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Abstract. This contribution deals with the problem of squeezing flow of compressible 

viscoelastic material considering partial slip at the surface of compressing circular 

plates. Rheological behavior of compressed samples is described by a power law model 

of shear deformation (consistency K and flow behavior index m) and viscoelastic 

properties are expressed using power law relation for first normal stress difference (K’, 

m’). Alternative formulation takes into account only elongation and normal stresses. 

Squeezed material is considered as a foam, i.e. incompressible continuous phase filled 

by air bubbles. Partial slip at wall is expressed by dimensionless parameter  

proportional to slip velocity that is independent of consistency and stresses. Suggested 

mathematical models result to analytical expression for axial force as a function of 

compression rate and the thickness of gap. The models are applied for experiment with 

the sample of collagen compressed between two parallel disks of the texture analyzer 

instrument TA-XT2i.  

 

INTRODUCTION 
 

Quasi-static compression flow of tested material between two approaching plates (parallel 

discs) is called squeezing flow. Rheological properties are evaluated from relationships 

between the normal force acting on a moving plate, thickness of closing gap and velocity of 

moving plate. This flow was analyzed for different conditions and liquids, and a review of 

existing solutions is given in the references Steffe (1996), Barbosa Canovas (1998). 

Historically the first analysis of the squeezing flow was presented by Stephan (1874) for 

Newtonian liquids, followed by Scott (1929) for Bingham liquids, and Scott (1935) for power 

law and Herschel Bulkley liquids. Yield stress controversies were later on resolved by Covey 

& Stanmore (1981). Their results can be summarized to the prediction of axial force as a 

function of gap between plates  

𝑭 =
𝑨

𝒉𝒎
+
𝑩

𝒉
 (1) 

assuming a constant velocity of moving plate. The exponent m varies typically in the range 2 

(prevailing effect of yielding) to 3 (prevailing viscous effects). The second term disappears 

for liquids with zero yield stress (in fact the coefficient B is directly proportional to y).  

All these works calculate the axial force F by integrating pressure on the surface of plates. 

Viscoelastic model Barhon (1993) adds to the pressure the axial viscous stresses, based upon 

power law approximation of the first normal stress difference (radial minus axial normal 

stresses), giving 

𝑭 =
𝑨

𝒉𝒎
+
𝑩

𝒉𝟐𝒒
 (2) 

where the first term describes the contribution of pressure (exponent m varies again within the 

range from 2 to 3) and the second term represents first normal stress differences expressed as 



a function of shear rate. The exponent q varies from zero (mayonnaise) up to 0.5 (butter) 

according to experimental data presented by Steffe (1996). This model neglects elongation 

and therefore the case, when an ideally lubricated cylindrical sample that slides at surface of 

plates and preserves its ideal cylindrical shape, cannot be described correctly (zero shear rate 

means uniform atmospheric pressure and zero difference of normal stresses). This restriction 

was eliminated by Laun (1999), who calculated axial normal stresses directly from the 

elongation rate determined by velocity of approaching plates (axial normal stress was 

approximated by power law function of elongation). Result for perfectly lubricated plates has 

a simple form 

𝑭 =
𝑨

𝒉𝒎
 (3) 

Only few experimental results concerning the value of exponent m are available, preliminary 

experiments with collagen, Landfeld (2015), indicate rather low value m0.5. 

Squeezing flow of viscoelastic liquids described by upper convected Maxwell constitutive 

equation was presented by Phan-Thien and Tanner (1983). The perturbation solution is rather 

complicated but results can be simplified to 

𝑭 =
𝑨

𝒉𝟑
+
𝑩

𝒉𝟒
 (4) 

where the parameter A depends not only upon the velocity but also upon the acceleration of 

plates. Squeezing flow of solid-like materials modelled by the Kelvin Meyer Voigt equation 

was analyzed by Phan-Thien (2000) numerically.  

According to our best knowledge no models taking into consideration compressibility of 

the squeezed material have been realized. This is a motivation for the present article that 

extends the Barhon’s approach by compressibility and partial wall slip. The developed 

method is applied for description of squeezing flow experiments with highly concentrated 

collagen solution. 
 

THEORY OF SQUEEZING FLOW DOMINATED BY SHEAR  

 

In our case the inertial and gravitational forces are neglected. We consider cylindrical 

coordinate system and geometry given in Fig. 1.  

  
Fig. 1 Scheme of the squeezing flow geometry and parameters (visualization of polymer 

fibers) 

 

We also consider radial velocity dependent on radius r and position z: ur = ur (r,z). Isotropic 

pressure p inside the compressed sample depends only on radial distance p=p(r). It is assumed 



that both components of axial force (contribution of isotropic pressure and contribution of 

first normal stress difference) depend only upon the shear rate. Effect of the elongation flow is 

neglected and therefore the method cannot be applied for perfectly lubricated plates. 

Momentum balance in the radial direction can be expressed by the equation  

𝝏

𝝏𝒓
(𝝉𝒓𝒓 − 𝒑) = −

𝝏𝝉𝒛𝒓
𝝏𝒛

−
𝝉𝒓𝒓 − 𝝉𝒛𝒛

𝒓
 (5) 

assuming 𝒛𝒛 (therefore assuming that the second normal stress difference is zero). This 

equation enables to calculate pressure and the resulting force acting upon a moving circular 

disc of the radius R (from one side acts atmospheric pressure, from the other side pressure and 

viscous stress) 

𝑭 = 𝟐𝝅∫ (𝝉𝒛𝒛 − 𝒑)|𝒛=𝒉𝒓𝒅𝒓
𝑹

𝟎

− 𝑹𝟐𝒑𝒂

= 𝟐𝝅∫ (𝝉𝒓𝒓 − 𝒑 + 𝝉𝒛𝒛 − 𝝉𝒓𝒓)|𝒛=𝒉𝒓𝒅𝒓
𝑹

𝟎

− 𝑹𝟐𝒑𝒂 

(6) 

The first term in the integrand can be integrated per partes and the second term can be 

replaced by the first normal stress difference 𝑵𝟏 = 𝝉𝒓𝒓 − 𝝉𝒛𝒛 giving after application of Eq. 

(5) and little manipulation 

𝑭 = 𝝅∫ (𝒓𝟐
𝝏𝝉𝒛𝒓
𝝏𝒛

− 𝒓𝑵𝟏) |𝒛=𝒉𝒅𝒓

𝑹

𝟎

 (7) 

What follows is only an approximation based upon assumption that the shear stress zr as well 

as N1 depend only upon the shear rate. Shear stress and first normal stress difference can be 

described by power laws  

𝝉𝒓𝒛 ≅ 𝑲(
𝝏𝒖𝒓
𝝏𝒛
)
𝒎

 (8) 

𝑵𝟏 ≅ 𝑲′ (
𝝏𝒖𝒓
𝝏𝒛
)
𝒎′

 (9) 

The momentum balance (5) can be simplified by canceling terms with normal stresses (this is 

exact for Newtonian liquids, for power law liquids it is only an approximation) 

𝟎 =
𝟏

𝒓

𝝏

𝝏𝒓
(𝒓𝝉𝒓𝒓) −

𝝉𝝋𝝋

𝒓⏟            
≅𝟎

+
𝝏𝝉𝒛𝒓
𝝏𝒛

−
𝝏𝒑

𝝏𝒓
 (10) 

Then the constitutive equation (8) in combination with the momentum balance (10) give the 

following relationship between the shear rate and the gradient of pressure. 

𝝏𝒖𝒓
𝝏𝒛

= (−
𝟏

𝑲

𝝏𝒑

𝝏𝒓
|𝒛 −

𝒉

𝟐
|)

𝟏
𝒎

 (11) 

Combining (11), (8), (9) and substituting into (7) we arrive to the final equation for axial 

force, expressed only by means of gradient of pressure dp/dr 

𝑭 = 𝝅∫ 𝒓𝟐
𝝏𝒑

𝝏𝒓
𝒅𝒓

𝑹

𝟎

− 𝝅𝑲′ (
𝒉

𝟐𝑲
)

𝒎′
𝒎
∫𝒓(

𝝏𝒑

𝝏𝒓
)

𝒎′
𝒎
𝒅𝒓

𝑹

𝟎

 (12) 



Remark: It is obvious that the sign of both terms is different, the first viscous term increases 

the load on the moving discs, while the second viscoelastic term mitigates the load. Possible 

explanation is shown in Fig.1 illustrating polymeric fibers attached by one end to plate and 

stretched by flow at the other end. Stretched fibers exert opposite forces than the pressure 

forces. There should be applied a restriction to the magnitude of the second term and to the 

value of consistency K’ because it is hardly believable that when a critical velocity will be 

exceeded a spontaneous suction begins and that it would be necessary to brake the motion. 

The expression (12) is independent of wall slip and this effect is included in the boundary 

condition for the radial velocity profile, obtained by integration of (11) 

𝒖𝒓 =
𝒓𝒖𝑹
𝑹
+

𝒎

𝒎+ 𝟏
(−

𝟏

𝑲

𝝏𝒑

𝝏𝒓
)

𝟏
𝒎
(|
𝒉

𝟐
|

𝒎+𝟏
𝒎
− |
𝒉

𝟐
− 𝒛|

𝒎+𝟏
𝒎
) (13) 

where uR is slip velocity at the rim of circular plate (slip velocity increases linearly with the 

increasing radius). The dimensionless slip parameter  was introduced by Laun (1999) 

𝜹 =
𝒉𝒖𝑹

−
𝒅𝒉
𝒅𝒕
𝑹

 (14) 

Value =0 represents no wall slip (zero radial velocity at z=h), while =0.5 describes perfect 

lubrication, therefore uniform radial expansion of sample with radial velocity ur independent 

of z (unidirectional compression). 

Radial pressure profile p(r) follows from the mass balance (stating that the rate of 

change of mass in a cylinder of radius r compressed by approaching circular plates must be 

the same as the mass flowrate calculated from the radial velocity profile (13))  

−𝒓𝟐
𝒅𝒉

𝒅𝒕
= 𝟐𝒓(𝒉

𝒓𝒖𝑹
𝑹
+

𝟐𝒎

𝟐𝒎+ 𝟏
(−

𝟏

𝑲

𝝏𝒑

𝝏𝒓
)

𝟏
𝒎
(
𝒉

𝟐
)

𝟐𝒎+𝟏
𝒎
) (15) 

after a little rearrangement  

(−𝒓
𝒅𝒉

𝒅𝒕
(𝟏 − 𝟐)

𝟐𝒎 + 𝟏

𝟒𝒎
)
𝒎

(
𝟐

𝒉
)
𝟐𝒎+𝟏

𝑲 = −
𝝏𝒑

𝝏𝒓
 (16) 

and after integration 

𝒑(𝒓) = 𝒁(𝑹𝒎+𝟏 − 𝒓𝒎+𝟏) + 𝒑𝒂 (17) 

𝝏𝒑

𝝏𝒓
= −(𝒎+ 𝟏)𝒁𝒓𝒎 (18) 

where Z represents compression rate and can be evaluated from the given velocity dh/dt, 

thickness of gap h and the constitutive parameters K, m 

𝒁 =
𝑲

𝒎+ 𝟏
(
𝟐

𝒉
)
𝟐𝒎+𝟏

(−
𝟐𝒎+ 𝟏

𝟒𝒎

𝒅𝒉

𝒅𝒕
(𝟏 − 𝟐))

𝒎

 (19) 

Resulting force follows from Eq. (12) substituting gradient of pressure (18)  

𝑭 = 𝒁
𝒎+ 𝟏

𝒎+ 𝟑
𝑹𝒎+𝟑 −  (𝒁(𝒎+ 𝟏)

𝒉

𝟐𝑲
)
𝒎′/𝒎 𝑲′

𝒎′ + 𝟐
𝑹𝒎

′+𝟐 (20) 

The relationship (20) takes into account a partial wall slip, predicting for example zero force 

for perfect slip =0.5. This result can be applied only for incompressible fluids, therefore for 



the situation when the mass flowrate of the expressed material equals Rldh/dt, while the 

actual mass flowrate of compressible material is lower. The analysis of compressible fluids 

begins with the calculation of the volume of foam containing the mass of air Mg and the mass 

Ml of incompressible phase having density l 

𝑽 =
𝑴𝒍


𝒍

+
𝑴𝒈


𝒈

= 𝑴𝒍 (
𝟏


𝒍

+
𝒈


𝒈

) = 𝑴𝒍 (
𝟏


𝒍

+
𝒈𝑹𝒈𝑻

𝒑
) =

𝑴𝒍


𝒍

(𝟏 +


𝒑
) (21) 

The ratio /p represents volumetric fraction of bubbles at temperature T. Typical values of 

 = 𝒈𝑹𝒈𝑻𝒍 are within 104 – 105 Pa and are zero for incompressible liquids. The mass 

flowrate of porous material containing gas bubbles corresponding to the radial pressure 

profile p(r) is expressed by the following integral 

𝒎̇ = −
𝒅𝒉

𝒅𝒕

𝒍
∫
𝟐𝒓𝒅𝒓

𝟏 +
Ω
𝒑(𝒓)

𝑹

𝟎

= −
𝒅𝒉′

𝒅𝒕

𝒍
𝑹𝟐 (22) 

The equation (22) introduces the corrected velocity (dh’/dt) giving the same mass flowrate as 

in the case of incompressible fluid. The ratio of reduced and actual velocity is a scale factor   

 =
𝒅𝒉′/𝒅𝒕

𝒅𝒉/𝒅𝒕
=
𝟐

𝑹𝟐
∫

𝒓𝒅𝒓

𝟏 +
Ω
𝒑(𝒓)

𝑹

𝟎

=
𝟐

𝑹𝟐
∫

𝒓𝒅𝒓

𝟏 +
Ω

𝒁(𝑹𝒎+𝟏 − 𝒓𝒎+𝟏) + 𝒑𝒂

𝑹

𝟎

 (23) 

The integral (23) cannot be integrated analytically but can be approximated by linearization of 

integrand, giving 

 ≅
𝒁𝑹𝒎+𝟏 + 𝒑𝒂

𝒁𝑹𝒎+𝟏 + 𝒑𝒂 + Ω
 (24) 

The scale factor (24) is always less than one, decreases with the increasing mass fraction of 

bubbles and is approaching to unity for infinitely small gap (therefore for infinitely large 

pressure, when the volumetric fraction of gas is zero and material becomes practically 

incompressible). And this is the essence of the suggested method: Given the gap h and 

velocity dh/dt the scale factor  is calculated according to Eq. (24). The reduced velocity 

dh’/dt is used for calculation of Z in Eq. (19) and the force F is calculated according to Eq. 

(20). It should be stressed that the method is quite heuristic and is not based upon basic 

principles (for example the procedure cannot be iterated by repeated evaluation of new Z() 

because the  would be monotonically decreasing). The hypothesis can be described in words 

as the assumption that the radial flow resistance and the corresponding radial pressure profile 

depends only upon the mass flowrate. This mass flowrate can be calculated from the 

volumetric flowrate determined by the velocity of plates and by density of foam that depends 

upon pressure. 

 

 

 

 

THEORY OF SQUEEZING FLOW DOMINATED BY ELONGATION 

 

A quite opposite extreme is represented by pure elongation, the case when the radial 

velocity is independent of z, the case when the compressed cylindrical sample slides without 

friction on the surface of discs, the case without shear stresses. The elongation rates for 



incompressible material are independent of radial and axial coordinates and depend only upon 

time 

𝜺̇𝒓 = 𝜺̇ =
𝝏𝒖𝒓
𝝏𝒓

=
𝒖𝒓
𝒓
=
−𝟏

𝟐𝒉

𝒅𝒉

𝒅𝒕
 (25) 

𝜺̇𝒛 =
𝝏𝒖𝒛
𝝏𝒛

=
−𝟏

𝒉

𝒅𝒉

𝒅𝒕
 (26) 

This follows from the linear relationship of radial and axial velocities upon r and z, 𝑢𝑟 = 𝑟𝜀𝑟̇,  
𝑢𝑧 = 𝑧𝜀𝑧̇ and from the mass balance of expressed material. Stresses corresponding to the rate 

of elongation can be approximated by a power law relationship 

𝒓𝒓 =  = 𝑲𝒆 (
−𝟏

𝟐𝒉

𝒅𝒉

𝒅𝒕
)
𝒏

 (27) 

𝒛𝒛 = 𝑲𝒆 (
−𝟏

𝒉

𝒅𝒉

𝒅𝒕
)
𝒏

= 𝟐𝒏𝒓𝒓 (28) 

Momentum balance in the radial direction (5) reduces to the equation 

𝝏

𝝏𝒓
(𝝉𝒓𝒓 − 𝒑) = −

𝝉𝒓𝒓−𝝉

𝒓
= 𝟎  (29) 

that can be integrated with the boundary condition for total dynamic stress (p-𝜏𝑟𝑟) at the rim 

(r=R): 𝑝 = 𝜏𝑟𝑟 + 𝑝𝑎 . Resulting pressure is therefore a constant independent of radius (p can 

be calculated from (29) and (27)) and the overall force acting upon the moving disc is given 

by 

𝑭 = 𝟐∫ 𝒓(𝒑 − 𝒛𝒛)𝒅𝒓
𝑹

𝟎

− 𝑹𝟐𝒑𝒂 = 𝑹𝟐(𝒓𝒓 − 𝒛𝒛) = 𝑹𝟐𝑲𝒆 (
−𝟏

𝟐𝒉

𝒅𝒉

𝒅𝒕
)
𝒏

(𝟏 − 𝟐𝒏) (30) 

Compressibility is respected quite empirically as a correction of the disc velocity dh/dt  

𝑭 = 𝑹𝟐𝑲𝒆 (
−

𝟐𝒉

𝒅𝒉

𝒅𝒕
)
𝒏

(𝟏 − 𝟐𝒏) (31) 

 =
𝒑𝒂 + 𝒓𝒓

𝒑𝒂 + 𝒓𝒓 + Ω
 (32) 

This is almost the same approach as in the previous paragraph. 

 

 

NUMERICAL EXPERIMENTS 

 

Relationships for the force F according to Eq. (20) (flow dominated by shear) and 

compressibility correction Eq. (24) were implemented in a short MATLAB program. Results 

for the parameters presented in the table 1 are shown in Figs. 2, 3, 4, 5. 

 

 

Table 1. Parameters of the model 

R dh/dt K m K’ m’ pa   

[m] [m/s] [Pa.sm] [-] [Pa.sm’] [-] [Pa] [-] [Pa] 

0.024 0.001 100 0.6 10 0.5 105 0.01 105 

 



The following Fig.2 demonstrates relative effect of viscoelasticity. It is seen that the values 

K’/K>10 therefore very high first normal stress differences are above the stability limit and 

predicts negative resultant forces. 

 
Fig.2 Force for different ratio K’/K. (black K’= 10000 Pa.sm’, yellow K’ = 5000 Pa.sm’, green 

K’ = 1000 Pa.sm’, red K’ = 100 Pa.sm’, blue K’ = 10 Pa.sm’, K = 100 Pa.sm, m = 0.6, m’ = 0.5)     

 

  
Fig.3 Force F for different velocities of discs (blue 1 mm/s, red 2 mm/s, green 3 mm/s, yellow 

4 mm/s, black 5 mm/s, K = 100 Pa.sm, K’ = 10 Pa.sm’, m = 0.6, m’ = 0.5, Ke = 5000 Pa.sn, n= 

3) 
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Fig. 3 demonstrates the effect of speed dh/dt; force F increases with increased velocity as 

expected. Fig. 4 shows the effect of wall slip; lubricated walls ( 0.5) exhibit smallest 

forces (also as expected). Trends describing compressibility are demonstrated in Fig. 5 that 

confirms correct behavior of model. 

 
Fig.4 Force F for different slip velocities. (blue  = 0, red  = 0.1, green  = 0. 3, yellow  = 

0.4, black  = 0.5, K = 100 Pa.sm, K’ = 10 Pa.sm’, m = 0.6, m’ = 0.5)    
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Fig.5 Force F for different mass fractions of air  (shear). (blue  = 0, red  = 1e4, green  

= 1e5, yellow  = 1e6, black  = 1e7, K = 100 Pa.sm, K’ = 10 Pa.sm’, m = 0.6, m’ = 0.5, Ke = 

5000 Pa.sn, n= 3)    

 

Generally speaking the elongation model is more sensitive to the porosity of compressed 

material () and also to the velocity of discs. It is not possible to compare consistency 

coefficients K, K’ and Ke because the first describe material response to shear deformation 

while the second response to stretching. The Ke/K can be interpreted as a Trouton ratio of 

elongation and shear viscosity. This ratio is 3 for Newtonian fluids but can be many times 

greater for non-Newtonian fluids. The simple purely elongation model having only 3 

parameters (Ke, n and ) was also implemented in Matlab code and comparison with shear 

dominated model is presented in Fig. 3 and 5. 

 

MATERIAL AND METHODS 

 

Natural bovine collagen (type I) solution with a solid content of 7.1% was used for the 

experiment. Small sample pieces of weight about 60 grams convenient for experiments were 

separated from bulk collagen solution mass. Pieces were hand kneaded to obtain a 

homogeneous consistency. Thus prepared preformed sample was pressed into cylindrical 

hoops of diameter 55 mm. Expressed cylindrical sample was compacted to the height of 20 

mm. This is the initial height of the sample for the squeezing flow experiment. The sample 

was then wrapped in plastic wrap to prevent drying. After creating the required number of 

samples for the experiment pooled samples were cyclically vacuumed to remove any air 

which could penetrate into the collagen solution mass during manual processing. The samples 

were then tempered in a thermostatic box at 10°C or 20°C. 

Special instrument TA-XT2i (Stable Micro Systems, UK Ltd) was used for squeezing 

flow experiments. Squeezing flow experiment of collagen solution was made as compression 
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of material between two metal plates. Upper plate had diameter 49 mm, bottom plate was the 

square on a side about 100 mm. Both plates were stuck Teflon foil to guarantee perfect slip 

during measurement. The collagen sample was placed on the lower plate and the upper plate 

was adjusted to a distance of 20 mm from the bottom plate. By this procedure there was set to 

the default position for measurement. After that position setting the measurement has been 

started, that causes compression between two plates at a constant speeds 1 or 3 or 5 mm per 

second. The experiment was finished until relative deformation reached value 0.95 (the 

relative deformation is calculated as 1-final thickness/initial thickness, therefore the value 

0.95 corresponds to the final h=1 mm and initial thickness of sample 20 mm). The force 

acting on upper plate was continuously recorded at the upper plate position and time. 

Experiments were repeated four times for each speed of upper plate. 

The actual mathematical modeling (nonlinear regression) was performed using 

software DataFit (Oakdale Engineering, USA). The main goal of the regression procedure 

was to find real values of parameters of the rheological model presented above. 

 

RESULTS AND DISCUSSION 

 

There are presented experimental data of force vs. actual distance of plates received during 

squeezing flow of collagen solution done at compression speeds 1, 3 and 5 mm/s and 

temperatures 10 and 20°C in figures 6 and 7. There is apparent specific variability probably 

caused by sample inhomogeneities generated by hand preparation of sample mass before the 

experiment. There is apparent decrease in force with decreasing speed compression. 

Regression analysis of recorded collagen data by 6-parametric model (20, 23) resulted to 

physically unacceptable results. Optimization without constrains predicted for example 

negative consistency coefficients. 

 

 
Fig. 6 Force vs. relative deformation of the sample, temperature 10 °C 

 



 
Fig. 7 Force vs. relative deformation of the sample, temperature 20 °C 

 

The regression analysis was performed on all experimental data with aim to obtain 

parameters of the model of squeezing flow dominated with elongation. Values of parameters 

Ke, n and  were obtained. Two parametric regressions were also performed because of 

negative values of  assessed by three parametric. Then the parameter  were assumed equal 

to zero. The result of the regression performed in range from 0.5 to 1 of relative deformation 

is presented for compression speed 1, 3 and 5 mm per seconds, for temperature 10 °C, in the 

figure 8. The parameters of the model are summarized in the table 2 for presented figure 8. 

 

 
Fig. 8 Regression analysis of the experimental data, compression speeds 1, 3 and 5 mm per 

second, temperature 10°C, Force vs. height of the sample, blue – experiment, red – three 

parametric model, green – two parametric regression 



 

Table 2 Parameters of the model presented in the figure 8. 

 Three parametric model (red line) Two parametric model (green line) 

Speed  Ke n R2  Ke n R2 

[mm.s-1] [Pa] [Pa.sn] [-] [-] [Pa] [Pa.sn] [-] [-] 

1 -98309 4972 1.007 0.997 0 237090 0.720 0.977 

3 -97641 2519 1.118 0.997 0 140615 0.713 0.975 

5 -98280 1260 1.104 0.9972 0 116640 0.656 0.971 

 

 

CONCLUSIONS 

 

The two models describing squeezing flow of compressible fluid were developed. The 

first model is based upon assumption that the compression force can be derived from the shear 

rate and from the transversal radial velocity profile. The model has 6 parameters: K, m is a 

power law characterization of rheogram, and K’, m’ is a power law characterization of the 

first normal stress differences expressed again as a function of shear rate. The parameter  

corresponds to the mass fraction of air in the tested sample. The last parameter  is 

proportional to the slip velocity and must be less than 0.5. The shear rate is zero for the 

perfect slip =0.5 and only the simple 3-parametric elongation model must be used. Both 

models predict expected trends: reduction of compression force with the increasing porosity 

and with the increasing slip at the surface of discs. Nevertheless the F(h) curves are very 

similar and the model parameters are highly correlated. It is therefore rather difficult to 

distinguish the effect of compressibility, slip, normal stresses and pressure. It is desirable to 

carry out experiments at a broad range of velocities dh/dt and to evaluate as much as possible 

parameters from independent experiments. 

Applied elongation model represented by equation (31) relatively well fit experimental 

data of compression force depending on distance between plates during squeezing flow of 

collagen solution. Influence of temperature and compression speed on parameters n and Ke 

had been statistically insignificant. This conclusion is valid only in ranges of tested 

parameters. Surprising result is a failure of models based upon assumption of prevailing shear 

deformation - the best approximation of lubricated squeezing flow of concentrated collagen 

was obtained by a purely elongation model and by neglecting axial forces corresponding to 

shear deformation.   
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LIST OF PARAMETERS 
 

A coefficient in equations (1), (2), (3), (4), [N.mm, N.m3] 

B coefficient in equations (1), (2), (4), [N.m, N.m2q, N.m4] 

F force on plates during compression, [N] 

g exponent in equation, [-] 

h distance of plates, [m] 

h’ reduced distance of plates, [m] 

K consistency coefficient – shear flow, [Pa.sm] 

K’ consistency coefficient of the first difference of normal stresses, [Pa.sm’] 

Ke consistency coefficient – elongation flow, [Pa.sn] 



Mg mass of air, [kg] 

Ml mass of liquid, [kg] 

𝒎̇ mass flow rate of compressed material, [kg.s-1] 

m power-law index for shear, [-] 

m’ power-law index for the first difference of normal stresses, [-] 

N1 first normal stress difference, [Pa] 

n power-law index for elongation, [-] 

p pressure, [Pa] 

pa atmospheric pressure, [Pa] 

r radial coordinate, [m] 

R upper plate radius, [m] 

Rg gas constant, [J.kmol-1.K-1] 

T temperature, [K] 

t time, [s] 

V volume of sample, [m3] 

uR  slip velocity, [m.s-1] 

ur radial velocity, [m.s-1] 

uz axial velocity, [m.s-1] 

Z compression rate, [Pa.m(-m-1)] 

z axial coordinate, [m] 

 

Greek letters 

r elongation rate in radial direction, [m2.s-1] 

z elongation rate in axial direction, [m2.s-1] 

 elongation rate in tangential direction, [m2.s-1] 

 scale factor, [-] 

 relative slip parameter, [- ] 

g density of air, [kg.m-3] 

l density of incompressible liquid, [kg.m-3] 

 normal stress in tangential direction, [Pa] 

zr     shear stress, [Pa] 

rr    normal stress in radial direction, [Pa] 

zz    normal stress in axial direction, [Pa] 

 porosity of compressed material, [-] 

g relative mass fraction of the gas, [-] 
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