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W@ Prerequisities: Tensors

Transfer phenomena operate with the following properties of solids and fluids
(determining state at a point in space x,y,z):

Scalars T(temperature), P (pressure), O (density), h (enthalpy), Cp (concentration), k (kinetic energy)

Vectors u (velocity), f (forces), VT (gradient of scalar), and others like vorticity, displacement...
Tensors T G (stress), A (rate of deformation), Vi (gradient of vector) , deformation tensor...

Scalars are determined by 1 number.

Vectors are determined by 3 numbers @ = (u,,u,,U,) = (U, U,,U,)

Tensors are determined by 9 numbers Ow Oy Oy 011 Opp Oy
C=|0Ox Oy O, |=| 0 0Oy Oy
sz Gzy O-zz 031 032 033

Scalars, vectors and tensors are independent of coordinate systems (they are objective
properties). However, components of vectors and tensors depend upon the coordinate system.
Rotation of axis has no effect upon a vector (its magnitude and the arrow direction), but
coordinates of the vector are changed (coordinates u; are projections to coordinate axis). See
next slide...



- ROtatiOn of cartesian coordinate system

Three components of a vector represent complete description (length of an arrow and its directions),
but these components depend upon the choice of coordinate system. Rotation of axis of a cartesian
coordinate system is represented by transformation of the vector coordinates by the matrix product

a, =a, cos(l',1)+a, cos(l',2) +a, cos(l', 3)
2 a, =a, cos(2',1)+a, cos(2',2) +a, cos(2',3)
a, = a, cos(3',1) +a, cos(3',2) +a, cos(3',3)
a, cos(1',1) cos(l',2) cos(l',3)
a, [=|cos(2',1) cos(2',2) cos(2',3) |-
a, cos(3',1) cos(3,2) cos(3',3)

[a’]=[[R]][a]

Rotation matrix
(R;j is cosine of angle
between axis i’ and j’)

jQb)




- ROtation of cartesian coordinate system

Example: Rotation only along the axis 3 by the angle (P (positive for counter-clockwise direction)
. . . . V3 : 7 .
Properties of goniometric functions  C0S(—¢) = C0S @ COS(E —@)=sing COS(—(E +@))=-sing

> f [alj:[ cos(1,1) =cosep  cos(l, 2):singoj.[a1j

a,) (cos(2'1)=-sing cos(2',2)=cosg

—

[[R]] [[RI=[011] —[[R1]" =[[RI]

therefore the rotation matrix is orthogonal and can be inverted just only
by simple transposition (overturning along the main diagonal). Proof:

cosp —sSing)\( coseg Sing

(Singp Cos @ ][—sin(p COS(p] -

B cos® g +sin® @ cosgsing—singpcose |
~{sinpcosp—cospsing sin® @ +cos’ @ ]_

(10
o 1




- St r eS S eS describe complete stress state at a point x,y,z

Stress tensor is a typical example of the second order tensor with a pair of
indices having the following meaning

Index of plane  index of force component
(cross section) (force acting upon the cross section i)




- TenSOr rotation of cartesian coordinate system

Later on we shall use another tensors of the second order describing
kinematics of deformation (deformation tensors, rate of deformation,...)

Nine components of a tensor represent complete description of state (e.g. distribution of
stresses at a point), but these components depend upon the choice of coordinate system, the
same situation like with vectors. The transformation of components corresponding to the
rotation of the cartesian coordinate system is given by the matrix product

[[o T =[[RI[TIIRIT

where the rotation matrix [[R]] is the same as previously
cos(1,1) cos(1',2) cos(1',3)
[[R]]=| cos(2',1) cos(2',2) cos(2',3)
cos(3',1) cos(3',2) cos(3',3)



- TenSOr rotation of cartesian coordinate system

Orthogonal matrix of the rotation of coordinate system [[R]] is fully determined
by 3 parameters, by subsequent rotations around the x,y,z axis (therefore by 3
angles of rotations). The rotations can be selected in such a way that 3
components of the stress tensor in the new coordinate system disappear (are
zero). Because the stress tensor is symmetric (usually) it is possible to
anihilate all off-diagonal components

(o, 0 0
0 o, O |=[[RIIsNIRI
0 0 o, )

Diagonal terms are normal (principal) stresses and the axis of the rotated
coordinate systems are principal directions (there are no shear stresses in
the cross-sections oriented in the principal directions).



i@ Special tensors

Kronecker delta (unit tensor, components independent of rotation)

. 51 (100

6; =0 fori= | g 1o 1 0
o; =1fori=] 0 0 1
J

Levi Civita tensor is antisymmetric unit tensor of the third order (with 3 indices)

r+1
Ei'jk = { —1

0

b

if (z,7,k) is (1,2,3),(3,1,2) or (2,3,1),
if (4,7, k) is (1,3,2),(3,2,1) or (2,1, 3),

otherwise: 1 =j or j =k or k =1,

In terms of the epsilon tensor the vector product will be defined

Values of the Levi-Civita symbol
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Wl Scalar product

I
Scalar product (operator ) of two vectors is a scalar b
a-b = |al|b|coso X Q
a-b = a;by + a,b, + azb; = Z a;b; = a;b; = a;b; ’5’

i=1 -

aibi Is abbreviated Einstein notation. Repeated indices are summing (dummy) indices.

Proof that a.b = ai'bi'

a=R a b, =R, by

Im=—m

Remark: there were used dummy indices m and k in these relations. Letters of the dummy indices can be selected arbitrary, but in this
case they must be different, so that to avoid appearance of four equal indices in a tensorial term in the following product a.b (there can be
always max. two indices with the same name indicating a summation)

ab +ab,+ab,=ab =R Rab =R Rab =5 abh =ab

m



Wl Scalar product

Example: scalar product of velocity 15) [m/s] and force I}—') [N] acting at a point is
power P [W] (scalar)

P = ﬁ)ﬁ — uiFi

Example: Scalar product of velocity ¥ [m/s] and the normal vector of an
oriented surface ds [m?] is the volumetric flowrate Q [m3/s] through the

surface
Q — dg". I_i dS

U



Wl Scalar product

Scalar product can be applied also between tensors or
between vector and tensor

— - 3
ueoc=f no, =no, = f
I-is summation (dummy) index, while j-is
free index

This case explains how it is possible to
calculate internal stresses acting at an
arbitrary cross section (determined by outer
normal vector n) knowing the stress tensor.




Wil Scalar product - examples

Dot product of delta tensors
5°5-5  OnOw=0 [sicpidfeiy

Scalar Drod-'_r;t of tensors Is a tensor
-

= 3 2
GeT=( OimTmj = Sijj
Double dot product of tensors is a scalar
=g
C-T=6¢ O-kamk: S

Trace of atensor (tensor contraction)
r

tr(G)=o,, example tr (5) = 3



Wi \/ector product

Vector product (operator x) of two vectors is a vector

P , el = lal|b|sing
C_'):C_i'xb:(gol_)))oc_l) ¢ E’
3 3
C =) > &ab =g;ab @
j=1 k=1 a’

Important relationship between the Levi Civita and the Kronecker delta
special tensors .
gijkgkmn — 5im5jn o é‘iné‘jm

check for i=1,j=2,(k=3),m=1,n=2  &;,3 €319 =011 Opp - 01505, =1

CheCk fOI’ |=1,J=2,(k=3),m=2,n=1 8123 8321 = 812 821 = 611 822 = '1



Wi \/ector product

Examples of applications

—

%
Moment of force (torque) M = 7_‘>>< F

Coriolis force -~
9

F — 2 ix @

application: Coriolis flowmeter




W@ Diadic product

Diadic product (no operator) of two vectors is a second order tensor

Ql
]
|l
all

ab

|
N



Differential operator V wavia




W Differential operator V mavla

GRADIENT — measure of spatial changes

Symbolic operator V represents a vector of first derivatives with respect x,y,z.

0 0 O V@

V — ( ) ) ) i -
OX 0y OX OX;
V applied to scalar is a vector (gradient of scalar)
ol ol oT oT
VT — ( , - ) VIT = —
OX oy oz OX;
V applied to vector is a tensor (for example gradient of velocity is a tensor)
ou, Ou, Qu,
oX OX  OX F1einy)
ou ou
Y, ﬁ: GUX y OUZ ViU- —_ lJJ(X‘:y) o
N X g
ou, Ou, ou, Tl
«ax

0Z 0Z 0z



W@ Differential operator V-

DIVERGENCY — magnitude of sources/sinks

Scalar product Ve represents intensity of source/sink of a vector quantity at a point

: ou 3. 0U. .
Ve ﬁ:(’iuX+ eréuZ:zau,zéuI
oX oy z .

i-dummy index, result is a scalar

Vel <0 sink Vel =0 conservation

A N, NV
B R R

Scalar product Ve can be applied also to a tensor giving a vector (e.g. source/sink
of momentum in the direction Xx,y,z)

0 0 0 0 0
F:v.gz(a(fxx+ O'yx+80'zx O-Xy+ O-yy_|_ O-zy 86)(2_'_ O-yz_i_a(fzzj fi:VjGji

Vell'>0 source

ox oy oz ox oy oz ox oy oz

The vector f, represents resulting force of stresses acting at the surface of an
infinitely small volume (the force is related to this volume therefore unit is N/m3)



@ | aplace operator V2

Divergency of gradient — measure of nonuniformity

Scalar product VeV=V? s the operator of second derivatives (when applied to scalar
it gives a scalar, applied to a vector gives a vector,...). Laplace operator is
divergence of a gradient (gradient of temperature, gradient of velocity...)

2 2 2 2
VOVT=VZT=8-£+8T oT o7

ox*  oy* ozf axiaxi\

I-dummy index

u, 62u o2, 0°u, 0%, o°u, du, d%u, O%u, KO, Ou;

X

+ : + + : + N
BT T A T A A 822) - ax\axax

VeV U= (a

Physical interpretation: V2 describes diffusion processes (random molecular motion).
The term V2 appears in the transport equations for temperatures, momentum,
concentrations and its role is to smooth out all spatial nonuniformities of the

transported properties.



@ | aplace operator V2

Positive value of V2T
tries to enhance the
decreasing part

T(x) = op(-x)

-2.5 -

Negative value of V2T
tries to suppress the peak
of the temperature profile

2.5




8 ntegrals — Gauss theorem

Volume integrals with nabla operator can be ggnverted to surface integrals (just only
by replacing nabla V with unit normal vector N )

Physical interpretation: accumulation in volume V is overall flux through boundary

| LEde j j nePds

D|vergence of P projection of P to outer normal

Variable P can be
»Scalar (typically pressure p) _U_[Vpdv jj npds

»\Vector (vector of velocity, momentum heat qux) Surface integral represents flux of
vector in the direction of outer normal.
MV lav = _Un Uds

S
> Tensor (tensor of stresses). In this case the Gauss theorem represents the balance
between inner stresses and outer forces acting upon the surface,

([75-Fav [[F-Fo




Transcriptions

Symbolic notation, for example V ‘T, is compact, unique and
suitable for definition of problems in terms of tensorial equations.
However, if you need to solve these equation (for example ¥ ‘T = 1)
you have to rewrite symbolic form into index notation, giving equations
(usually differential equations) for components of vectors or tensors,
which are expressed by numbers (may be complex nhumbers).




MHMTL SymbO“C — Indicial notation

General procedure how to rewrite symbolic formula to index
notation

»Replace each arrow — by an empty place for index
»Replace each vector operator by (-1)ee o

»Replace each dot e by a pair of dummy indices in the first free position left and right

»Write free indices into remaining positions

Practice examples!!



@@ Coordinate systems

Previous conversion procedure can be applied only in
a cartesian coordinate systems

Formulation in the x,y,z cartesian system is not always convenient,
especially if the geometry of region is cylindrical or spherical. For
example the boundary condition of a constant temperature is difficult to
prescribe on the curved surface of sphere in the rectangular cartesian
system. In the case that the problem formulation suppose a rotational or
spherical symmetry, the number of spatial coordinates can be reduced
and the problem is simplified to 1D or 2D problem, but in a new
coordinate system.

In the following we shall demonstrate how to convert tensor terms from
symbolic notation (which is independent to a specific coordinate system)
into the cylindrical coordinate system.



W Coordinate systems (eylindrical

Cylindrical (and spherical) systems are defined by transformations

X,| dx, = Edr+%d¢>+a—dz
(X1 X5 X3) x=rc (dq) (¢ rs 0 dr dr c s O dx
' (ro,z) x,=rs |d |=|s rc 0| de| |dp|= —? % 0 || dx,
P ! x;=z \dx) (0 0 1)(dz dz 0o o 1/\d%
where S=SiNp C=COSQ \ar:C’a ey _ KT :
ox, | ox, | o "X, I

Using this it is possible to express partial derivatives with respect x;,X,,X5 in
terms of derivatives with respect the coordinates of cylindrical system

or _oT or aT a(p oT oz aT _dT's
(’3x1 or ox, a(p 8x1 oz ax1 ar 6gp r
or _dr ar+8T a¢+aT 63228TS ar c
OX, Or oX, OpoX, OLOX, oOr Opfr
or _ar or +6T a¢+aT oz _aT

OX, OF OX; O@OX; O OX, OZ




W Coordinate systems (eylindrical

In the same way also the second derivatives can be expressed

82T_82TC2_ZCS 0 6T_T OT s° GZTS
ox: or’ r dp or r T 8¢ r’

OT 0T, 250 1 T, arc’ oTc

~2 ( —)t
ox;  or’ r op or r orr a¢ r’
ox: oz’

giving expression for the Laplace operator in the cylindrical coordinate system
(use goniometric identity s2+c2=1)

o°T 62T 62T Al aT 1 o°T 1 82T
OX: ax ax "o ary aq)r s




W Coordinate systems (eylindrical

Previous example demonstrated how to solve the problem of transformations to
cylindrical coordinate system with scalars. However, how to calculate gradients
or divergence of a vector and a tensor field? Vectors and tensors are described
by 3 or 3x3 values of components now expressed in terms of new unit vectors

! [ [ [
U=ugi, =ue® +ue® +ue?

unit vectors in the cylindrical
coordinate system

Einstein summation applied in
the cartesian coordinate system

Moo Foar Fear Fear
:Grre(r)e(r)+ar¢e(r)e((p) +Grze(f)e<z> +_._+Gzze(2)e(z)

Unit vectors in orthogonal coordlnate S}/stem are orthogonal, which means that
L) () L) o Lodoe
eV’ =1 e’ =0 e =1

and therefore the components in the new coordinate system are for example
rr r rr
_ _ (¢) _ A SINPN (OPINC)
u(p_u@((p) o mem(p Oy, —9”97@() _e mnen

u; =ue” +u e +u,e®

this is i-th cartesian component
of the unit vector



W Coordinate systems (eylindrical

Transformation of unit vectors

I I
50 c s O |r1 ;1 ¢ —s 0)(e®
er;(¢) s ¢ 0 Irz |r2 s ¢ o éw
! r,
e Lo o0 1)li,) k) (0 0 1)e®

Example: gradient of temperature can be written in the following way (atternatively in
the cartesian and the cylindrical coordinate system)

substitute by using or _or, _ors

r r r
vr =1 | + il , +8_Ti3 = (Ca—T+sa—T)5(” +(s oI ) AL (O
oX, = OX, = 0% oX,  OX, oX,  OX, OXy
_ Lo 201 L) OT Ly (T ininn soordoate sytem
or r oo 0z
ey O Iyl O 1
Ve X a0 Y L a@



W Coordinate systems (eylindrical

. r ! [ [ [
Example: Divergence of avectoru=u_i_ =ue’ +ue” +ue®

Vgﬁ _ 8um _ a(urer(nr) + ugoer(nq)) + uzer(nZ)) _
OX.y X,
au oel) AU oel”)  au oel”
=—Lel 4y 0+ LWy 4 —Leltdypy 0
OX., OX, OX. OX,  OX, OX.,
|
_ _ : 0 c s 0)i
components of unit vectors follow from the previously derived | e |_| o . ollf
eV=c e”=-s ¢?”=0 e ) Lo 01 i
eV =s e”=c el” =0
e’ =0 e”=0 el =1

Note the fact, that the partial derivatives of these components with respect to x,,
are not zero and can be calculated using the previously derived relationships

. (r)
S92 ¢ giving &H_C_X09_ (S
OX, rox, r oX, OX 00X r

op__ 8 _

0%, ox  Opox, T ...and so on

A 0p _ .S



W Coordinate systems (eylindrical

Substituting these expression we obtain

ou, éu , ou cs s° ou, ou, s cs
— = L el ——— R —— )] —
oX, ~ or op r r or op ¥ r
u, ou , oucs c> ou, ~ ou, c? cs
—2=—tg L=y —+—Lcs+—2——u, —
oX, or op 1 r or opr 7r
ou, ou,

OX, 0Oz

Summing together, the final form of divergence in the cylindrical coordinate
system is obtained

ou
v.lﬁ):auuruur; ¢+auz
or r rop 0z




W Coordinate systems (eylindrical

. r ! [ [ [
Example: Gradient of a vector u=u,l, =ue"’ +u e’ +u,e

r r
7 =VUu
o(uel” +u e("” +uel?)

OX

o(u.e” +u e“”) +ue?)
OX.,

M and n are dummy indices (summing is required)

e((p)

_ o (r) _ o
. =e e ., =€n

m

Substituting previous expressions for unit vector and their derivatives results
to final expression for the velocity gradient tensor in a cylindrical coordinate

system
ou, au,, au,
or or or
Vtﬁ): 1 ,0u, 0,) 1(%+ur) 10u,
r oge r op
8ur au,, aou,

0Z 0Z 0Z



@ Coordinate systems (genera

Procedure how to derive tensorial equations in a general
coordinate system.

1. Rewrite equation from the symbolic notation to the index notation for cartesian coordinate
system, for example vl F o au,

. . % ar, .
2. Define transformation X, (ry,ry,fs),... F1(X1,X,X3),... and —-= f;(n. %, 1) therefore also the first and
the second derivatives of scalar values, for example 2. o 2 2

Lo g 0§ 4
o o Yoo, *oor
3. Define unit vectors of coordinate systems r, and express their cartesian coordinates €4 = 95" (1,1, 1)

Calculate their derivatives with respect to the cartesian coordinates
oey) _ Ogn _ 09y % 09y Or,  0gy Or,
= = + +

o, oX, on OXx or, 0% O, OX

4. In case that the result is a vector, for example the gradient of scalar, calculate its components from

rr
— (9) — (@)
u o= U™ =u.e.
In the case that result is a tensor calculate its components

[, rr
_ 5 — ) o
7, =e"gree” =€ 1€

Remark: This suggested procedure (transform everything, including new unit vectors, to the cartesian coordinate system) is
straightforward and seemingly easy. This is not so, it is ,crude®, lenghty (the derivation of velocity gradient is on several lists of
paper) and without finesses. Better and more sophisticated procedures are described in standard books, e.g. Aris R: Vectors,

tensors...N.J.1962, or Bird,Stewart,Lightfoot: Transport phenomena.
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i \\Vhat 1s impOrtant (at least for exam)

You should know what is it scalar, vector, tensor and transformations at
rotation of coordinate system

[aT=[[RI]][a] [[o TI=[[RII[sNIRIT

(and how is defined the rotation matrix R?)

Scalar and vector products

r I
aeb=>ab =ab, é’zgxt‘,’:(?.ﬁ).g
=1 3 3
Ci = ZZ‘giJkanK = &30
j=1 k=1

(and what is it Kronecker delta and Levi Civita tensors?)



i \\Vhat 1s impOrtant (at least for exam)

Nabla operator. Gradient

0 0 O 0

V:(ax’ay’ax

Divergence

ou 3. ou. _
v.é):c’?u“r y+8u2228u,:6u,
OX oy 07 ‘T OX OX

Laplace operator

o°T 0T 0T o7

VeVT =VT =——+—+—=
oX® oy® 0z° OX.0X




i \\Vhat 1s impOrtant (at least for exam)

Gauss integral theorem

ijV-Pdv:_Urr\-Pds

(demonstrate for the case that P is scalar, vector, tensor)



