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ESlNavier Stokes Equations

MOMENTUM transport

Newton’s law (mass times acceleration=force)

—— = pressure_force+viscous stress+ gravity + centrigugal _forces

Dt
Sum of forces on fde@




ElPressure forces

Resulting pressure force acting on
sides W and E in the x-direction

Z

deydz@
0X

op OX
oyoz(p+——
yoz(p ~

n =1

on fluid element surface



BBl \/I1scous forces onfuid elemgnt surface
[

o7 or
Resulting viscous force acting on all 5X5y52(_>°< + > + 24 )
sides (W,E,N,S,T,B) in the x-direction O0X

0Z

f=nNeT




ESlBalance of forces

p[[))—t5x5y52— pressure force+ viscous stress+ gravity

DuX:_0p+0rXX+0Tyx+arzx+S
Dt ox ox oy 0z
Du, _ap+arxy+arw+arzy+s
Dt dy ox oy oz ’
Duzz_ap+0rxz+5Tyz+arzz+S
Dt 0z o0x oy 0z

p@ p+0eT +S,

Cauchy’s equation
of momentum
balances (in fact 3
equations)




ElBalance of ENERGY

TOTAL ENERGY transport

p%ltz = heat + mechanical _work

2+ Vv + W)

.1
+=(u
>

Kinetic
energy [J/kg]

Total energy
[J/kg]

Internal energy all form of
energies (chemical, intermolecular,
thermal) independent of coordinate
system



ESlHeat conduction

Heat transfer by conduction is described by Fourier’s law

DE 0 ké‘T 0 6T+6‘ kaT

P o L= Oe(kUT) =—-(k—=) +—(k

+
ox o0x oy ay) az( az)



BB\ echanical work - pressure

——(k— )—(k— )—(k— pw)
0X 0X 0z



BBl echanical work - stresses

sxoy(r.v+ 22" 9%
iy 0z

d7,U 0z
0z 2

oxoy(r, u+ )

n, =1
n =1

oyoz(r, u-— Ol
0X

n =-1

X

o2 _ 0u(kOT) - O-( pi) =
Dt
_ 0, 0T L .
=—(k—-pu+r u+ TV + I W)+ The situation is more complicated
0X  OX because not only the work of normal
0, OT but also shear stresses must be
+a_y(k0_y pv+r,u+7 v+71 W) ncluded.
+i(ka—T - pw+7r,U+7,V+7,W)

0z 0z



ES8l [ otal energy transport

This is scalar equation for total
energy, comprising internal energy
(temperature) and also kinetic energy.

p——=[+(KOT) —0e(pl) + Oe(7+0) + S, W/m]

p%ltz = Oe(kOT - pli + 7+l) + S




EsslFourier Kirchhoff equation

Kinetic energy can be eliminated from total energy equation
A
D(i +—=Ue-U)

p th = 0e(KOT) ~ Oe( pii) + Oe(F+0) + S, (1)

using Cauchy’s equation multiplied by velocity vector (scalar product, this
Is the way how to obtain scalar equation from the vector equation)

1. _
Dij Dau-u _ _

Subtracting Eq.(2) from Eq.(1) we obtain transport equation for internal energy

50
Dt

=Oe(kOT)—plel+7:00+S. —0eS,  [Wme]



EsslFourier Kirchhoff equation

Interpretation using First law of thermodynamics
d = dg - p dv

s e Ny

p%:D-(k |)—pD-U+?:DU+SE—U-§A

Dissipation of
mechanical

energy to heat
by viscous
friction

Heat transferred by
conduction into FE

Expansion cools
down working fluid

This term is zero for
incompressible fluid



B8 Dissipation term

= e ou
7: LU= [ — =
ZZJ: Jaxj

Heat dissipated in
unit volume [W/m3]
by viscous forces

ou ou ou
I —L+7, —L+17 —+
Wax Way yZaZ

ou ou ou
Z_l_z-zy Z+T Z

‘ “ 0z

* 0X




B8 Dissipation term

~|!
N | =

3 .. TN DR
00 ==7:(00+(00)")=7:8& e==(0a+(da)")

This identity follows from the
stress tensor symmetry Rate of deformation tensor

Example: Simple shear flow (flow in a gap between two plates, lubrication)

A

U=u,(H)

—

r:lu=r:e=rg, tr,e =7V



B8 Example tutorial

Rotating shaft at
3820 rpm
D=5cm -~
/ L=5cm

T -
H=0.1 mm 4
} E :

Gap width H=0.1mm, U=10 m/s, oil MOADS-II at 0°C
u=3.4 Pa.s, y=10°1/s, 1=3.4.10° Pa, ty= 3.4.1010 W/m3

At contact surface S=0.0079 m? the dissipated heat is 26.7 kw !l



EsslFourier Kirchhoff equation

Internal energy can be expressed in terms of temperature as di=c,dT or
di=c,dT. Especially simple form of this equation holds for liquids when c =c,
and divergence of velocity is zero (incompressibility constraint):

ILE% = [e(KLIT) + 70+ S [W/m3]

An alternative form of energy equation substitute internal energy by enthalpy

DH _op =
—— =[Je(kT) — pUeti + — + [1e(7+U) +

: : _ 1. .
where total enthalpy is defined as H =i +£ + = (ei]

ON 2
Thermal Pressure Kinetic
energy energy energy



ESEExample tutorial

Calculate evolution of temperature in a gap assuming the same parameters
as previously (H=0.1 mm, U=10 m/s, oil MOADS-II). Assume constant value of
heat production term 3.4.10%° W/ms3, uniform inlet temperature T,=0°C and
thermally insulated walls, or constant wall temperature, respectively.

Parameters: density = 800 kg/m3, ¢,=1.9 kJ/(kg.K), k=0.14 W/(m.K).

Approximate FK equation in 2D by finite differences. Use upwind differences
In convection terms

pc% =e(kOOT) +7: I

A y
=0 =
# — «




B Summary

Mass conservation 6_,0 +[]e (IOU) =0
(continuity equation) ot
Momentum balance DU — [+ - L&
(3 equations) '0 Dt N p r SV'
Energy balance Ia: DT — D.(k | ) + % : Du’ + S
Dt
State equation F(p,T,p)=0, e.qg. Thermodynamic equation

P=p0+BT di=c,.dT



BB Constitutive equations

Constitutive equations represent description of material properties
Kinematics (rate of deformation) — SIreSS (dynamic response to deformation)

52%(D0+(DU)T) 5:—p3+f

Viscous stresses affected by fluid
flow. Stress is in fact momentum
flux due to molecular diffusion

rate of deformation is symmetric part of
gradient of velocity) ou

Gradient of velocity is Diu' =1
tensor with components J a)ﬂ

Second
viscosity [Pa.s]

Dynamic
viscosity [Pa.s]

N
¥
A

0+ 24(11)e



BB Constitutive equations

—
—

r = A00e0+2u(11)é

Rheological behaviour is quite generally expressed by viscosity function

This is second invariant of

= -3 — rate of deformation tensor —
(I I ) where I e e — : ; Z ,QJ e“ scalar value (magnitude of
i—1 ] — shear rate)

and by the coefficient of second viscosity, that represents resistance of fluid to
volumetric expansion or compression. According to Lamb’s hypothesis the second
(volumetric) viscosity can be expressed in terms of dynamic viscosity u
2 . .
A=—o This follows from the requirement that the mean normal stresses
3 are zero (this mean value is absorbed in the pressure term)

tracer =7, +7,, +7,, =3 00 +2u0:0=0



BB Constitutive equations

—

ug)

3

The simplest form of rheological model is NEWTONIAN fluid, characterized by
viscosity independent of rate of deformation. Example is water, oils and air.

r =2u(l)(8-

More complicated constitutive equations exist for fluids exhibiting

»yield stress (fluid flows only if stress exceeds a threshold, e.g. ketchup, tooth
paste, many food products),

»generalized newtonian fluids  (viscosity depends upon the actual state of
deformation rate, example are power law fluids g =K(/211)"™*)

»thixotropic fluids (viscosity depends upon the whole deformation history,
examples thixotropic paints, plasters, yoghurt)

»viscoelastic fluids (exhibiting recovery of strains and relaxation of stresses).
Examples are polymers.



B Unknowns / Equations

There are 13 unknowns:

u,v,w, (3 velocities), P, T, P, i, Ty Txy,...(6 components of symmetric
stress tensor)

And the same number of equations

Continuity equation ?a_fm' (pii) =0

3 Cauchy’s equations p% = —Op+0.F +8§,

Energy equation p% = Oe(kOT) - pOeli+ 7 : Ol + S, —GeS,
State equation p/p=RT

Thermodynamic equation di=c,.dT

6 Constitutive equations 7 =2u(ll )(é—%é)



BB Navier Stokes equations

Using constitutive equation the divergence of viscous stresses can be expressed

0.7 = 20 (u(11 )(é—¥3» = O-(u(11)(0a + (00)")) —%D-(/J(II EE)

This is the same, but 2 o B &y, @, 00, 26 (ﬂ(a“k)aij)z
written in the index —» 0% 0X 0X, 0x, axj 30X 0X
notation (you cannot 9 auj 9
. = + L) - —— - =
make mistakes when Ix (u ™ ) X (u ax.) - a ( ( ))
calculating derivatives) ' ' ' )
_ a(ﬂauj)+auaui+ d°u. _g a,uaui+ au,)_

0X; 0X; 0%; 0X, ”axjaxi 3 0x,; 0x ax 0X;

_ 0 (ﬂauj)+ap ou, u 0%u;, 2 9u ou

L — 7 T

0X; 0X; 0x; 0x; 3 0x;0%x;, 30X, 0X

l

o7 = Oe(u(11)0G)& Du(11)+(00) G

These terms are small and will
be replaced by a parameter s,

HN) oy~ 2 mad
- [I(Ce0) 3([] a)du(ll)

-

These terms are ZERO for
incompressible fluids




BB Navier Stokes equations

General form of Navier Stokes equations valid for compressible/incompressible

Non-Newtonian (with the exception of viscoelastic or thixotropic) fluids

Di

P p+

Dt

+(u(ll)

0)+5,+S,

Special case — Newtonian liquids with constant viscosity

P ot p+ U+,
p(@+u@+v@+w@)——ap (62u+62u+62u) .
T a¢ 2 2 2 X
e
coordinate system AL BV R >+ 0 \2/+a )+ g,
o ox o9y oz oy ox- dy° 0z
p(a—\N+ —+Va—\N+Wa—\N)_ @ (62W+62W aZW) 09
o ad dy 0 0z x> ady* 07 i



