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TurbulenceCFD6
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Source of nonlinearities of NS equations are inertial and viscous terms

for incompressible fluids the equivalent conservative form
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The convection term is a quadratic 
function of velocities – source of 

nonlinearities and turbulent phenomena



Instabilities Rayleigh Benard convectionCFD6

Horizontal liquid layer heated from below is in still (viscous forces attenuate 
small disturbances) until the buoyancy exceeds a critical level RaL. Then the 
more or less regular cells with circulating fluid are formed. 

>1100
L

Tu

Tb

Even if the stability limit was exceeded the flow pattern is steady and remains 
laminar. At this stage the nonlinear convective term is not so important. Only 
if RaL>109 (approximately) eddies start to be chaotic, velocity fluctuates and 
the flow is turbulent.



Instabilities Karman vortex streetCFD6

Repeating pattern of swirling vortices caused by the unsteady separation of 
flow of a fluid over bluff bodies. A vortex street will only be observed above a 
limiting Re value of about 90. 

L

Even if the stability limit was exceeded the flow pattern is steady and remains 
laminar. 



TurbulenceCFD6
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Relative magnitude of inertial and viscous terms is Reynolds number

Increasing Re increases nonlinearity of NS equations. This nonlinearity 
leads to sensitivity of NS solution to flow disturbances. 

Laminar flow : Re<Recrit

Turbulent flow : Re>Recrit

Distarbunce is 
attenuated

Distarbunce is 
amplified



Turbulence - fluctuationsCFD6

Turbulence can be defined as a deterministic chaos. Velocity and pressure 
fields are NON-STATIONARY (du/dt is nonzero) even if flowrate and 
boundary conditions are constant. Trajectory of individual particles are 
extremely sensitive to initial conditions (even the particles that are very close 
at some moment diverge apart during time evolution).  . 

Velocities, pressures, temperatures… are still solutions of NS and energy 
equations, however they are nonstationary and form chaotically oscillating 
vortices (eddies). Time and spatial profiles of transported properties are 
characterized by fluctuations
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Turbulence - fluctuationsCFD6

Statistics of turbulent fluctuations

�Mean values                              (remark: mean values of fluctuations are zero)

�rms (root mean square)

�Kinetic energy of turbulence

�Intensity of turbulence

�Reynolds stresses
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Turbulent eddies - scalesCFD6

E(κ)

κ=2πf/u1/L                                 1/η

Large energetic eddies (size L) break 
to smaller eddies. This transformation 

is not affected by viscosity

Inertial subrange (inertial effects 
dominate and spectral energy depends 

only upon wavenumber and ε)

Smallest eddies (size is called Kolmogorov
scale) disappear, because kinetic energy 

is converted to heat by friction 

Spectral energy 
of turbulent 
eddies

wavenumber (1/size of eddy)

Kinetic energy of turbulent fluctuations is the sum of energies of turbulent 
eddies of different sizes 
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Typical values of frequency f~10 kHz, Kolmogorov scale η~0.01 up to 0.1 mm

Kolmogorov scale η decreases with the increasing Re



Turbulent eddies - scalesCFD6

Kolmogorov scales (the smallest turbulent eddies) follow from dimensional analysis, 
assuming that averything depends only upon the kinematic viscosity ν and upon the 
rate of energy supply ε in the energetic cascade  (only for small isotropic eddies, of couse)
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These expressions follow from dimension of viscosity ν [m2/s] and the rate of 
energy dissipation ε [m2/s3]
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Example tutorialCFD6

Derive time scale of the smallest turbulent eddies

ντ
ε

=

Time scale

2 2 2 2

3 3
[ ] [ ][ ]

0 2 2

1 3

m m m
s

s s s

α β

α β α β

α β α β

τ ν ε

α β
α β

+

+

=

 
= =  

 

= +
− = +

1/ 2

1/ 2

α
β

=
= −



Turbulent eddies - scalesCFD6

Wikipedia (abbreviated)

Turbulent flow is composed by "eddies" of different sizes. The sizes define a characteristic
length scale for the eddies, which are also characterized by velocity scales and time scales
(turnover time) dependent on the length scale. The large eddies are unstable and break up
originating smaller eddies, and the kinetic energy of the initial large eddy is divided into the
smaller eddies that stemmed from it. The energy is passed down from the large scales of the
motion to smaller scales until reaching a sufficiently small length scale such that the viscosity
of the fluid can effectively dissipate the kinetic energy into internal energy.
In his original theory of 1941, Kolmogorov postulated that for very high Reynolds number, the
small scale turbulent motions are statistically isotropic. In general, the large scales of a flow are 
not isotropic, since they are determined by the particular geometrical features of the
boundaries (the size characterizing the large scales will be denoted as L). 

Kolmogorov introduced a hypothesis: for very high Reynolds numbers the statistics of small
scales are universally and uniquely determined by the kinematic viscosity (ν) and the rate of
energy dissipation (ε). With only these two parameters, the unique length that can be formed
by dimensional analysis is



DNS Direct Numerical SimulationCFD6

ηηηη L

In order to resolve all details of turbulent structures it is necessary 
to use mesh with grid size less than the size of the smallest 
(Kolmgorov) eddies. N-grid points in one direction should be 
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Velocity scale u in previous expression is related to magnitude of 
turbulent fluctuations (rms of u’, or √k). The Reτ related to the 
velocity fluctuation is called turbulent Reynolds number.

(based upon dimensional ground)

114 k2100 M4650230000

63 k150 M145061600

47 k40 M80030800

32 k6.7 M38012300

No.of
time 
steps

No.of grid 
points in 
DNS

Table concerns DNS modelling of 
channel flow experiments (rewritten from 
Wilcox: Turbulence modelling, chapter 8). 
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Remark: Re~106 or 107 at flow around a car or flow around wings



DNS Direct Numerical SimulationCFD6

AbstractThe three-dimensional compressible Navier-Stokes equations are approximated by a fifth

order upwind compact and a sixth order symmetrical compact difference relations combined with threestage

Ronge-Kutta method. The computed results are presented for convective Mach number Mc =

0.8 and Re = 200 with initial data which have equal and opposite oblique waves. From the computed

results we can see the variation of coherent structures with time integration and full process of instability,

formation of A -vortices, double horseshoe vortices and mushroom structures. The large structures

break into small and smaller vortex structures. Finally, the movement of small structure becomes dominant,

and flow field turns into turbulence. It is noted that production of small vortex structures is combined

with turning of symmetrical structures to unsymmetrical ones. It is shown in the present computation

that the flow field turns into turbulence directly from initial instability and there is not vortex pairing in

process of transition. It means that for large convective Mach number the transition mechanism for

compressible mixing layer differs from that in incompressible mixing layer.

Direct numerical simulation of transition and turbulence in compressible mixing layer

FU Dexun , MA Yanwen ZHANG Linbo

Vol 43 No.4, SCIENCE IN CHINA (Series A), April 2000



DNS Direct Numerical SimulationCFD6

DNS AND LES OF TURBULENT BACKWARD-FACING STEP

FLOW USING 2ND- AND 4TH-ORDER DISCRETIZATION

ADNAN MERI AND HANS WENGLE

Abstract. Results are presented from a Direct Numerical Simulation (DNS)

and Large-Eddy Simulations (LES) of turbulent flow over a backward-facing

step with a fully developed channel flow utilized

as a time-dependent inflow condition. Numerical solutions using a

fourth-order compact (Hermitian) scheme, which was formulated directly

for a non-equidistant and staggered grid in [1] are compared with numerical

solutions using the classical second-order central scheme. The results

from LES (using the dynamic subgrid scale model) are evaluated against a

corresponding DNS reference data set (fourth-order solution).



velocity

y

Hydrodynamic instability due to prevailing inertial forces (convection term in NS 
equations) is the cause of turbulence.

�Inviscid instabilities

characterised by existence of inflection point of velocity profile

- jets

- wakes

- boundary layers wit adverse pressure gradient ∆p>0

�Viscous instabilities

Linear eigenvalues analysis (Orr-Sommerfeld equations)

- channels, simple shear flows (pipes)

- boundary layers with ∆p>0

Transition Laminar -TurbulentCFD6

Poiseuille flow ~ 5700
Couette flow – stable? 

velocity

y Inflection – source of 
instability 

(max.gradient)

There is no inflection of velocity profile 
in a pipe, however turbulent regime 

exists if Re>2100



Transition Laminar -TurbulentCFD6

How to indentify whether the flow is laminar or turbulent ?

�Experimentally
Visualization, hot wire anemometers, LDA (Laser Doppler Anemometry).

�Numerical experiments
Start numerical simulation selected to unsteady laminar flow. As soon as 
the solution converges to steady solution for sufficiently fine grid the flow 
regime is probably laminar 

�Recrit

According to value of Reynolds number using literature data of                                                           
critical Reynolds number 



Transition Laminar -TurbulentCFD6

Stability analysis

Velocity 
disturbance

Mean 
(undisturbed) 

flow

Production (extracting 
energy from the mean 

flow to fluctuations)

Linear stability analysisMomentum equation for disturbance

linear stability theory can predict when many flows become unstable, it can say
very little about transition to turbulence since this progress is highly non-linear



Transition Laminar -TurbulentCFD6
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Turbulent structures evolutionCFD6

Journal of Fluids and Structures 18 (2003) 
305–324
Force coefficients and Strouhal numbers of
four cylinders in cross flow
K. Lama, J.Y. Lib, R.M.C. Soa

Re=200

Re=800

Re<4

Re<40

Re<200 2D von Karman vortex street



Fully developed turbulent flowsCFD6

Free flows (self preserving flows)

Jets Mixing layers Wakes
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Jet thickness ~x,  mixing length ~x    see Goertler, Abramovic Teorieja turbulentnych struj, Moskva 1984: 



Example - tutorialCFD6

Entrainment in jets (increase of volumetric flowrate)
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Fully developed turbulent flowsCFD6

Flow at walls (boundary layers)
y

Laminar sublayer
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Fully developed turbulent flowsCFD6

Flow at walls (turbulent stresses)
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Example tutorialCFD6

Calculate thickness of laminar sublayer at flow of 
water in pipe (D=2 cm) at flowrate 1 l/s.

*

5
yu ρ

µ
=

3

3

4 4 10 1000
Re 63662

0.02 10

V

D

ρ
π µ π

−

−

⋅ ⋅= = =
⋅

ɺ

2 2
2

2 4 2 44

1 0.316
2 2 25.2[ ]

8 Re
w

V V
u Pa

D D
τ λρ λρ ρ

π π
= = = =

ɺ ɺ
Wall shear stress 
from Blasius

Turbulent region, well within 
validity of Blasius correlation

Dimensionless 
thickness of laminar 

sublayer

*

28

0.632
0.159[ / ]

Re
w V

u m s
D

τ
ρ π

= = =
ɺ

2 2 88 8 85 Re 0.005 0.02 63662 2 10 63662
0.31

10000.632 0.001 0.632 0.632

D
y m

V

µ π π π µ
ρ

−⋅ ⋅= = = =
ɺ

Friction velocity



TIME AVERAGING of turbulent fluctuationsCFD6

RANS (Reynolds Averaging of Navier Stokes eqs.)
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TIME AVERAGING of turbulent fluctuationsCFD6

Trivial facts

�Averaged value of fluctuation is zero

�Average value of gradient of fluctuations is zero

�Average value of product is not the product of aver aged values
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TIME AVERAGING of NS equationsCFD6
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Continuity equation

Navier Stokes equations

Reynolds stresses
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TIME AVERAGING of transport equationsCFD6
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Boussinesq hypothesisCFD6

Turbulent fluxes and turbulent stresses 
are defined by the same constitutive 
equations as in laminar flows, just only 
replacing diffusion coefficients and 
viscosity by turbulent transport 
coefficients.



Boussinesq hypothesisCFD6

Rate of deformation
based upon gradient 

of averaged velocities
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TRANSPORT coefficients-analogyCFD6

It is assumed that the rate of turbulent transport based 
upon migration of turbulent eddies is the same for 
momentum, mass and energy, therefore all transport 
coefficients should be almost the same

t
t

t

µ σ=
Γ

Prandtl number for turbulent 
heat transfer

Schmidt number for turbulent 
mass transfer

σt=0.9  at walls

σt=0.5  for jets

according to Rodi



Turbulent viscosity modelsCFD6

Turbulent viscosity is not a material parameter. It depends upon the actual velocity 
field and fluctuations at current point x,y,z. There exist different RANS models for
turbulent viscosity prediction

�Algebraic models (not reflecting transport of eddies)

�1 equation models (transport equation for turbulent viscosity)

�2 equations models (viscosity derived from transport 
equations of other characteristics of turbulent eddies)

�Nonlineasr eddy viscosity models (v2-f)

�RSM Reynolds Stress Modelling (transport equations for
components of reynolds stresses)



Algebraic modelsCFD6

Prandtl’s model of mixing length. Turbulent viscosity is derived from
analogy with gases, based upon transport of momentum by molecules (kinetic
theory of gases). Turbulent eddy (driven by main flow) represents a molecule, and
mean path between collisions of molecules is substituted by mixing length.

Excellent model for jets, wakes, boundary layer flows. Disadvantage: fails in 
recirculating flows (or in flows where transport of eddies is very important).
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Currently used algebraic models are Baldwin Lomax, and Cebecci Smith



2 equations modelsCFD6

Two equation models calculate turbulent viscosity from the 
pairs of turbulent characteristics k-ε, or k-ω, or k-l (Rotta 1986)

k (kinetic energy of turbulent fluctuations)    [m2/s2]

ε (dissipation of kinetic energy) [m2/s3]

ω (specific dissipation energy)                      [1/s]

2
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µ ρ
ω

µ ρ
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Wilcox (1998) k-omega model, Kolmogorov (1942)

Jones,Launder (1972), Launder Spalding (1974)
k-epsilon model

3 /u lε ∼

Cµ = 0.09 (Fluent-default)



Tutorial 2 equations modelsCFD6

Derive relationship for turbulent viscosity
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k – transport equationCFD6

All two equation models (and also Prandtl’s one equation
model) are based upon transport equation for the kinetic 
energy of turbulence 2 2 21 1
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Transport equation for k is derived in a similar way like the transport equation of 
mechanical energy by multiplying NS equation by vector of velocities (unlike 
mechanical energy only by the vector of velocity fluctuations)

Transport of pressure   viscous stress         reynolds stress       rate of dissipation     turbul.production

(p’)                         (2µe’)                     (ρu’u’) 



k – transport equationCFD6

Rate of dissipation of kinetic energy of velocity fluctuation
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Dispersion terms (viscous and reynolds stresses) and production 
term can be expressed using turbulent viscosity (Boussinesq)
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turbulent viscosity!

σk = 1 Fluent



εεεε – transport equationCFD6
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Transport equation for dissipation ε looks like the k-transport. 
Just substitute ε for k. Production and dissipation terms are 
modified by universal constants C1ε and C2ε

This term follows from dimensional analysis

Production term 
(generator of turbulence) Dissipation 

term

! 1
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k s

ε ≡

C1ε = 1.44 C2ε = 1.92   σε= 1.3 Fluent (default)



k-εεεε modifications (RNG, realizable)CFD6
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Corrections of dispersion, production and dissipation terms with
the aim to extent applicability of k-ε for low Reynolds number
flows
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Effective viscosity (RNG)CFD6

2

0  (laminar)   

  (high Re)   
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εεεε - estimateCFD6
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Dissipated energy in a mixing tank
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k-εεεε boundary conditionsCFD6

*3
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k and ε must be specified at inlets. Estimate of kinetic energy 
k is based either upon measurement (anemometers) or 
experience (from estimated intensity of turbulence I). 
Dissipation is estimated from correlations for power 
consumption estimates.

Values of k and ε at wall (must be also defined as boundary 
conditions) can be approximated by wall functions

*2

w

u
k

Cµ

= Friction 
velocity

* wu
τ
ρ

=

Distance of the 
nearest boundary 

node from wall

This is implemented in 
majority of CFD programs



Reynolds stresses (k -εεεε)CFD6

2
' ' 2 ( ) 2 2

3
i i i

i i t ii t
i i i

u u u
u u k k k

x x x
ρ ρ µ ρ δ µ ρ∂ ∂ ∂− = − = + − = −

∂ ∂ ∂

Constitutive equation for Reynolds stresses must be 
modified with respect to isotropic pressure
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This term is zero for 
incompressible liquidsRemark: Turbulent stresses determine 

kinetic energy of turbulent fluctuations 0u∇ =�i



Assesment of k -εεεε modelsCFD6

Problems and erroneous results can be expected

�Unconfined flows (wakes, jets). k-ε model overestimates
dissipation, therefore jets are overdumped.

�Pressure transport term (u’p’) is neglected (errors in flows 
characterised by high pressure gradients)

�Curved boundaries or swirling flows 

�Fully developed flows in noncircular ducts should be 
characterized by secondary flows due to anisotropy of 
normal Reynolds stresses (these features cannot be 
predicted by linear viscosity models)

�Problems in buoyancy driven flows



Discrepancies?CFD6

Special case: Steady unidirectional flow, constant 
density, homogeneous turbulence
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These terms are identically zero in 
homogeneous turbulence

Further reading C1ε = 1.44 C2ε = 1.92 σk = 1  σε= 1.3



Reynolds Stress Models (RSM)CFD6
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Large Eddy Simulation (LES)CFD6

Instead of time averaging of NS equations, spatial 
fluctuation filtering of NS equations (only small eddies are 
removed, motion of large eddies is calculated).

Filter is realized by convolution integral
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Ω Ω
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LES G-function exampleCFD6
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LES filtering - propertiesCFD6

u u≠
Basic difference in 
comparison with time 
averaging
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LES NS equationsCFD6
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Continuity equation 
without changes

( ')( ') ' ' ' '

' ' ' '

i j i i j j i j i j i j i j

i j i j i j i j i j i j

u u u u u u u u u u u u u u

u u u u u u u u u u u u

= + + = + + + =

= + − + + +

Lij Leonard 
stresses

Cij cross 
stresses

Rij SGS (sub 
grid stresses)



LES NS equationsCFD6
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Leonard stresses are usually neglected because they are of the second order –
almost the same as discretisation error. Cross and subgrid stresses are usually 
modeled together using turbulent viscosity approach.

It looks like 
Reynolds 
stresses



LES Smagorinski SGSCFD6
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Smagorinski model of subgrid stresses is almost the same as the Prandtl’s model of 
mixing length, only instead of the mixing length is substituted a filter size.
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