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1. INTRODUCTION

Program FEMINA has been designed for description of continuous systems by mathematical
models and first of all for their identification, which means for calculation of optimal parameters of a
selected model or for a selection of the most suitable model from several possible alternatives.
Examples of continuous flow systems are pipeline networks with valves, pumps, mixed vessels, heat
exchangers or individual apparatuses. Such a continuous system can be described in principle by the
three different ways:

1) By an algebraic model, which is a function defining some characteristics of system, e.g.
residence time distribution. This kind of information is sufficient, for example, for calculation
of a first order chemical reaction running in a nonideal chemical reactor.

2) By a lumped parameter model, substituting a real system by a set of basic flow units, more
specifically by a set of ideally mixed vessels and piston flow regions. Such a model can be
mathematically described by a system of ordinary differential equation for time courses of a
traced component in basic flow units. Model parameters are in this case volumes of basic units
and flowrates in connecting streams. Models of this kind can be used for calculation of
chemical reactions, for detection of dead or stagnant regions, bypass flows and so on. For
example lumped parameter models consisting of only few basic units are capable to predict
formation of NOxes in burners described by reaction mechanism with approximately 3000
elementary reactions, which is far beyond capabilities of CFD codes.

3) By continuous models, describing velocities, pressures, temperatures and concentrations in a
general point x,y,z and time 7 These models are usually based upon partial differential
equations for momentum heat and mass transfer, completed by semiempirical models of
turbulence or distribution of mater in heterogeneous systems. Continuous models, unlike the
previous ones, are spatially localised and therefore it is possible to predict local values of key
components and to assess the influence of apparatuses geometry upon their spatial distribution.

Algebraic models are most easily evaluated, however, because they are not usually derived
from fundamental physical principles, they must be inevitably identified from experiments (either real
or numerical). Lumped parameter models can be also relatively simply solved by Runge Kutta or by
integral transform methods. Even if they reflect the fundamental principle of mass conservation, it is
not sufficient for unique model parameters identification and experimentally obtained data must be
used again. Transport equations of continuous models are solved numerically, usually by the control
volume, finite or boundary element methods. Because momentum, mass and energy balances are at
least approximately satisfied, only few additional information is required by these models:
Experimental or empirical data are usually necessary only for refining boundary conditions (e.g.
turbulence intensity at inlet, heat and mass transfer coefficients), parameters of turbulence models and
parameters of heuristic models of inter-phase transports. Anyway, experimental verification of
numerically obtained solution of continuous models is always desirable, because for example
numerical diffusion can distort results considerably and sometimes it is probably better to use
simplified 2D model with a fine mesh (and suppressed numerical diffusion) than a complicated 3D
model with a rough mesh.

FEMINA makes use all the three mentioned kinds of mathematical models. Algebraic models
are represented by user defined functions or tables, lumped parameter models (ordinary differential
equations described by a simple language in a similar way as in the previous version of RTD
programs) are solved numerically by Runge Kutta methods and continuous models are solved by finite
element method (steady/transient electrical, temperature, concentration and flow fields can be
calculated in relatively simple one and two dimensional systems, e.g. pipeline networks or rotationally
symmetric apparatuses). The main reason, why all the three categories of models are included in
FEMINA consists in the possibility to identify parameters of simple models using results of a more
complicated one and for example an algebraic model (some empirical relation) can be identified using

FEM3AI1.DOC Last update 21.3.2005 10 /13



either experimental data or by using a lumped parameter model or even continuous finite element
model. This is because FEMINA is equipped with optimisation algorithms (modification of
mathematical method Marquardt Levenberg and memetic algorithm SOMA, one of the best software
for artificial intelligence), enabling calculations of any parameter of an arbitrary model by comparison
with reference data, and these reference data can be retrieved directly from experiment or by
postprocessing results of a more complicated mathematical model. The reference mathematical model
can, but need not be solved by FEMINA, because it is possible to make use results of CFD programs,
for example velocity field calculated by Fluent or Cosmos — FEMINA plays in this case only the role
of postprocessor. However even this role is not negligible, because optimisation is based upon
comparison of model prediction at simulated stimulus-response experiments (responses to tracer
injection) and FEMINA is, or will be, equipped with algorithms for simulation of instruments e.g.
collimated detectors of y-radiation.

Functional structure of FEMINA is shown in the following scheme

FEMINA

pre-postprocessor, optimisation

\ 2

\2

FEM

finite element models

ODE

lumped parameter models

REG

regression models

RTD

response analysis, FFT

>

FEM Frontal method, stationary/transient flow, temperature and conc. fields

\2

SHELLAX

1D 2D 3D
| I
PIPE S——— PLANE2D SOLID o
? FLOW2D 3 °
HEXC E]
—0

TRUSS T m’ 2:1
BEAM AN N AN

/

4 \\

Electrical Temperature Flow of Concentration Structural
field field incompressible field analysis
fluids
) Y- u,v,p u,v u,v,p
stream function stream primitive pressure pseudocompres|
cubic base function and | | variables, hybrid J] elimination by method.
\ﬁLctions vorticity methods penalty method
Y v
Electrical field Pressures and flowrates Temperature field Concentration Structural
in pipeline networks, upwind, axial Mass transport with analysis
with valves, elbows, thermal chemical reactions, Pipes, beams,
pumps, and mixed dispersion, axial dispersion for trusses, shells.
tanks. Laminar/ models of laminar and
turbulent flows, fouling, heat turbulent flows,
NonNewtonial liquids. exchangers modelling RTD.
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FEMINA is formed by several independent programs: The main program FEMINA.EXE is
first of all pre and postprocessor (preparing RTD models, finite element mesh), graphics interface, it
ensures import, export and interactive data processing (especially RTD processing), and also contains
optimisation algorithms. Processing of created models for a specified set of parameters is realised in

independent programmes called from FEMINA.EXE:

RANLREG2.EXE
rannreg?.dat multiple nonlinear
rannree2.out regression

3

FEMINA.EXE
RANNREG.EXE

RUNBOX.EXE

rannreg.dat

rannreg.out nonlin. regression

RUNFEM.EXE RUNMOD.EXE | | RUNDET EXE RANLREG.EXE
inite Elemen RTD models - Responses o anlreg.out linear regression
Models ordinary dif.egs. Collimated detectors
| RUNFEMD.EXE

Dounhle nrecision

The scheme shows, that the communication between FEMINA.EXE a computational programs is via
files, for example the binary file RUNFEM.BIN contains database of FEMINA comprising coordinates
of nodal points, parameters of finite elements, material data, text of interpreted files describing models
of differential equations, user defined functions and so on. Some programs (e.g. RANNREG.EXE)
communicate with FEMINA.EXE by dedicated text files, e.g. RANNREG.DAT, which can be
processed by any text editor.

FEMINA is supplied with the complete source code, and therefore can be modified as soon as
you have a licence for a Fortran Compiler, for example Microsoft Fortran Power Station for Windows
or Compaq Visual Fortran. The whole code is quite long (approximately 50000 lines) and it is not easy
to make significant changes, however the source code is invaluable for debugging.

FEMINA is written in Power Station Fortran for Windows (QuickWin), while independent
“number crunching” programs are written in standard Fortran 99, operates in MS-DOS mode and are
fully portable to any operating system. The same source code can be for example compiled and linked
also by Compaq Fortran — generated executable programs are faster in this case (approximately 3-
times). All programmes make use of the libraries MINIPF.LIB (Power Station Fortran) or
MINICF.LIB (Compaq Fortran), which contain subroutines for frontal methods, mesh generation and
graphics (compile and link by a single command fI132 /MW /4Yb %1 /link minipf.lib). Documentation
of libraries MINIPF, MINICF is supported by program LIST.EXE, producing list of subroutines
ZQUICK.TXT and a brief reference manual ZREFER.TXT. Library subroutines are compiled using
batch FC.BAT (Power Station Fortran) or QC.BAT (Compaq Fortran), and inserted into libraries by
program LIB minipf.lib novaproc.obj, resp. LIB /REMOVE:procedura.obj minipf.lib. Actual version of
program FEMINA, libraries MINIPF.LIB, MINICF.LIB and documentation are accessible at the
following address

http://www.fsid.cvut.cz/~zitny/index. htm
as a file FEMINA.ZIP.
Installation of FEMINA is simple. All executable and working files must be inserted to the
working directory, for example FEMINA, and files *.mdt, *.bmp, *.cmd (predefined models, pictures
and configuration file) should be located in the subdirectory of working directory FILES:

..../femina/ femina.exe, runfem.exe, runbox.exe, ....
/femina/FILES/ $femina.cmd,$femwin.cfg,$pumps.bmp,..., S00.mdt,...
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Some problems appear if your display driver (in Windows 95,98, or XP) is set to the true colour mode
(32 bits) — colour quality should be decreased to 16 bits, and recommended resolution is 1024 x 768
pixels. In case of notebooks which are not fully IBM compatible the default size and position of
created windows should be adjusted by using the command SETWIN executed from FEMINA
anytimes during a session. There are three levels of the configurator: Easy, Basic and eXpert — it is
usually sufficient to use the Easy option (it is really easy, write SETWIN into the command line of
FEMINA and follows instructions). The SETWIN command modifies the configuration file
SFEMWIN.CFG in the directory femina/files and therefore it is sufficient to perform the windows
setting only once.

The following chapters present selected applications (chapter 2 is something like a introductory
guide about FEMINA), the chapter 3 lists and shortly describes FEMINA commands (quick
reference). Chapter 4, theoretical fundamentals, describes methods for solution of partial differential
transport equations, RTD analysis, response processing methods and optimisation algorithms used by
FEMINA.

FEM3AI1.DOC Last update 21.3.2005 13 /13



