

∴C.Ergun ak214E	Aluminum Alloys
	the specific modulus (ratio of modulus to density) and h specific strength, (ratio of strength to density)
	the electrical and thermal conductivity (in annealed adition),
• <u>No</u>	n-magnetic material,
	od resistance to corrosion and oxidation by Al ₂ O ₃ film its surface,
• <u>Lo</u>	w endurance limit,
	w service temperature; low strength at elevated apperatures,
• <u>Lo</u>	w hardness and poor wear resistance.
	2

Dr.C. Mak2	14E Casting Aluminum Alloys
	\leq Important \leq
•	Effects of Si on the casting alloys
	1. Lower the melting point,
	2. Increase the fluidity,
	3. Increase the castability.
•	Fluidity: The ability of liquid metal to flow and fill the die cavity without premature solidification.
•	Castability: The ease to make good casting, related to fluidity.
	6

Advanced applications

<u>Al-Lia</u>	<u>lloys:</u> $ρ_{Li}$; 0.54 gr/cm ³ , <u>lower density</u> (10%),
•	<u>good fatigue</u> resistance,
•	good toughness at cryogenic temp,
•	higher modulus of elasticity,
•	formability with super-plasticity,
•	Especially good for aerospace applications.

Dr.C.Ergun Mak214E

- **Dispersion strengthening** by powder metallurgy,
- <u>Thixocasting</u> to break dentritic structure and cast large complex geometries.
- <u>SAP- (sintered Al powders)</u>, metal matrix composites with SiC, Al₂O₃, etc.
- Al clad products in composite technology.

9

Dr.C.Ergun Mak214E

Example 13.4

Design a casting process to produce automotive wheels having reduced weight and consistent and uniform properties.

SOLUTION

Thixocasting process in which the material is stirred during solidification, producing a partly liquid, partly solid structure that behaves as a solid when no external force is applied, yet flows as a liquid under pressure. We would select an alloy with a wide-freezing range so that a significant portion of the solidification process occurs by the growth of dendrites. A hypoeutectic aluminum-silicon alloy might be appropriate. In the thixocasting process, the dendrites are broken up by stirring during solidification. The billet is later reheated to cause melting of just the eutectic portion of the alloy, and it is then forced into the mold in its semi-solid condition at a temperature below the liquidus temperature.

Commercially pure Cu:

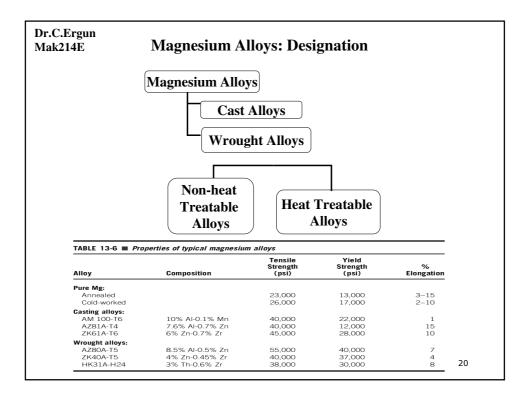
Impurities less than 1%; good for electrical applications.
 Alloys:

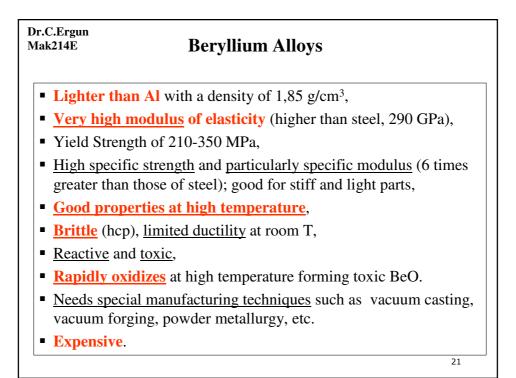
<u>Decorative colors</u> in a large spectrum: pure Cu; red, alloys with Zn; yellow, alloys with Ni, silver, etc.

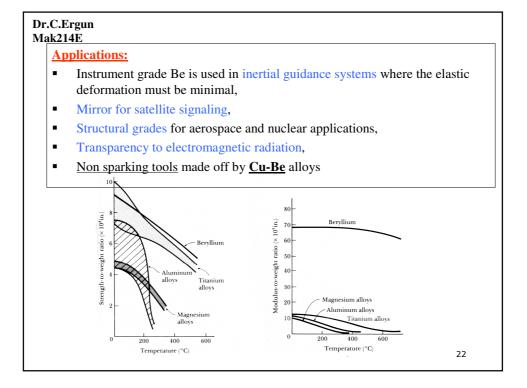
13

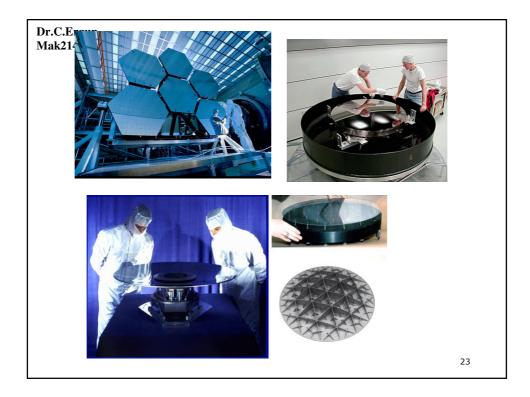
- <u>Better mechanical properties</u>.
- Usually <u>Cheaper</u>..

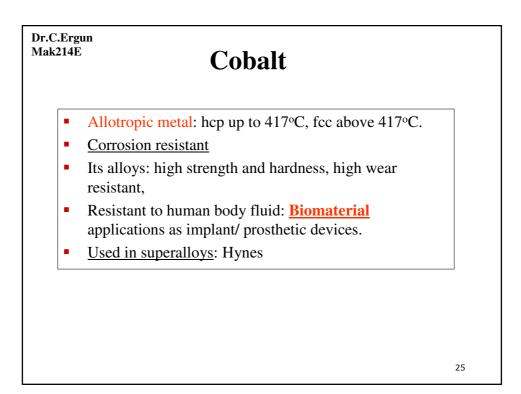
Dr.C.Ergun Mak214E mportar **Common alloys** Brass - A group of Cu-Zn alloys, α Brass - upto 30%Zn known as cartridge brass (deep drawing cups) <u>α+β Brass</u> – <u>upto-40% Zn</u> known as <u>forging Brass</u> (plumbing, pump parts) **Bronze** –(alloying elements other than Zn). Tin Bronzes (Phosphor Bronze) mostly in cast structure due to limited formability- naval applications. Lead Bronzes (Sliding bearings) - upto 5% Pb, machinable parts Al Bronze (upto 6% Al) good formability, strength and toughness. <u>Be-Cu</u> – Age hardenable alloys –springs, non-sparking tools <u>Cr-Cu</u>– Age hardenable – Spot welding electrodes Ni-Cu – Cupro nickel– Alman gümüşü 14

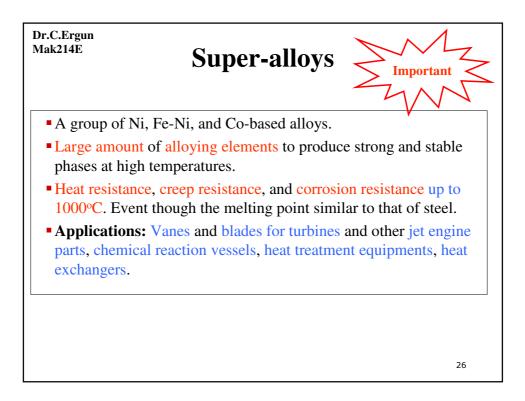


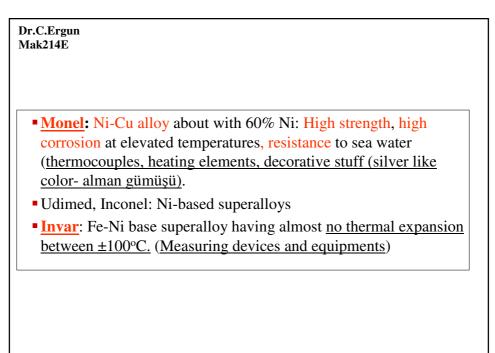


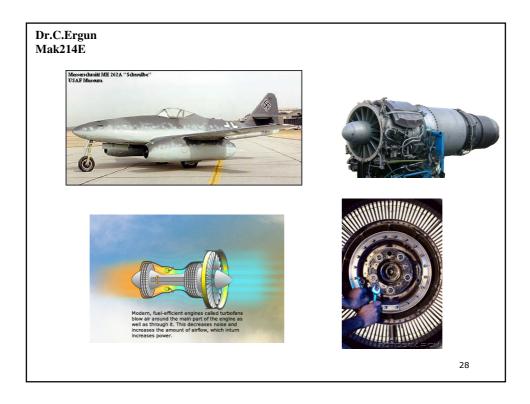

Сорр	er Alloys			
L	- Ca	- Cast Alloys		
L	- Wrou	ight Alloys		
TABLE 13-7 ■ Properties of typic	Tensile Strength	Yield Strength	%	Strengthening
	Tensile	Yield		_
Naterial Pure Cu, annealed	Tensile Strength (psi) 30,300	Yield Strength (psi) 4,800	- % Elongation 60	Strengthening Mechanism
Material Pure Cu, annealed Commercially pure Cu, annealed	Tensile Strength (psi)	Yield Strength (psi)	% Elongation	Strengthening Mechanism
Material Pure Cu, annealed Commercially pure Cu, annealed to coarse grain size	Tensile Strength (psi) 30,300	Yield Strength (psi) 4,800	- % Elongation 60	Strengthening Mechanism
Material Pure Cu, annealed Commercially pure Cu, annealed to coarse grain size Commercially pure Cu, annealed to fine grain size	Tensile Strength (psi) 30,300 32,000 34,000	Yield Strength (psi) 4,800 10,000 11,000	- % Elongation 60 55	Strengthening Mechanism None Solid solution Grain size
Material Pure Cu, annealed Commercially pure Cu, annealed to coarse grain size Commercially pure Cu, annealed to fine grain size Commercially pure Cu,	Tensile Strength (psi) 30,300 32,000	Yield Strength (psi) 4,800 10,000	- % Elongation 60 55	Strengthening Mechanism None Solid solution
Vaterial Pure Cu, annealed Commercially pure Cu, annealed to coarse grain size Commercially pure Cu, annealed to fine grain size Commercially pure Cu, cold-worked 70%	Tensile Strength (psi) 30,300 32,000 34,000 57,000	Yield Strength (psi) 4,800 10,000 11,000 53,000	% Elongation 60 55 55 55 4	Strengthening Mechanism None Solid solution Grain size Strain hardening
Material Pure Cu, annealed Commercially pure Cu, annealed to coarse grain size Commercially pure Cu, annealed to fine grain size Commercially pure Cu, cold-worked 70% Annealed Cu-35% Zn	Tensile Strength (psi) 30,300 32,000 34,000 57,000 47,000	Yield Strength (psi) 4,800 10,000 11,000 53,000 15,000	6 0 55 55 4 62	None Solid solution Grain size Strain hardening Solid solution
Material Pure Cu, annealed Commercially pure Cu, annealed to coarse grain size Commercially pure Cu, annealed to fine grain size Commercially pure Cu, cold-worked 70% Annealed Cu-35% Zn Annealed Cu-10% Sn	Tensile Strength (psi) 30,300 32,000 34,000 57,000	Yield Strength (psi) 4,800 10,000 11,000 53,000 15,000 28,000	% Elongation 60 55 55 55 4	Strengthening Mechanism None Solid solution Grain size Strain hardening
Material Pure Cu, annealed Commercially pure Cu, annealed to coarse grain size Commercially pure Cu, annealed to fine grain size Commercially pure Cu, cold-worked 70% Annealed Cu-35% Zn Annealed Cu-10% Sn	Tensile Strength (psi) 30,300 32,000 34,000 57,000 47,000 66,000	Yield Strength (psi) 4,800 10,000 11,000 53,000 15,000	Elongation 60 55 55 4 62 68	Strengthening Mechanism None Solid solution Grain size Strain hardening Solid solution Solid solution +
Material Pure Cu, annealed Commercially pure Cu, annealed to coarse grain size Commercially pure Cu, annealed to fine grain size Commercially pure Cu, cold-worked 70% Annealed Cu-35% Zn Annealed Cu-10% Sn Cold-worked Cu-35% Zn Age-hardened Cu-2% Be	Tensile Strength (psi) 30,300 32,000 34,000 57,000 47,000 66,000 98,000 190,000	Yield Strength (psi) 4,800 10,000 11,000 53,000 15,000 28,000 63,000 175,000	Elongation 60 55 55 4 62 68 3 3 4	Strengthening Mechanism None Solid solution Grain size Strain hardening Solid solution Solid solution Solid solution Solid solution + strain hardening Age hardening
Material Pure Cu, annealed Commercially pure Cu, annealed to coarse grain size Commercially pure Cu, annealed to fine grain size Commercially pure Cu,	Tensile Strength (psi) 30,300 32,000 34,000 57,000 47,000 66,000 98,000	Yield Strength (psi) 4,800 10,000 11,000 53,000 15,000 28,000 63,000	Elongation 60 55 55 4 62 68 3	Strengthening Mechanism None Solid solution Grain size Strain hardening Solid solution Solid solution + strain hardening


	Lighter than Al with a density of 1.7 g/cm ³ ,			
•	Not as strong as Al, but its strength to weight ratio close to it,			
•	Poor fatigue, creep and wear resistance,			
•	Good corrosion and oxidation resistance by MgO film on its surface,			
•	Low elasticity modulus,			
•	Low melting point,			
•	Easily burns under O_2 atmosphere: Dangerous,			
•	Poor ductility (HCP structure): But may be improved with alloying,			
•	Difficulty in processing (forming, machining and casting),			
•	Extracted electrolytically from MgCl ₂ in sea water.			
	Applications			
	Aerospace industry,			
	 High speed machinery, 			
	Transportation and materials handling equipments.			

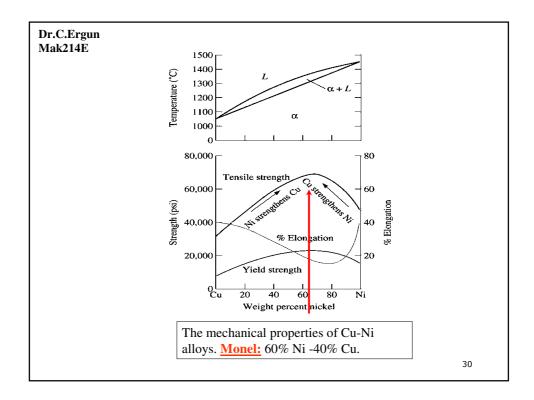


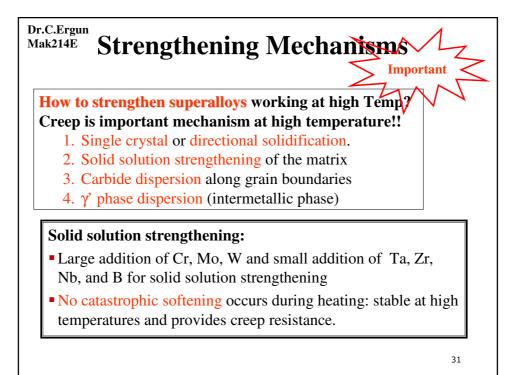


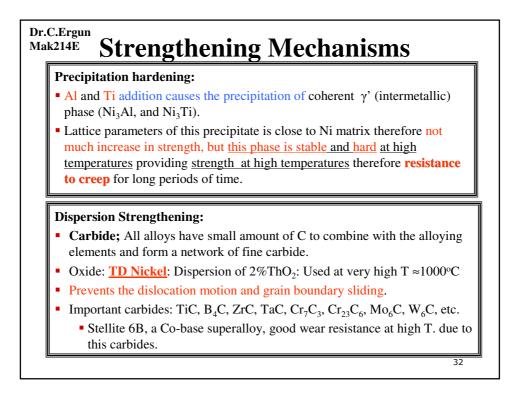


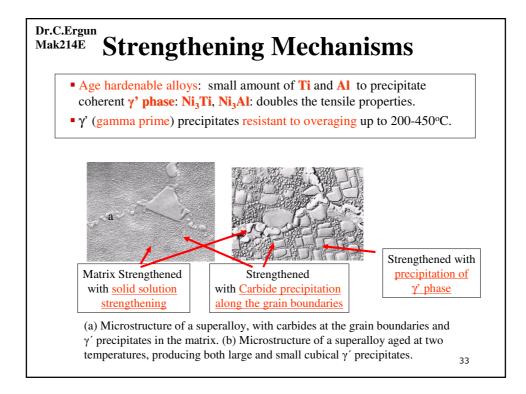


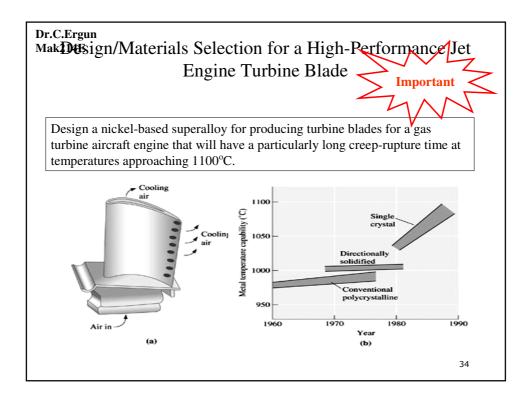
Dr.C.Ergun Mak214E	Nickel and its Alloys	
 High corrosio ✓ Good for I High melting 	ructure, good formability,	
	 Applications ✓ Corrosion resistant parts: Valves, pumps, vanes ✓ Heat exchangers, shafts, impellers, ✓ Heat treatment equipments, ✓ Gas turbines, ✓ Chemical reactor components, ✓ Alloying element. 	ı

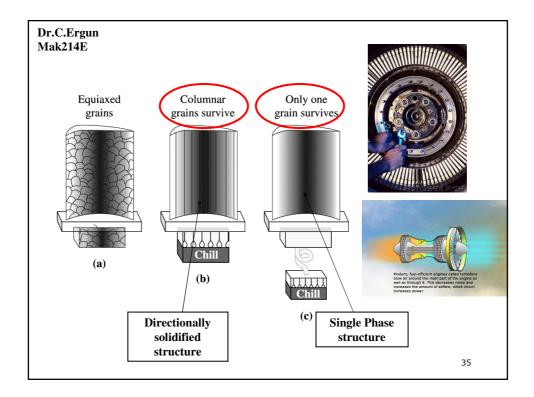


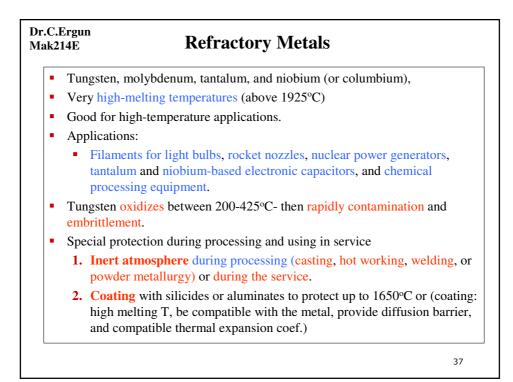




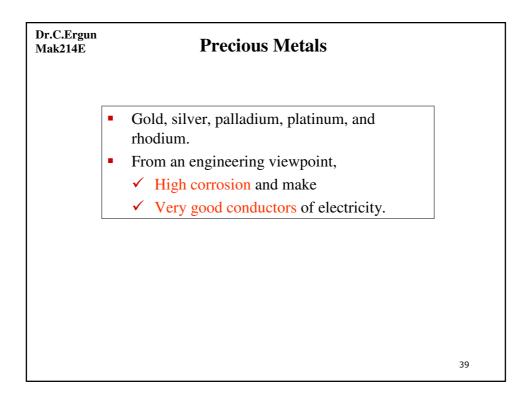


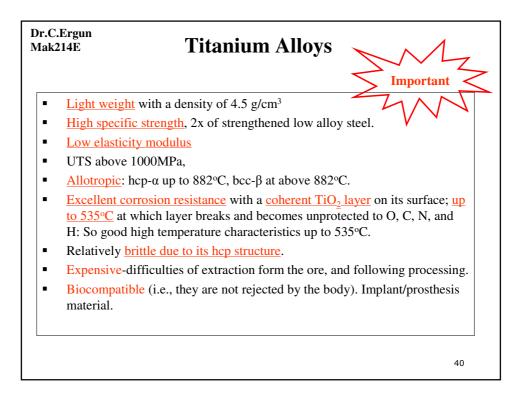


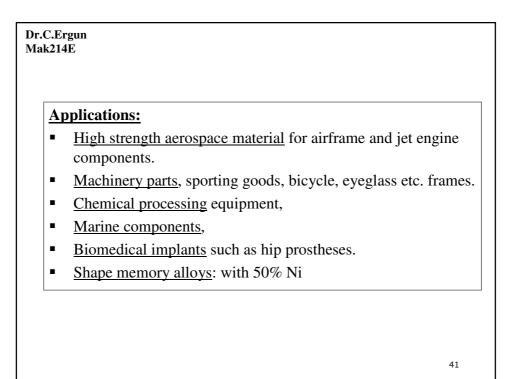




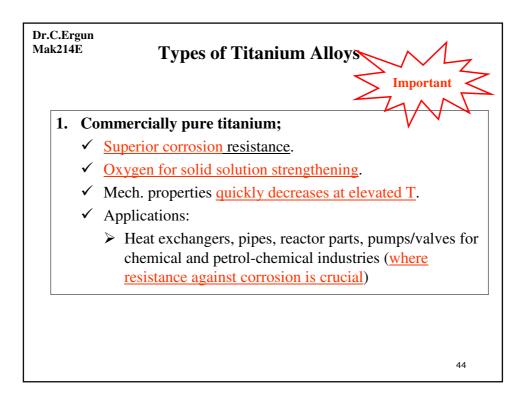
Dr.C.Ergun Mak214E SOLUTION First, we need a very stable microstructure. Addition of Al or Ti permits the precipitation of up to 60 vol% of the γ' phase during heat treatment and may permit the alloy to operate at temperatures approaching 0.85 times the absolute melting temperature.

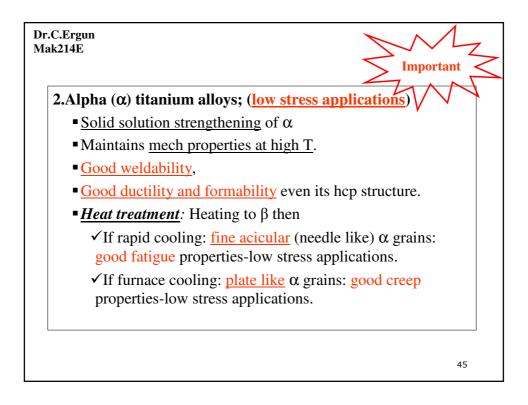

Second, we might produce a directionally solidified or even single-crystal turbine blade (Chapter 8). In directional solidification, only columnar grains.

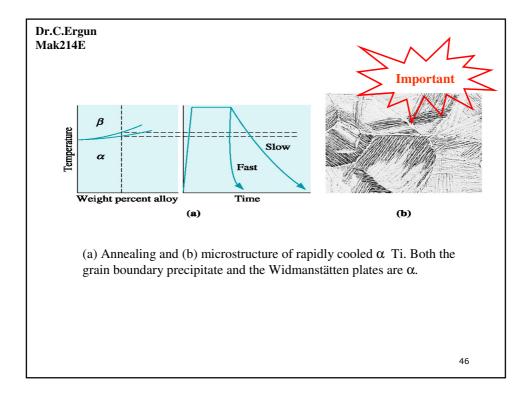

We would then heat treat the casting to assure that the **carbides and** γ **precipitate** with the **correct size and distribution**.

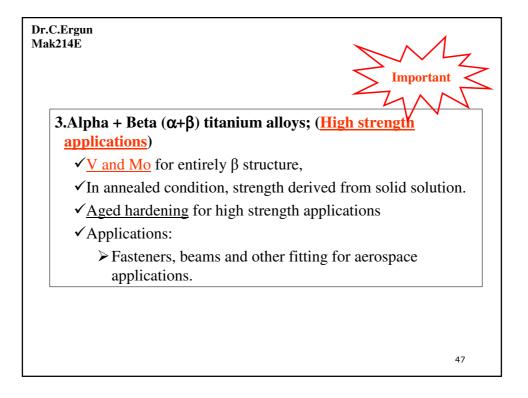

Finally, the blade might contain small cooling channels along its length. Air for combustion in the engine can pass through these channels, providing active cooling to the blade, before reacting with fuel in the combustion chamber.

т	Melting			etals T = 1000°C		
Metal	remperature (°C)	Density (g/cm ³)	Tensile Strength (psi)	Yield Strength (psi)	Transition Temperature (°C)	
Nb Mo Ta W	2468 2610 2996 3410	8.57 10.22 16.6 19.25	17,000 50,000 27,000 66,000	8,000 30,000 24,000 15,000	-140 30 -270 300	

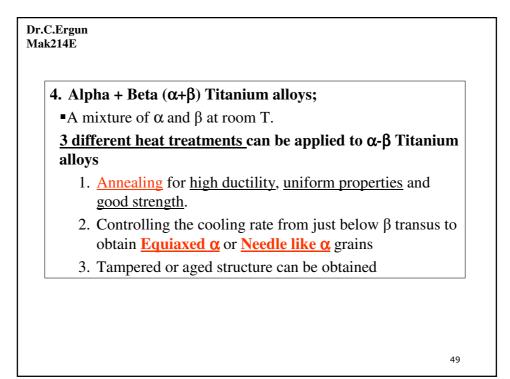


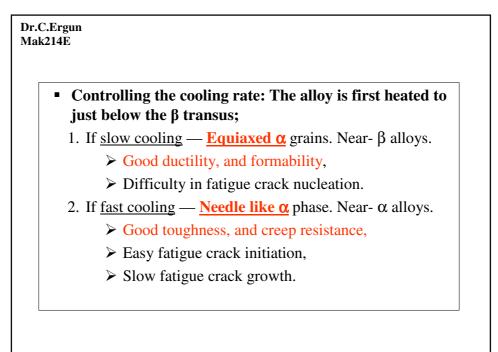


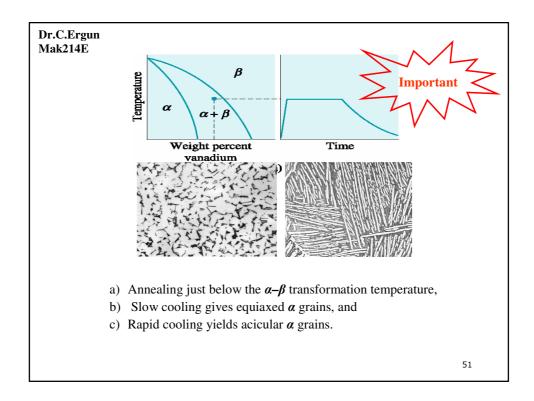


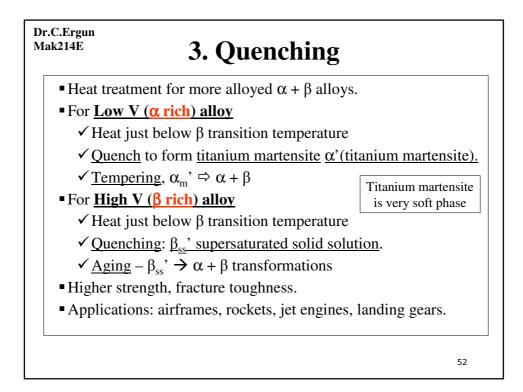


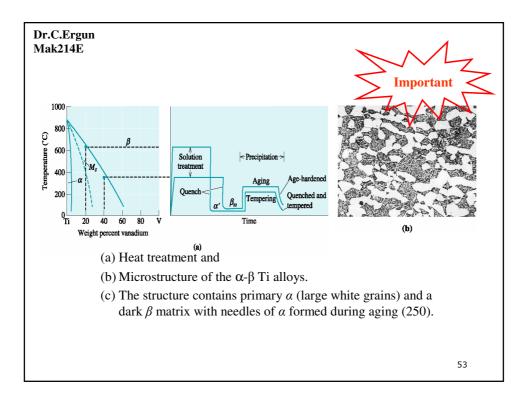
C.Ergun k214E	Main A	Alloying el	ements	
•	Zr, Sn	Solid solut		
-	<mark>Al</mark> , O, H	<u>α stabilizi</u>	ng elements	
-	V, Ta, Mo, Nb	β stabilizing elements		
-	Mo, Cr, Fe	Promoting	$\alpha + \beta$ structure.	
TABLE	13-9 ■ Properties of s	<i>elected titanium</i> Tensile	r <i>alloys</i> Yield	
TABLE Materia	-		-	% Elongation
Materia Commer	l cially pure Ti:	Tensile Strength (psi)	Yield Strength (psi)	Elongation
Materia	l cially pure Ti: % Ti	Tensile Strength	Yield Strength	
Materia Commer 99.55 99.05 Alpha T	l cially pure Ti: % Ti % Ti	Tensile Strength (psi) 35,000 80,000	Yield Strength (psi) 25,000 70,000	Elongation 24
Materia 99.55 99.09 Alpha T 5% A Beta Ti	I cially pure Ti: % Ti % Ti i alloys: I-2.5% Sn	Tensile Strength (psi) 35,000	Yield Strength (psi) 25,000	Elongation 24 15










Dr.C.Ergun
Mak214E <u>Annealing</u> for <u>high ductility</u> , <u>uniform properties</u> <u>and good</u>
strength.
• <u>Heat treatments</u> : Heat below to β transus
1. If <u>slow cooling</u> — Equiaxed α grains. Near- β alloys.
\succ Good ductility, and formability,
Difficulty in fatigue crack nucleation.
2. If <u>fast cooling</u> — <u>Needle like α</u> phase. Near- α alloys.
Easy fatigue crack initiation
Slow fatigue crack growth
➤ Good toughness
Good resistance to creep
48

