

Ústav fyzikální chemie J. Heyrovského, v.v.i. Praha *Akademie věd České Republiky*

Nanomateriály

Ladislav Kavan kavan@jh-inst.cas.cz

J. Heyrovský 1959

Richard P. Feynman (1918-1988), Nobelova cena 1965

"There's Plenty of Room at the Bottom" APS Meeting, Caltech, Dec. 29, 1959

13. Přednáška (18.5.2011) pozor 4 vyučovací hodiny

Nanomateriály na bázi uhlíku

Struktury elementárního uhlíku

Klasické struktury: Grafit, diamant, polyyny

Fullereny, grafen a uhlíkové nanotuby

Objev, příprava, elektronická struktura a vlastnosti

Další nanostruktury

Fullerenové lusky, dvojstěnné nanotuby, kompozity

Aplikace uhlíkových nanostruktur

Nanoelektronika, Li-ion baterie, superkondenzátory, palivové články, ukládání vodíku, nanomanipulace, nanomotory

14. Přednáška

Aplikace nanomateriálů na bázi oxidů titaničitých

Fotokatalýza

Princip fotokatalýzy, samočistící a antibakteriální povlaky, odstraňování nečistot z vody a vzduchu (organické polutanty, NO_x a CO_2)

Konverze solární energie

Barvivem sensibilizované solární články: princip, funkce, možnosti profotovolatiku

Další aplikace

Elektrochromní displeje, ultrarychlé Li-ion baterie

Literatura

Nanocarbon

Z Weiss, G. Simha-Martynková, O. Šustai, Nanostruktura uhlíkových materiálů, VŠB TU Ostrava, 2005.

S. Reich, C. Thomsen, J. Maultzsch, Carbon Nanotubes, Wiley, Darmstadt, 2003.

A. Krueger, Carbon Materials and Nanotechnology, Wiley, 2008.

TiO₂

A. Fujishima and K. Hashimoto, T. Watanabe, TiO_2 fotoakatalýa a aplikace, Silikátový Svaz Praha, 2002

K. Kalyanasundaram, Dye Sensitized Solar Cells, Francis and Taylor, 2010.

Další literatura

Jan Hošek, Úvod do nanotechnologie, skripta ČVUT 2010.

G. Schmidt, Nanoparticles, Wiley, 2006.

C.N.R. Rao, A. Muller, A.K. Cheetham, The Chemistry of Nanomaterials, Wiley 2003.

A. S. Edelstein and R. Cammarata, Nanomaterials, Synthesis, Properties and Application. Inst. of Physics Publishing, 1996.

G. A. Ozin, A.C. Arsenault, Nanochemistry, RSC Publ. Cambridge, 2005.

G. Q. Lu, X. S. Zhao, Nanoporous Materials Science and Engineering, Imperial College Press, London. 2004.

Fundamental Sciences

Chemistry

DYE-SENSITIZED SOLAR CELLS

Edited by K. Kalyanasandaram

Hustota stavů vs. energie elektronů v krystalu

 $(DOS)_{3D} = c.E^{1/2}$ (Fermi-Dirac)

Uhlíková nanotuba: SWNT

Elemental carbon: graphite, diamond and beyond

Hexagonal graphite – sp² bonding

Cubic diamod-ZnS (sphalerite)

Hardness

Mohs scale

Thermal conductivity: 23.2 W/cm.K (N.B. distinction of cubic zirconia)

Lonsdaleite – ZnS (Wurtzite)

graphite

Andre Geim and Konstantin Novoselov Nobel Prize 2010

Novoselov, Geim^{*} et al., Electric field effect in atomically thin carbon films. *Science* **306**, 666-669 (2004)

Scotch tape CVD on Cu support

Opt. microscope: graphene on Si/SiO_2

SEM of graphene sheet on Si wafer

From graphite to graphene....

Diamond produced by CVD from CH₄ and H₂

Famous diamonds: Cullinan (Star of Africa) 3106 carats (621 g): (1905) Transvaal

Thomas Cullinan

Frederic Wells

Famous diamonds: Cullinan (Star of Africa)

3106 carats: Thomas Cullinan (1905) Transvaal

Cullinan I (Star of Africa, 530.20 carats) 54 x 44 x 29 mm

Cullinan II (317.40 carats)

Kimberley's Big Hole The biggest (?) man-made hole

Originally: 240m deep Now: 215m deep 40m of ground water: 175m visible Perimeter 1.6 km; Area: 17 hectares

Brief history	
1866:	first "Eureka" 21.25 carat
1871:	Johannes Nicolaas and Diederik Arnoldus de
Beer	
1888:	Cecil John Rhodes De Beers Consolidated
Mines Ltd.	
14.8.1914	: The mine was suspended
22.5 million tons of earth $=> 2.722$ tons of diamonds	

Huge open pit mine near Mirny, Russia, East Siberia 525 m deep, 1200 meters in diameter.

This giant truck, BELAZ (200-220 ton payload) Length 13,360 mm, Width 7,780 mm, Height 6,650 mm

Elemental carbon: hybridization state of C-atoms

sp³ hybridization: diamond, lonsdaleite

sp² hybridization: graphite, fullerene

But carbon can also be hybridized sp¹

⇒ Polyyne: alternating single and triple bonds $-C \equiv C - C \equiv C -$ ⇒ Cumulene: sole double bonds = C = C = C =

Fullerene: Nobel Prize Kroto, Smalley, Curl (1996)

C₆₀ fullerene (buckminsterfullerene)

Apparatus for generating fullerene

Kroto et al. (1985)

vaporization of graphite by laser (Nd-YAG 10 mJ/5ns) supersonic beam of C-clusters in He

C₆₀ fullerene

C₇₀ fullerene

Expo '67 American Pavillion by R. Buckminster Fuller, on Ile Sainte-Hélène, Montreal

Fullerene gallery

and many others.....

Endohedral fullerenes:

La@C₈₂

Sc₃N@C₈₂

Chirality: (n, m)

chiral vector $C_h = na_1 + ma_2$ a_1 , a_2 unit vectors of the hexagonal structure

nanotube definition (n,m)

Zig-zag nT (n-m) = 3i metal $(n-m) \neq 3i$ semi.

Chiral nT (*n-m*) = 3i metal (*n-m*) $\neq 3i$ semi.

nanotube diameter d_0

$$d_0 = \frac{a_{c-c}\sqrt{3}}{\pi}\sqrt{N}$$

 $a_{C-C} = 1.42 \text{ Å}$ $N = n^2 + nm + m^2$

Rolování (10,0) SWNT (zig-zag)

Rolování (10,0) SWNT (Animace)

Rolování (10,10) SWNT (židlička)

Rolování (10,10) SWNT (Animace)

Rolování(10,5) SWNT (chirální)

Rolování (10,5) SWNT (Animace)

NANO-DIODA: přechod kov-polovodič v nanotubě

Cik-cak (polovodič)

AFM "zlomené" nanotuby na křemíku s Au kontakty

Yao, Z. et al. Nature 402, 273 (1999)

Formation of fullerene peapod (C₆₀@SWCNT)

FULLERENE PEAPOD

90 اس

00

(10) 1001

90 111

Fullerenový lusk C₆₀@SWCNT

Smith, B.W.; Monthioux, M.; Luzzi, D.E., Nature 396, 323 (1998)

C_{60} @SWCNT, d = 0.97 nm

0.3 nm

C_{70} @SWCNT, d = 1.0 nm

 C_{70} @SWCNT, d = 1.1 nm

1000 °C

800 °C

RT

1200 °C

Stone-Wales rearrangement pathway for fusion of fullerenes

[Hiroshi Ueno, Shuichi Osawa, Eiji Osawa, and Kazuo Takeuchi, Fullerene Science And Technology **6**, 319-338 (1998)]

puzzle

Do we understand the energetics?

Do we understand the Stone-Wales process?

Search in 360-dimensional configuration space using string method:

Stone-Wales is a multi-step process •Activation barriers do not exceed ≈ 5eV

Aplikace uhlíkových nanotub

- Ukládání vodíku ?
- Mikroelektronika
- Autoemise: display (Samsung)
- Mech. vlastnosti, C/C kompozity
- Superkondenzátory

Uniqueness of CNTs

Unique properties of

- Sharp aspect ratio field emission, electrical composites
- Highest current density 10⁹ A/cm² Vias, FE,
- Ballistic electron transport FETs
- Highest Youngs modulus, ~1TPa composites
- Highest thermal conductivity, 4000 W/m.K composites
- Electrode potential range/surface area sensors, supercaps

Field Emission

- Field emission is electron tunnelling from solids under very high local field (10⁸ V/m)
- Obeys Fowler-Nordheim eqn

$$J = aE^{2} \exp(-\frac{b\phi^{3/2}}{\beta E})$$

CNTs good because -

- Large β=h/r
- High physical stability of carbon vs. sputtering /erosion
- Good chemical stability vs. poisoning
- High max current density before electromigration (10⁹ A/cm², 1uA per CNT)

Field Emission Applications

E-gun for SEM

Microwave Amplifier

Samsung triode 5" diagonal FED 100Hz refresh, 510cd/m² brightness 100V gate, 1.5kV anode voltage

X-ray spectrometer using CNT cold cathode X-ray source Displays

Field Emission Displays

- Displays = \$40 bn market
- Field emission from a CNT tip arrays
- Advantages compared to LCD
 - Video rate
 - Brightness
 - Power efficiency
 - LCD=6%
 - Viewing angle
 - Temp range

Electronics – Interconnects in ICs

Cross-section of an Integrated Circuit

• Electromigration limits max current density in IC interconnects

• J = 10⁵ A/cm² (AI), 10⁶ A/cm² (Cu)

• CNTs have strong covalent bonds – less electromigration

 $J_{max} = 10^9 \text{ A/cm}^2$

Power limits scaling

Fibres spun from Mats

Fibre properties

Space- elevator

22 tons of cable

Geosynchrous altitude - 35 000 km

10 billion US\$ (cf. Gibraltar bridge: 20 billion)

Electrochemistry - supercaps

- Carbon is a stable, conductive electrode
 - High surface area, 1500m²/g

Electrochemical double layer (EDCL)

EDCL is capacitor if $|V| < V_d$

$$C = \frac{\varepsilon A}{d}$$

- 0.1 F/m^2 for d = 0.5 nm
- Non-aqueous electrolyte $V_d > 1.23 V$ ٠

Supercapacitors

• Montena sA (CH)

- Polycarbonate electrolyte
- Ion permeable membrane separator
- Nanotubes would have largest possible surface area, 1500 m²/g
- $1500 \text{ m}^2/\text{g} = 10 \text{ F/g} = 20 \text{ Wh/kg}$
- Allows 1000 F caps at 2.5V in 2" diameter capacitor

ultra-capacitor

Vertical Standing and Patterned

Build In Macroscopic Organized Structure just By Patterning Catalysts

Vertical Standing Patterned SWNTs

100µm

140× 71.4 µm WD:30.4mm

1.0kV 9.3mm x600 SE(U)

AIST: Research Center for Advanced Carbon Waterials

2kV 2004/07/10 18:15:46 S

Oriented Films

 $120 \times 83.3 \,\mu \,\mathrm{m}$ WD:30.0mm

2kV 2004/07/10 17:10:38 S

SWNTs Nano-Flower

$340 \times 29.4 \,\mu$ m WD:30.2mm

2kV 2004/07/10 16:41:27 S

Nano-machines: DWCNT + rotor

Nano-machines: DWCNT + rotor SEM image

Počet publikací o oxidu titaničitém (WoS)

TiO₂ MODIFICATIONS

<u>Natural</u>

- Rutile
- Anatase
- Brookit e

 $P4_2/mmm...$ (5-12 kJ/mol vs. anatase) $4_1/amd...$ (TMD stable if $\emptyset < 10$ nm) Pbca

Synthetic

Columbite	Pbcn	TiO ₂ (II)	α -PbO ₂	(≈20 Gpa)
Baddeleyite	P2 ₁ c	TiO ₂ (III)	ZrO ₂	(>30 Gpa)
Cotunnite [*]	Pnma	TiO ₂ (OII)	PbCl ₂	(>60 Gpa, 1000 K)
Hollandite	I4/m	TiO ₂ (H)	KTi ₄ O ₈	
Ramsdellite	Pbnm	$TiO_2(R)$	$LiTi_2O_4$	
Bronze	C2/m	$TiO_2(B)$	$K_2Ti_4O_9$	

*Hardest known oxide (2001) TiO_{2-x} , x \approx 0.01 \Rightarrow n-doping: Ti⁴⁺ \rightarrow Ti³⁺ Fujishima A., Honda K. UV "Water can be decomposed (on TiO_2) by wisible light into O_2 and H_2 without the application of any external voltage"

Nature 238, 37 (1972)

Fundamentals of light energy conversion

$$\begin{split} E_{\rm BG} &= E_{\rm CB} - E_{\rm VB} = 3.2 \ {\rm eV} \ ({\rm anatase}) \approx \lambda = 388 \ {\rm nm} \\ &= 3.0 \ {\rm eV} \ ({\rm rutile}) \quad \approx \lambda = 414 \ {\rm nm} \\ E_{\rm photon} &= {\rm h} v = {\rm hc} / \lambda \end{split}$$

Fujishima & Honda (1972): photoelectrochemical cell

 $E_{\text{FB}} = E_0 - 0.06\text{pH} [V]; E_0 \cong 0.02 \text{ V} \text{ (rutile)}; E_0 = -0.2 \text{ V} \text{ (anatase)}$ [Kavan et al., *JACS* **118**, 6716 (1996)]

Oxidations by holes in anatase: $h^+ \approx 3 V$

$H_2 + 2 h^+ \rightarrow 2 H^+$	$E^0 = 0.00 V$
$2 \text{ H}_2\text{O} + 2 \text{ H}^+ + 2 \text{ h}^+ \rightarrow 2 \text{ H}_2\text{O}_2$	$E^0 = 1.78 V$
$OH^- + h^+ \rightarrow OH^-$	$E^0 = 2.02 V$
$H_2O + O_2 + 2 h^+ \rightarrow 2 H^+ + O_3$	$E^0 = 2.08 V$
(2 F^- + 2 $h^+ \rightarrow F_2$	E ⁰ = 2.87 V)

Self-cleaning TiO₂ layer on a roof or facade

1

Self-cleaning layer on a car

Uncovered (blank)

covered by TiO_2

Antifogging mirrors with TiO₂ layer

Car side-view mirror (uncovered)

Covered by TiO₂

Model photoreactor for water purification

Body

- Two coaxial quartz tubes with input and output olives
- Photocatalyst bed
 - Column of glass spheres with TiO₂ coating
- Irradiation source
 - Black light fluorescent lamp (8
 W, 30 cm)
- Cover
 - Aluminum foil
- Reservoir for purified water
 - Brown glass bottle (1 L)
 - Magnetic stirrer
- Circulation
 - Peristaltic pump (mL/min to L/min)
Pilot photoreactors for spa water purification (1)

Pilot photoreactors for spa water purification (2)

Konverze solární energie na TiO₂

 $P \approx 1 \text{ kW/m}^2$ (Evropa, červen, jasno, poledne) špičkový výkon AM 1.5

- *Solární energie globálně.....*3•10²⁴ J/yr
- Fotosyntéza.....10²¹ J/yr (0.03 %)
- *Svět*. *spotřeba elektřiny*......3•10²⁰ J/yr (0.01 %)

M. Zukalová et al. Nano Letters 5, 1789 (2005)

Dye-sensitized Solar Cell: $\eta = 10.4$ %

Sensitizer: $[Ru(2,2'-bipy-4,4'di-COOH)_2(SCN)_2]$ (N3)

$$IPCE = \Phi_{LH} \cdot \Phi_{inj} = (1 - 10^{-\Gamma\varepsilon}) \cdot \Phi_{inj}$$
$$\varepsilon_{530} = 1.27 \cdot 10^7 \, cm^2 \, / \, mol$$
$$\Gamma \approx 0.55 \, molecules \, / \, nm^2$$

 $r.f. = 1 \rightarrow IPCE = 0.27\%$

 $r.f. = 1000 \rightarrow IPCE = 93.2\%$

N3 sensitized anatase

Single crystal (101)

Nanocrystalline

Dye Sensitised Solar Cells

Laboratory modules:

Glass-supported Flexible (PET-supported)

Barevná variabilita senisbilizovaných článků

Solární články v oknech a střešních panelech

M. Graetzel et al., *Nature* **395**, 550 (1998); *Adv. Mater.* **17**, 813 (2005) **4%** Light - emitting device: electroluminescence

L' = 4,7-diphenyl-1,10-phenanotroline

Graetzel et al. JPCB 101, 2558 (1997)

TiO₂-based LED for Displays

Motivation \Rightarrow New lighting designs

OSRAM

TiO_2 – based electrochromic display

Electrochromics – Paper Quality Displays

High contrast High reflectivity

Angular independence

Fundamentall y it looks like ink on paper Applications of nanomaterials in (electrochemical) energy storage: supercapacitors, batteries, fuel cells

Gaston Planté (1834-1889) Inventor of lead acid battery (1859)

Gastornis: "Gaston's bird" (flightless bird from paleoncene)

12V, 40 Ah car battery: 40 Ah @ C/24 discharge rate

• Li⁺

Graphite intercalation:

C + 1/6 (e⁻ + Li⁺) \rightarrow 1/6 LiC₆

 $E_{form} \approx 0.2 \text{ V vs. Li/Li}^+$ $Q_{spec} = 1340 \text{ C/g} = 372 \text{ mAh/g}$

TiO₂ (anatase) insertion: TiO₂ + 1/2 (e⁻ + Li⁺) \rightarrow Li_{0.5}TiO₂ $E_{form} \approx 1.85 \text{ V vs. Li/Li}^+$ $Q_{spec} = 168 \text{ mAh/g}$

IUPAC definition:

"Intercalation" = non covalent inclusion into laminar hosts G. P. Moss, P. A. S. Smith, D. Tavernier, *Pure Appl. Chem.* **1995**, *67*, 1307-1375

Lat.: mensis intercalarius (Julian/Gregorian reform of the calendar, 46 BC)

[Li₄Ti₅O₁₂, graphite...]

 $[LiCoO_2, LiNiO_2, LiMn_2O_4, LiFePO_4, ...]$

Li₄Ti₅O₁₂ (spinel): galvanostatic charge/discharge Charging rates: 2C, 50C, 100C, 150C, 200C, 250C

Si-nanowires: anode for Li-ion >3000 mAh/g (cf. graphite 372 mAh/g)

Nature Nanotechnology, 3, 31, 2008

