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Prerequisities: Tensors

Scalars are determined by 1 number.

Vectors are determined by 3 numbers

Tensors are determined  by 9 numbers
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Scalars, vectors and tensors are independent of coordinate systems (they are objective 

properties). However, components of vectors and tensors depend upon the coordinate system. 

Rotation of axis has no effect upon a vector (its magnitude and the arrow direction), but 

coordinates of the vector are changed (coordinates ui are projections to coordinate axis). See 

next slide…
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Rotation of cartesian coordinate system
MHMT1

Three components of a vector represent complete description (length of an arrow and its directions), 

but these components depend upon the choice of coordinate system. Rotation of axis of a cartesian 

coordinate system is represented by transformation of the vector coordinates by the matrix product

'

1 1 2 3

'

2 1 2 3

'

3 1 2 3

cos(1',1) cos(1', 2) cos(1',3)

cos(2 ',1) cos(2 ', 2) cos(2 ',3)

cos(3',1) cos(3', 2) cos(3',3)

a a a a

a a a a

a a a a

  

  

  
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1’

2’

2 c o s ( 1 ' , 2 )a

1 c o s ( 1 ' , 1 )a

'

1 1
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2 2

'

3 3

cos(1',1) cos(1', 2) cos(1',3)

cos(2 ',1) cos(2 ', 2) cos(2 ',3)

cos(3',1) cos(3', 2) cos(3',3)

a a

a a
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    
    

     
    
    

[ '] [[R]][ ]a a

Rotation matrix 
(Rij is cosine of angle 

between axis i’ and j’)



Rotation of cartesian coordinate system
MHMT1

Example: Rotation only along the axis 3 by the angle  (positive for counter-clockwise direction)

1

'

1 1

'

2 2

cos(1',1) cos cos(1',2) sin

cos(2 ',1) sin cos(2 ',2) cos
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therefore the rotation matrix is orthogonal and can be inverted just only 

by simple transposition (overturning along the main diagonal). Proof:
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Stresses describe complete stress state at a point x,y,z
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Index of plane      index of force component          

(cross section)    (force acting upon the cross section i)

MHMT1

Stress tensor is a typical example of the second order tensor with a pair of 

indices having the following meaning



MHMT1

Later on we shall use another tensors of the second order describing 

kinematics of deformation (deformation tensors, rate of deformation,…)

Nine components of a tensor represent complete description of state (e.g. distribution of 

stresses at a point), but these components depend upon the choice of coordinate system, the 

same situation like with vectors. The transformation of components corresponding to the 

rotation of the cartesian coordinate system is given by the matrix product

Tensor rotation of cartesian coordinate system

[[ ']] [[R]][[ ]][[R]]T 

cos(1',1) cos(1', 2) cos(1',3)

[[ ]] cos(2 ',1) cos(2 ', 2) cos(2 ',3)

cos(3',1) cos(3', 2) cos(3',3)

R

 
 

  
 
 

where the rotation matrix [[R]] is the same as previously
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Orthogonal matrix of the rotation of coordinate system [[R]] is fully determined 

by 3 parameters, by subsequent rotations around the x,y,z axis (therefore by 3 

angles of rotations). The rotations can be selected in such a way that 3 

components of the stress tensor in the new coordinate system disappear (are 

zero). Because the stress tensor is symmetric (usually) it is possible to 

anihilate all off-diagonal components

Tensor rotation of cartesian coordinate system

'

1

'

2

'

3

0 0

0 0 [[R]][[ ]][[R]]

0 0

T


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 
 

 
 
 

Diagonal terms are normal (principal) stresses and the axis of the rotated 

coordinate systems are principal directions (there are no shear stresses in 

the cross-sections oriented in the principal directions).
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Special tensors
Kronecker delta (unit tensor, components independent of rotation)

Levi Civita tensor is antisymmetric unit tensor of the third order (with 3 indices)

In terms of the epsilon tensor the vector product will be defined

MHMT1

http://upload.wikimedia.org/wikipedia/commons/d/d6/Levi-Civita_Symbol_cen.png
http://upload.wikimedia.org/wikipedia/commons/d/d6/Levi-Civita_Symbol_cen.png
http://en.wikipedia.org/wiki/Kronecker_delta
http://en.wikipedia.org/wiki/Levi-Civita_symbol


Scalar productMHMT1

a


b
r



Scalar product (operator ) of two vectors is a scalar

aibi is abbreviated Einstein notation. Repeated indices are summing (dummy) indices.

' '

' ' ' ' ' ' ' '

1 1 2 2 3 3

        i im m j jk k

T

i i im ik m k mi ik m k mk m k m m

a R a b R b

a b a b a b a b R R a b R R a b a b a b

 

      

Proof that 

Remark: there were used dummy indices m and k in these relations. Letters of the dummy indices can be selected arbitrary, but in this 

case they must be different, so that to avoid appearance of four equal indices in a tensorial term in the following product a.b (there can be 

always max. two indices with the same name indicating a summation)

' '

i i i ia b a b



Scalar productMHMT1

Example: Scalar product of velocity      [m/s] and the normal vector of an 

oriented surface        [m2] is the volumetric flowrate Q [m3/s]  through the 

surface

u


sd


usdQ


 sd


u


Example: scalar product of velocity     [m/s] and force       [N] acting at a point is 

power P [W] (scalar)
u


F


𝑃 = 𝑢  𝐹 = 𝑢𝑖𝐹𝑖

𝑢

𝑑 𝑠

𝑑  𝑠 𝑢

𝑢

𝑑  𝑠
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Scalar product
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Scalar product can be applied also between tensors or 

between vector and tensor

i-is summation (dummy) index, while j-is 

free index

This case explains how it is possible to 

calculate internal stresses acting at an 

arbitrary cross section (determined by outer 

normal vector n) knowing the stress tensor.

MHMT1
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Scalar product - examples

Dot product of delta tensors

Scalar product of tensors is a tensor

Double dot product of tensors is a scalar

Trace of a tensor (tensor contraction)

MHMT1
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Vector product

Vector product (operator x) of two vectors is a vector

MHMT1

Important relationship between the Levi Civita and the Kronecker delta 

special tensors 

for example

b


a


c




jminjnimkmnijk  

check for i=1,j=2,(k=3),m=1,n=2      123 312 = 11 22 - 12 21 = 1

check for i=1,j=2,(k=3),m=2,n=1      123 321 = 12 21 - 11 22 = -1

     𝑎 𝑎 𝑏 𝑏 𝑐
 𝑐

 𝑎

𝑏

𝑐 = 𝑎 |𝑏|𝑠𝑖𝑛



Vector productMHMT1

F


Moment of force (torque) FrM







 umF 2

Coriolis force 


u


F


application: Coriolis flowmeter

Examples of applications

𝑀  𝑟  𝐹

 𝐹
 𝐹

𝑢 

𝑢





         i j ijab a b  
r rr r

Diadic product

Diadic product (no operator) of two vectors is a second order tensor

MHMT1

 𝑎𝑏 = 



Differential operator  (Nabla)
MHMT1
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Differential operator  (Nabla)

Symbolic operator  represents a vector of first derivatives with respect x,y,z. 

 applied to scalar is a vector (gradient of scalar)
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 applied to vector is a tensor (for example gradient of velocity is a tensor)
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GRADIENT – measure of spatial changes

MHMT1
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source  0 u
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sink  0 u


Differential operator 

The vector fi represents resulting force of stresses acting at the surface of an 

infinitely small volume (the force is related to this volume therefore unit is N/m3)

Scalar product  represents intensity of source/sink of a vector quantity at a point

i-dummy index, result is a scalar
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DIVERGENCY – magnitude of sources/sinks

Scalar product  can be applied also to a tensor giving a vector (e.g. source/sink 

of momentum in the direction x,y,z)

onconservati  0 u


MHMT1
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Laplace operator 2

Scalar product =2 is the operator of second derivatives (when applied to scalar 

it gives a scalar, applied to a vector gives a vector,…). Laplace operator is 

divergence of a gradient (gradient of temperature, gradient of velocity…)
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Physical interpretation: 2 describes diffusion processes (random molecular motion). 

The term 2 appears in the transport equations for temperatures, momentum, 

concentrations and its role is to smooth out  all spatial nonuniformities of the 

transported properties.

i-dummy index

MHMT1

Divergency of gradient – measure of nonuniformity

𝑢



Laplace operator 2MHMT1
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T2

Negative value of 2T 

tries to suppress the peak 

of the temperature profile

Positive value of 2T 

tries to enhance the 

decreasing part



Integrals – Gauss theorem

V S

Pdv n Pds  
r

g g

Variable P can be

Scalar (typically pressure p)

Vector (vector of velocity, momentum, heat flux). Surface integral represents flux of 

vector in the direction of outer normal. 

Tensor (tensor of stresses). In this case the Gauss theorem represents the balance 

between inner stresses and outer forces acting upon the surface, 

Divergence of P                       projection of P to outer normal

MHMT1

V S

pdv npds  
r

V S

udv n uds   
r r r

V S

dv n ds    
r rr r r

Volume integrals with nabla operator can be converted to surface integrals (just only 

by replacing nabla     with unit normal vector     )

V ds

n


 n


Physical interpretation: accumulation in volume V is overall flux through boundary



TranscriptionsMHMT1
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Symbolic notation, for example             , is compact, unique and 

suitable for definition of problems in terms of tensorial equations. 

However, if you need to solve these equation (for example               ) 

you have to rewrite symbolic form into index notation, giving equations 

(usually differential equations) for components of vectors or tensors, 

which are expressed by numbers (may be complex numbers). 

T2

2 T f 



Symbolic  indicial notation

General procedure how to rewrite symbolic formula to index 

notation

Replace each arrow  by an empty place for index 

Replace each vector operator by  (-1)     

Replace each dot  by a pair of dummy indices in the first free position left and right

Write free indices into remaining positions

Practice examples!!

MHMT1



Coordinate systems

Previous conversion procedure can be applied only in 

a cartesian coordinate systems

MHMT1

Formulation in the x,y,z cartesian system is not always convenient, 

especially if the geometry of region is cylindrical or spherical. For 

example the boundary condition of a constant temperature is difficult to 

prescribe on the curved surface of sphere in the rectangular cartesian 

system. In the case that the problem formulation suppose a rotational or 

spherical symmetry, the number of spatial coordinates can be reduced 

and the problem is simplified to 1D or 2D problem, but in a new 

coordinate system. 

In the following we shall demonstrate how to convert tensor terms from 

symbolic notation (which is independent to a specific coordinate system) 

into the cylindrical coordinate system.



1 1 1 1

T T r T T z T T s
c

x r x x z x r r



 

        
    

        

2 2 2 2

T T r T T z T T c
s

x r x x z x r r



 

        
    

        

Coordinate systems (cylindrical)

Cylindrical (and spherical) systems are defined by transformations

r
x1

x2



(x1 x2 x3) 

(r,,z)

zx

rsx

rcx







3

2

1 1

2

3

0

0

0 0 1

dx c rs dr

dx s rc d

dx dz



    
    

    
    
    

where sin     coss c  

1

2

3

0

0

0 0 1
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Using this it is possible to express partial derivatives with respect x1,x2,x3 in

terms of derivatives with respect the coordinates of cylindrical system
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In the same way also the second derivatives can be expressed

2 2 2 2 2
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giving expression for the Laplace operator in the cylindrical coordinate system
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Coordinate systems (cylindrical)

(use goniometric identity s2+c2=1)
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Previous example demonstrated how to solve the problem of transformations to 

cylindrical coordinate system with scalars. However, how to calculate gradients 

or divergence of a vector and a tensor field? Vectors and tensors are described 

by 3 or 3x3 values of components now expressed in terms of new unit vectors

( ) ( )( ) zr

m m r zu u i u e u e u e

   
rr r r r

Einstein summation applied in 

the cartesian coordinate system
unit vectors in the cylindrical 

coordinate system
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r r r r z

rr r rz zz
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Unit vectors in orthogonal coordinate system are orthogonal, which means that
( ) ( )( ) ( ) ( ) ( )1   0      ... 1zr r r ze e e e e e  

r r r r r r
g g g

and therefore the components in the new coordinate system are for example
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 )()( this is i-th cartesian component 

of the unit vector

Coordinate systems (cylindrical)
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Transformation of unit vectors
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Example: gradient of temperature can be written in the following way (alternatively in 

the cartesian and the cylindrical coordinate system)
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MHMT1

( )re
r

Coordinate systems (cylindrical)

Nabla operator in the 

cylindrical coordinate system

( ) ( ) ( )1r ze e e
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substitute by using 

previously derived
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Example: Divergence of a vector
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components of unit vectors follow from the previously derived   
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Note the fact, that the partial derivatives of these components with respect to xm

are not zero and can be calculated using the previously derived relationships
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Substituting these expression we obtain 
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Summing together, the final form of divergence in the cylindrical coordinate 

system is obtained 
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Example: Gradient of a vector
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Substituting previous expressions for unit vector and their derivatives results 

to final expression for the velocity gradient tensor in a cylindrical coordinate 

system 

m and n are dummy indices (summing is required)
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Procedure how to derive tensorial equations in a general 

coordinate system.

2. Define transformation x1(r1,r2,r3),… r1(x1,x2,x3),… and                          therefore also the first and 

the second derivatives of scalar values, for example

3. Define unit vectors of coordinate systems ri and express their cartesian coordinates             

Calculate their derivatives with respect to the cartesian coordinates

4. In case that the result is a vector, for example the gradient of scalar, calculate its components from

1.  Rewrite equation from the symbolic notation to the index notation for cartesian coordinate 

system, for example j
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In the case that result is a tensor calculate its components 
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Remark: This suggested procedure (transform everything, including new unit vectors, to the cartesian coordinate system) is 

straightforward and seemingly easy. This is not so, it is „crude“, lenghty (the derivation of velocity gradient is on several lists of 

paper) and without finesses. Better and more sophisticated procedures are described in standard books, e.g. Aris R: Vectors, 

tensors…N.J.1962, or Bird,Stewart,Lightfoot:Transport phenomena.
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Tensors



What is important (at least for exam)MHMT1

You should know what is it scalar, vector, tensor and transformations at 

rotation of coordinate system

[ '] [[R]][ ]a a [[ ']] [[R]][[ ]][[R]]T 

3

1

i i i i

i

a b a b a b


  
rr

Scalar and vector products

kjijk

j k

kjijki babac

abbac






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
 

3

1

3

1

)(


(and what is it Kronecker delta and Levi Civita tensors?)

(and how is defined the rotation matrix R?)
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Nabla operator. Gradient
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Laplace operator
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What is important (at least for exam)MHMT1

V S

Pdv n Pds   
r

Gauss integral theorem

(demonstrate for the case that P is scalar, vector, tensor)


