagram.

Conclusion: