MATERIALS SCIENCE I

CHARPY IMPACT TEST

Student: Date: Year: Teacher:

Program:

- a) Impact testing
- b) Testing specimens
- c) Characteristics determined from impact test
- d) Transition temperature

IMPACT TEST (EN ISO 148-1)

Tasks:

Carry out an impact fracture test on a given set of specimens and evaluate the results.

- a) Find out absorbed energy for different testing conditions.
- b) Determine the Transition temperature T_{p} .
- c) Sum up the test results.

Tested material:

According to EN: S235JR, where: $S \rightarrow$ structural steel, 235 \rightarrow minimum yield strength 235 MPa, JR \rightarrow material toughness (Charpy V-Notch impact test at 27J at room temperature)

Sketch of the specimen:

Sketch of the testing apparatus (Charpy method):

TABLE 1: Measured data

	Temperature [°C]								
Specimen	T [°C]	-80	-60	-40	-20	0	*	40	80
1		5	18	65		135		163	150
2	KV [J]	12	10	72		150		150	165
3		15	12	70		145		152	150
	KV [J]								
1				9,0		9,5			
2	Α	10	10	8,0		6,5		0	0
3				9,5		8,0			
1				7,0		1,0			
2	В	8	8	7,5		1,0		0	0
3				6,5		1,0			
1									
2	FA [%]	0	0					100	100
3									
	FA [%]	0	0			90		100	100

* Laboratory temperature

Fig. 1: Dependence of absorbed energy KV and FA on testing temperature T

Transition temperatures:

	КЛ []]	FA [%]
Τ _ρ [°C]		

Is this material suitable for a construction of a dynamically stressed part which is working at - 40°C? Why?

Conclusion: