
2. PROBLEM SOLVING IN EXAMPLES 
 

According to the three kinds of mathematical models the three kinds of users has been evolved and 
each of them considers FEMINA as a different program even if the program control and presentation 
of results is similar: 

 
� The simplest job concerns the users considering FEMINA only as a simple regression program. 

They only need to know how to prepare data (observation matrix with independent and dependent 
variables, e.g. time and measured response) and they must learn two commands: how to read data 
file (command ROM or READ) and how to run the regression program (command NELREG) – all 
other actions are automatic, including selection of the best regression model (models of axial 
dispersion, Gaussian distribution, response of ideally mixed tanks in series and many others are 
implemented). 

 
� The second group form users dealing with stimulus-response experiments, peoples, making 

analysis of residence time distributions and looking for a suitable model of a continuous system 
(usually lumped parameter model) describing their data-measured responses. They need not know 
anything about finite element method, they only need to learn approximately 20 basic commands 
and first of all they have to know which basic RTD models are available, how to modify existing 
models and how to prepare new ones for specific applications. Typical analysis consists of the 
following steps: 

 
• Reading experimental time courses of stimulus and response functions from files to the so 

called observation matrix (command ROM). 
• The „raw“ data processing, covering corrections of different kinds, for example extrapolation 

or approximation of tail (command TAIL), half-life correction (TCF), raising background 
correction (TCBGR) and eventually „manual“ corrections, e.g. local smoothing, noise filtering 
(FFT) and normalisation of time courses (NORM). Further on integral characteristics of 
responses, i.e. moments (MOM) are usually calculated. 

• In the case, that the stimulus as well as the response functions are known, the impulse response 
of a system can be calculated using fast Fourier transform (FFT) method with regularised 
deconvolution. FFT can be also used for calculation of correlation functions and power spectral 
densities of processed responses. 

• Selection of suitable lumped parameter model represented by a system of ordinary differential 
equations for time courses of concentrations described in a script file (read by command 
RMODEL). A part of the script file are also specifications of model parameters, their bounds 
and default values – all these data can be modified (commands PARSET,PARLIM) and 
selected parameters (PARFIT) can be optimised by comparison with experimental responses 
using one of two available optimisation algorithms (OPTIMA or SOMA). 
 

� The third group of users considers FEMINA as a more or less standard finite element program, 
which is little bit similar to the much bigger program COSMOS/M from point of view of range of 
applications and user interface. This part of FEMINA is the most demanding, because it is 
necessary to learn approximately 50 basic commands, names of finite elements (PIPE2D, 
PLANE2D, FLOW2D,…), names of calculated degrees of freedom (TEMP, PRES, UX, UY, …), 
names of important element parameters (ETau, ESxx - stresses, ERe - Reynolds, EQ - flowrates, 
…) and also names of system variables used for interactive definition of interpreted functions (XX, 
YY, TIME, ...). Finite element solution of a problem consists of the following steps: 

 
• Building geometrical model. Definition of region using entities POINT (PT), CURVE 

(CR), SURFACE (SF), VOLUME (VL). A basis of a model are points, as all other entities  
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are defined in terms of points and therefore a change of a point position is automatically 
projected into changes of curves, surfaces and volumes.  

• Building finite element model. Specified region is meshed by finite elements (EL) and 
nodal points (ND) connecting elements (remark: point PT is an entity of the geometrical 
model, while the node ND is the finite element model entity, these two notions should be 
distinguished). Any created element is defined by a list of nodes defining its geometry and 
further on by assigned group of parameters EGROUP (specifying algorithms), a group 
MPROP (material properties) and RCONST (real constants). In addition to the coordinates 
x,y,z several nodal parameters DOF (Degree Of Freedom), which are primary targets of 
solution, e.g. temperatures, pressures, velocities,…, are assigned to every node.  

• As soon as nodes are formed, the boundary conditions, initial conditions and loading can be 
specified. It is possible to fix any DOF in any node (this is so called strong boundary 
condition) or just only to specify its initial value, which will be changing during 
calculations (initial conditions). In the same way it is possible to assign loads or more 
generally concentrated sources to any DOF, e.g. a point heat source to temperature or a 
force component to a displacement. Specified values of nodal parameters need not be 
constants, they can be functions of time, temperature, coordinates and these functions can 
be defined either as an algebraic expression or as a table of values.  

• Calculation of selected nodal parameters by steady or transient solution of partial 
differential equations describing given problem. Transformation of differential equations to 
a system of algebraic equations is based upon weighted residual method, assembly and 
solution of this system is performed by frontal method.  

• Postprocessing is usually performed automatically after solution and consists in calculation 
of quantities derived from DOFs (e.g. element stresses calculated from nodal displacement 
or velocities calculated from stream function). 

• Graphical and numerical outputs. 
• Data import and export. Data describing geometry and finite element model as well as 

results of calculations can be saved to text files, all database can be saved or loaded to 
binary files (database is formed by all important variables describing not only current status 
of finite element model, but also active residence time distribution models, observation 
matrix, i.e. all time responses, and others). Journal of processed commands and also of the 
control commands like loops, jumps,…(session file) is automatically created and can be 
modified by any text editor. The session file can be later on read and interpreted line by 
line. The session file represents parametrical description of a problem which can be solved 
for different values of parameters and thus it is possible to look for an optimal solution 
minimising deviation between model prediction and experimental data. 

 
� We expect, that the fourth group of users will be formed, because FEMINA code is completed by 

modules for import results from FLUENT and COSMOS codes, by algorithms of collimated 
detectors γ-radiation and by effective methods for simulation stimulus-response experiment with 
suppressed distortion by numerical diffusion. Therefore FEMINA can be used as a CFD 
postprocessor, a tool for verification of CFD results.  
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2.1. Program control 
 

Program FEMINA is controlled first of all by commands and not by using menu (only few 
commands are accessible also from menu and dialog windows). Commands can be prepared in 
advance as a text file and interpreted using command FILE (batch mode), or you can write them 
directly into the window CONSOLE as a line of text (interactive mode). You can mix the both modes 
freely during a session, some part is better to process as a batch another parts interactively. Structure of 
a command line is simple:  

  key-word  list of parameters separated by spaces or commas, terminated eventually by semicolon; 

Key-word is 6 characters long (more precisely, only first 6 characters are distinguished), and 
synonyms are frequently defined, e.g. MPL is the same as MPLIST (list of material parameters). 
Command parameters are processed as algebraic expressions, with constants, variables, arithmetic 
operators, parentheses, functions and so on. Parameters identifying calculated DOFs (Degree Of 
Freedom), element parameters or element names can be specified by name:  

TEMP /temperature/, UX,UY,UZ /displacements/, RX,RY,RZ /rotations/, VOLT /voltage/, VX,VY,VZ 
/velocities/, PRES /pressure/, OMG /vorticity/, PS,PSX,PSY,PSXX,PSYY,PSXY /stream function 
and its derivatives/, CA,CN,CD /concentration/, EQ /flowrate/, PIPE2D, PLANE2D,FLOW2D /the 
most common finite elements for modelling pipes, plates, and  two dimensional fluid flow/ 

 
Example: 
    FPT 123,TEMP,-1,25+A;       prescribes temperature 25+A 0C in the node nearest to the point 123.  

 

You can browse in 
previously edited 
commands 

You can activate this dialog window for the command 
editing by pressing [Tab].  

 
Processing of each line begins by identification of the key-word (e.g. FPT in the previous 

example). If the word is not found in the list of standard commands, FEMINA tries to interpret the line 
as a simple script command according to the syntax which will be described later (the same script 
language is used for the RTD model definition). The simplest and the most frequent command is the 
assignment Variable=expression, where Variable is one from 250 system variables (full list of 
variables will be presented in chapter 3)1. For example A,B,…Z, are general purpose simple variables, 
NPT, ND, NE, NTC specify number of points, nodes, elements and time curves (responses), DT is a 
time step, NT number of observation points, vectors KX(i), CP(i), DEN(i), VISC(i) are material 
parameters of the i-th material group (thermal conductivity, specific heat capacity, density, 
viscosity,…). In the expression you can use any arithmetic operator (+,-,*,/,**), parentheses, standard 
functions (SIN(x),EXP(x),ABS(x),MIN(x,y…),…) and of course any user defined variables.  
 
Example: 
    KX(1)=0.6    sets the value of thermal conductivity of the material parameter in the group number 1. 
 
                                                           
1 

 

You can also define your own variables or vectors, e.g. REAL GEORGE,JOHN(20)   INTEGER DORIS(5), and use them 
in the same way as system variables. However, system variables cannot be overrided and e.g. REAL DT has no effect upon 
the system variable DT. The commands REAL,INTEGER are examples of script commands of interpreter.
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It is not necessary to specify all parameters in the command line, because it is sufficient (and 
highly recommended for interactive work) to write only the keyword, the name of command, and all 
parameters will be in this case specified in a controlled dialog2. If a parameter ends with semicolon 
(even during dialog), the parameter processing ends and default values are assigned to remaining 
parameters. 
 
 Little bit different is processing commands which make use the mouse either for picking 
already defined entities (points PID, nodes NID, curves CID, elements EID, responses TID …) or for 
new points or nodes definition. For example the command for the definition of point can be written 
with all four parameters (PT index,X,Y,Z) and in this case the mouse is not needed. However, if we 
write only one parameter (PT index), the mouse is activated and the located point position is confirmed 
by left-click. In this way it is possible to create arbitrary number of points with successive indices 
using one command, because each left-click generates one point – the sequence ends with right-click.  
 
 A sequence of commands can be prepared in a file and executed as a program. The commands 
written into a batch file cannot comprise graphics, lists or optimisation commands (commands like 
GRAPH or OPTIMA will be skipped). The reason why the graphics is suppressed is obvious, because 
it would have no sense to project graphs or lists on screen in a fast sequence during run. The 
optimisation (commands OPTIMA and SOMA) has been excluded from batches because possible 
optimisation of optimisation algorithm itself would cause recursions and is therefore forbidden. On the 
other hand control commands, first of all #LOOP and #IF commands, can be used as a part of batch 
and applied for example for processing results in the NT-time steps: 
 
 T=0 
 #LOOP lab,NT 
  processing results in time T 
 T=T+DT 
 #LABEL lab 

 
Batch files can be created using any text processor, however it is much easier to create them in 

the interactive mode: the sequence RECORD ... ENDREC records all processed commands into a 
batch file automatically. A batch file can be processed either by the command FILE (this is a typical 
batch processed without an user intervention3) or issuing the command MACRO: in this case the 
commands are processed in fact in the interactive mode, including graphics and dialogs but without 
possibility to use e.g. LOOPs. Instead of MACRO you can write simply the name of batch file as a 
keyword and in this way it is possible to customise FEMINA by your own commands.  
 
 Program FEMINA works under operating systems Windows 95,98,2000. The following files 
should be placed into active directory: 

FEMINA.EXE,  pre/postprocessor, optimisation 
RUNFEM.EXE,  FEM solver 
RUNFEMD.EXE,  FEM solver in double precision 
RUNMOD.EXE,  RTD models solver 
RUNBOX.EXE,  Cartesian boxing 
RUNDET.EXE,  Collimated detector processing 
RUNDET1.EXE,  Collimated detector processing 
RUNMRG.EXE, Mesh automatic a region 
RUNMCT.EXE Mesh interior of contours 

                                                           
2 

 
Please, take in mind, that for example W=3*L/U is not a basic command with the keyword W= and parameter 3*L/U. It is 

a script command of interpreter which cannot be obviously processed part by part in a controlled dialog.
3 

 
The only important and frequently used exception is the command VALUE variable which always expects numerical 

value from keyboard which is assigned to the variable.
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RUNMND.EXE Create mesh of elements from defined set of nodal points 
RUNMPT.EXE Create mesh of elements from a set of key-pints 
RANLREG.EXE,  Linear regression 
RANNREG.EXE,  Nonlinear regression 
RANNREG2.EXE,  Multiple nonlinear regression 
 

Auxiliary files (model definition files, pictures) are located in the subdirectory /FILES/ 
 
$FEMINA.CMD,$FEMWIN.CFG,$FEMINA.TXT, $COMMAND.TXT, $VARLIST, $PUMPS.TXT, 
RTD model definition files *.mdt and also bitmap icons *.bmp. The file $FEMINA.CMD is a setup 
file (lists of RTD models, external programs) and $FEMWIN.CFG sets initial position and size of 
child windows; both the files can be modified by any text processor.  

 
After start up FEMINA.EXE the following windows will be displayed: 

 

Menu bar (properties, options,…)

Information about user’s activity which is 
expected (for example a text should be 
written into the CONSOLE window).

HELP. In the case that the  
command keyword has not been 
recognised, similar alternatives 
are suggested here. 

GRAPH- isolines, 
graphs of functions  

CONSOLE: commands are written into this window. 
Using [Tab] you can edit previous commands, F1-list 
the current session file, F2-list system variables.  
The first command is the problem name, the last 
command is EXIT.

Current values of important parameters 

LIST: activated by commands 
FUNLIST, PTLIST,… Scrolling using 
commands U n (up) D n (down) PU, 
DU (page up, page down) 

MODEL–geometry, definition 
of points using mouse 

Program always begins with a problem name specification (e.g. TEST), which becomes the 
name of created files, specifically TEST.SES (session file, copy of commands), TEST.DBG (copy of 
listings being sent do display using commands PTLIST, ELIST,…), TEST.OUT and TEST.TEP 
(results).  

The commands with parameters presented in the following examples are in fact copies of 
session files, and this text could have been literally retyped into the console window. However it is 
much better to write only key-words and to specify parameters in subsequent dialog – only then you 
can understand the parameter meaning.  

The examples are presented in three nearly independent sections: Finite element models (2D 
temperature, 2D flow and 1D pipelines), RTD models and response processing (deconvolution), and 
the last section is devoted to model identification (optimisation).  
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2.2. Finite element models for transport processes 
 

The command sequence is nearly the same for all finite-element problems: first reference 
points are defined (Points), then curves CR, surfaces SF and volumes VL. Afterwards, a mesh of finite 
elements and node points is generated on the curves, surfaces and volumes (commands MCR, MSF, or 
MVL). Boundary conditions are prescribed at selected nodes (commands NFCR, FPT, …). It is always 
necessary to specify definitions of material properties and other element characteristics (commands 
MPROP, RCONST, EGROUP), it does not matter whether it is done at the beginning or at the end of 
the problem specification. These parameters are different for different kinds of finite elements, the 
most important elements are PLANE2D (temperature, concentration and electrical potential in a plate), 
FLOW2D (fluid element, where velocities, pressures, stream functions, temperature, concentrations 
and electrical potential can be calculated), PIPE2D (pipes), PUMP and CSTR (Continuously Stirred 
Tank Reactor). Problem solution is always started by the SOLVE command with parameters which 
determine number of time steps and maximum number of iterations for flow, electrical field, 
temperature, concentrations (transport equations) and stresses calculation.  

Equations for heat and mass transport are of this general form 

 
φφλφφ SQu

t
−+∇⋅∇=∇⋅+

∂
∂Λ )( r

      (2.2-1) 
where φ is temperature T or concentrations cN, cD, cA, while λ is the heat conductivity or diffusion 
coefficients DN, DD, DA, respectively. Q is a source term and S is a sink; these terms can be defined (or 
modified) interactively by user as functions of time, coordinates, temperature, concentrations and other 
variables. Let as explain this concept in more details for the heat (enthalpy) transfer: the heat source 
Q=Qe+Qu (units W/m3) consists of two parts, the first one, Qe, electric ohmic heating is predefined in 
FEMINA, while the second part Qu can be supplied by user in form of a function (FUNDEF) or a table 
(CURDEF). Thus a dissipation of mechanical energy by friction, internal microwave heating, reaction 
enthalpies and similar production terms describing reactions kinetics for mass transport equations can 
be defined. Indices of functions used for definition of Qu and S terms are specified as EGROUP 
parameters (there are 4 pairs of indices for T, cN, cD, cA equations and one additional function defining 
hydraulic characteristics, together nine user defined functions for any kind of finite element). This is 
not only the source or the sink term, but also transport coefficients λ and Λ which can be defined by 
user as functions and the same holds for boundary and initial conditions thus ensuring maximum 
flexibility of problem specification.  

 
The most frequently used commands in the following examples are: 

 
SCALE xmin,xmax,ymin,ymax ranges of axes X,Y 
ZI, ZO     zoom in, zoom out (zooming is defined by mouse) 
 
PT i,x,y,z reference point definition (i=index of point) of geometrical model (using a mouse) 
 
CIRCLE i,central point, point on perimeter, number of segments circle described by two points (and 

created from at least 4 segments – parabolic curves) 
 
CR2PT i,i1,i2 curve number i described by 2 points i1,i2 (straight line). A similar command CR3PT 

creates a quadratic curve from three points. It is possible to define a sequence of points and 
linear or quadratic curves simultaneously using the command CRSPOLY.  

 
PMERGE this command merges and renumbers key-points having the same coordinates (or nearly 

the same, within the tolerance TOL). Curves and surfaces are merged too during this operation. 
It is recommended to perform this command after CRSPOLY and before surfaces will be 
created from curves. Anyway, PMERGE makes geometrical model more clear and transparent. 

 

FEM3AI2.DOC   Last update 21.3.2005                                         / 128 7



SF8FP i,i1,i2,…,i8 surface described by 8 points (the first four points are corners of a curved 
quadrilateral). Surface (entity SF) is in this case a quadrilateral with four curved sides (CR), 
and these curves will be created automatically. Similar commands SF3PT, SF4PT form 
surfaces from 3 or 4 points respectively. 

 
Note: Created entities (points, curves, surfaces, nodes, elements,…) can be displayed by commands 
with LIST at the end, e.g. PTLIST, CRLIST, SFLIST for points, curves and surfaces respectively. 
Entities can be plotted (PTPLOT, CRPLOT,...), or deleted (PTDEL, CRDEL,...) in a similar way. 
 
MSF index of surface, Nx,Ny, Lx,Ly, number of nodes, number of internal nodes 

generation of finite elements on a specified surface. All created elements are of the same type, 
they have the same index of the material properties group MPROP, real constants group 
RCONST and the group EGROUP specifying computational algorithm of element matrices. 
The number of nodes determines the element topology: for example 3 and 6 represent triangles 
with three and six nodes, 4 and 8 are quadrilateral elements. The parameters Nx,Ny determine 
the number of segments, dividing two adjacent sides of the quadrilateral surface, and Lx,Ly 
determines a non-uniformity of this division.4 A positive value gives the ratio of the last and 
the first segment length (i.e. Lx=1 uniform division, Lx<1 element size decreases towards the 
side end). A side orientation, that is the identification of the beginning and the end, is depicted 
as a diamond symbol near beginning of side. A negative value of Lx is an instruction for 
generation of elements diminishing symmetrically towards the ends (Lx<-1) or towards the 
centre of side (-1<Lx<0). Similar operations are MCR and MVL, meshing curves or volumes 
respectively. 
 

MRG index of contour, number of nodes, number of internal nodes, default number of nodes on curve, 
smoothing iterations, subdivision of triangles, attractivity of boundary nodes, size, near 
automatic generation of a triangular mesh on a 2D region defined by a contours (contour is a 
list of curves, specified by the command CT interactively). Size of generated elements is 
determined by predefined position of nodes along the contour and can be specified using 
command CRN for each curve of the contour individually (parameters of CRN are similar as in 
the following command MCRC). In the case that the number of nodes is not specified by the 
CRN command, the parameter default number of nodes is applied to each boundary curve. The 
parameter Smoothing concerns an iterative procedure which makes distances between nodes 
similar, with the exception of boundary points. These boundary nodes could attract the nearest 
internal nodes (attractivity >1) giving finer mesh along boundary curves. The parameter 
subdivision of triangles increases number of generated elements (=1 four-times, =2 sixteen-
times and so on, because each triangle is decomposed to 4 triangles in one step). The last 
parameters size, near are not so important (default values 1 are usually the best), they have only 
a slight effect upon the shape and density of generated triangles.  

Similar commands are MCT (mesh multiple contours) , MPT (mesh points – generates 
triangular elements connecting a set of key-points PT) and MND (mesh nodes). These 
commands are not aimed primarily for a finite element analysis, rather for situation, when you 
have a list of points (xi,yi) and corresponding values in a data file and you need to diplay 
contours, calculate surface integrals etc. 

 
MCRC  CR-first, Nx, Last/First, Number of Nodes, RC-group, CR-last, CR-step 

generates Nx two-node elements (pipes, pumps or mixed tanks) on curves starting from index 
CR-first, up to the CR-last with step CR-step. The elements will be defined by parameters in the 
RC-group (these parameters determine the equivalent pipe diameter, cross section area, heat 
transfer coefficient at the outer side, ambient temperature Te, and electric field intensity).  

 
                                                           
4  If the division has been prescribed at an adjacent surface, these parameters are submitted as default.
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4 3 4 3 

2 1 2 1  
MCR4 CR pipe 1‚ CR pipe 2‚ RC-HEXC 

generates special 4-node elements HEXC (heat exchangers) which connects formerly defined 
PIPE2D elements on curves CR pipe 1 and CR pipe 2 (number of these elements must be the 
same on both curves otherwise the operation MCR4 fails). See also MCR2, which creates 
PIPE2D and HEXC simultaneously on a given pair of curves. 

 
NMERGE 

To ensure connectivity of elements the operation which merges nodes with identical (or very 
close) coordinates x,y,z has to be performed. These nodes usually arise at the interface of two 
surfaces or curves (after MSF or MCR operations). The nodes with the distance shorter than 
TOL (this value can be assigned by a command, e.g. TOL=0.001) will be merged and 
renumbered.  
 

NFCR curve index, parameter name, parameter type, P1,P2,P3 
specifies boundary conditions or loads at nodes situated on, or near to a specified curve. 
Parameter name is for example TEMP-temperature, PRES-pressure, etc. Parameter type 
(status) is an integer value in the range from –10 to 50: a negative value means strong 
boundary condition (fixed value of parameter), zero denotes a free and therefore computed 
parameter, while a positive value indicates a load or a source term located at the corresponding 
node. At the same time, this value (parameter status) is an index of a user defined function of 
time, coordinates or temperature, which enables specification of variable boundary conditions 
or variable loads – this function multiplies the parameter value specified by the NFCR  
command, which is exactly the same procedure used by the COSMOS/M5 program. If the 
corresponding function is not defined, identity is assumed and the computation proceeds with 
the directly entered constant values P1,P2,P3 in reference points of the curve (two ending 
points and the middle one). These three values define a quadratic interpolating polynomial (a 
constant in case of identical values P1,P2,P3) for the selected parameter at nodes which lie or 
are very close to the specified curve. Similar commands are NFPT and NFSF for setting 
boundary conditions in the nearest node to a point PT or to the nodes on a surface SF. 
 

INITIAL parameter name, index of function 
specifies initial condition for a selected variable (TEMP, PRESS, CN,…) using a function. If 
the index of function is zero, zero initial condition applies.  
 

FUNDEF function index, f(XX,YY,ZZ,TIME,TEMP,DP,RE,DE,HE,…) 
This command defines a function as an algebraic expression (with common operators + - * / 
**, parenthesis ( )  and functions, sin,cos,abs,exp,log,…). The following names are predefined 
as independent variables: XX,YY,ZZ – coordinates, TIME – time, TEMP – temperature, and 
other not so important quantities. The function index is within the same range as the status of 
node parameters, i.e. from –10 to 50. These functions can be used for example with commands 
NFCR (see above) or MPROP (see below). Sometimes the desired behaviour cannot be 
properly described by a single algebraic expression, then a table of values and interpolation can 
be used, see operation CURDEF. 
 

CURDEF function index,‘0-time,1-x,2-y,3-z,4-temp,5-ux,6-uy,7-uz,8-II', No of points (max 8), 
x1,y1,x2,y2,x3,y3,x4,y4,x5,y5,x6,y6,x7,y7,x8,y8 

                                                           
5 

 

If -10<=status<=10, a transforming function fstatus(x,y,t,T) multiplies entered values DOF. These values are interpreted 
either as strong boundary conditions (status<0), or as a load (status>0). If status>10 the value of DOF meaning (if entered) 
depends on the context. For example, the value status>20 determines a node where the boundary condition of the third kind 
is prescribed for a specific DOF (and input value DOF is interpreted as the heat transfer coefficient).
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MPROP group index of material properties, element type, p1, f1, p2, f2, … 

Material properties of an element group. FEMINA considers 20 parameters, p1 to p20: thermal 
conductivity, specific heat capacity, density, electrical conductivity, modulus of elasticity, 
Poisson constant, viscosity, thermal volumetric expansion, diffusion coefficient, enthalpy of 
formation, frequency factor, latent heat, melting point and others. The parameter element type 
selects material properties which are relevant for the specified element type (e.g. for the 
element PLANE2D – plate, the viscosity is not relevant). An index of a function f1,f2,… is 
assigned to each material parameter and if the index is non-zero and the function has been 
defined, the specified parameter value is multiplied by this function. In this way for example a 
temperature dependency of material properties can be defined. 

 
RCONST group index of real constants, element type, p1, p2,.. 

Real parameters of elements which cannot be derived just only from the nodal coordinates, e.g. 
plate width, pipe diameter, heat transfer coefficient, wall roughness and so on. 
 

EGROUP index of element group, element type, i1,i2,… 
Integer element parameters, which usually specify a computational algorithm of element 
matrices. For example, they specify Cartesian or cylindrical coordinate system, number of 
points for Gauss numerical integration6 or the solution method of Navier Stokes equations for 
fluid elements (e.g. FLOW2D). For PIPE elements, it is possible to specify an index of 
function describing a hydraulic characteristic and in this way for example a pump with a 
prescribed flow rate dependency on pressure drop can be modelled. Using EGROUP it is also 
possible to determine indices of functions which describe an internal (volumetric) source of 
heat and sources or sinks of species in a mixture, for most element types. 
 

Remark: Indices of EGROUP, RCONST and MPROP are assigned to an element in the moment of the 
element creation (ACTSET). However, this assignment can be changed later, using commands 
ERMOD, ERMSF, ERMEL (for elements inside a region, on a surface, or picked by mouse). 
 

SOLVE t0,number of time steps,∆t,append,iter-electric,iter-flow,iter-thermal,iter-conc,iter-stress 
Start-up of the external program RUNFEM.EXE which reads the actual database and calculates 
electrical, flow, thermal, concentration and deformation fields (in this sequence) in every time 
step. Maximum number of iterations in single time step is specified for each of the mentioned 
analysis types – in case of zero number of iterations the corresponding analysis is omitted. 
Number of iterations should be greater than 1 in case of nonlinear and unsteady problems when 
it is necessary to iterate on each time level. If only a steady state solution is searched and 
accuracy in each time step is not important, then 1 can be specified as the number of iterations. 
Each time steps then represents one iteration step and the time step size plays the role of an 
underrelaxation factor – this can affects a convergence of the iteration process (the 
underrelaxation factor can be specified explicitly RELFAKT=…, the default value is 1)7. 
Results of each time step are stored in files with the suffix OUT (nodal parameters) and TEP 
(element parameters), and these files can be viewed by any text processor. After the RUNFEM 
program terminates, the control is return back to FEMINA, the database is updated and results 
of solution can be displayed as graphs or tables. 
 

DSOLVE is the same as SOLVE, however instead of RUNFEM, the RUNFEMD program solving 
equations in double precision is invoked. 
 

                                                           
6  You can specify 1,2,3,4 Gauss points for quadrilateral or brick elements, and 1,3,4,6,7,12,or 16 for triangular elements
7  There are other parameters specifying methods and operational parameters of solver, use the command OPTION.
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GRAPH parameter name, zone of  parameters Displays contours of specified parameter on the 
basis of actual values in the database. Parameter zones go from 1 to 4: actual solution results 
are in zone 2, initial conditions are in zone 3, values of previous iteration are in zone 4. Zone 1 
reflects only specified boundary conditions which is not of great importance when displaying. 

 
GRATIM parameter name displays time history of a parameter in nodes selected by a mouse 

pointer. The file problem.OUT is used because results from previous time steps are not present 
in memory. Nodal values from all calculated time steps are transferred to the matrix of 
observation points for further processing or just for export into a file using command WRITE. 

 
LTN time, and  LTE time These commands read results corresponding to time from files 

problem.OUT (nodal parameters) and problem.TEP (element parameters), respectively. The 
parameter time need not match discrete calculated times because linear interpolation of both 
nodal and element parameters from two time levels will be applied. 

 
NID Node identification by mouse, nodal parameters are reported in the status window. Similar 

commands are used for identification of elements, points, curves, graphs (EID, PID, CID, …). 
 
IC number of curve, function number   integral of a selected function along a curve (integration 

is numerical with NINT points, result is in the variable INTEGRAL). Integration is numerical 
and accuracy can be changed by system variable NINTG, that defines number of integration 
points (default value is NINTG=200). 

 
IS number of surface, function number  integral of a selected function on a surface (similar 

operation as IC).  
 
IE dof, function number,e-first,e-last,e-step  integral of selected nodal parameter multiplied by a user 

function over specified range of elements. The elements can be 1D lines, 2D triangles or 
quadrilaterals or 3D solids, hexa- or tetragons. Result is in the system variable INTEGRAL. 

 
EXIT Terminates FEMINA program. 
 
 
 Solution performed by RUNFEM.EXE and started by the command SOLVE is controlled by 
many parameters. Their default values can be changed either by using the command OPTION, or by 
system variables, e.g. 
 
GY=-9.81 sets acceleration 
OHMI=1 internal heat source terms will be respected (or suppressed if OHMI=0) 
FOUL=1 selects the model of fouling 
RUPW=1 sets upwind coefficient (=0 upwind suppressed) 
TAUD=0 sets time constant in the model of axial dispersion (0-suppresses axial dispersion) 
BL=0.3 reduces calculated thermal boundary layer in pipes to one third  
HEPI=1 instead of Galerkin method, the method of enthalpy balances will be used (pipes) 
BUOY=1 temperature dependent density is used for modelling buoyancy (=2 Boussinesque) 
RELFAKT=.3 reduce underrelaxation factor when convergency problems are encountered 
 
 
 
The same parameters ca be adjusted in the following dialog panel (menu bar Solution, Option): 
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terms. 

Trajectories are calculated in pipes assuming 
piston flow, while in a 2D case the 
trajectories are integrated numerically with 
small time steps ∆t/M, where M>1 is 
specified by the parameter Solution method. 

C(t) 

Solution iterates in each time step first electric field, 
then flow, temperature, concentrations and stress fields, 
if the specified number of iteration is greater than zero. 
Iterations can be stopped sooner, if accuracy specified 
in items Residuals, is achieved.  

Cn(t+∆t)=?

Most cases are solved by Petrov Galerkin method (Solution method=0). For 
1D pipelines with complicated heat exchangers it is necessary to select 
enthalpy balance method (1). Transport equations for mass and enthalpy can 
be alternatively solved by method of characteristics (Solution method>1): 
First trajectories ending at all nodes are calculated (backtracking for time 
step ∆t) and temperatures or concentrations are evaluated assuming purely 
convective transport. In the following half-step only diffusion is considered 
and Galerkin method is applied with zero velocities. 

Upwind, under-relaxation and time integration (implicit 
value 1 is default) are real parameters between 0 and 1. 

These items control calculations of free convection (gravity), 
source terms (ohmic heating, chemical reactions), and 
calculation of fouling in pipes according to the selected 
model. Zero values suppress corresponding 

 
 
For more details look at the chapter 4 (theory). 
 
 
 
 
 
 
 Besides these basic commands it is useful to become familiar with some system variables 
frequently used in the finite element analysis 
 
A,B,C,…,Z  user variables (FEMINA does not interfere them, the variable I, which is used as 

a counter, is an exception) 
ND, NE  number of nodes and number of elements. For example you can delete a mesh 

by writing ND=0 and NE=0. 
NPT,NCR,NSF,NVL number of points, curves, surfaces and volumes. 
TIME, DT these variables are usually used in definition of time varying boundary 

conditions, e.g. the command FUNDEF –1,A+B*SIN(TIME*F) defines an 
oscillating function number -1. 

XX,YY,ZZ  coordinates used for example for definition of initial conditions. 
TEMP, CN  temperature and concentration used for material properties, production and sink 

terms definition. 
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It is true that material and element parameters can be specified using commands MPROP, EGROUP, 
RCONST or from menu Properties, however, sometimes it is easier to use the system variables:  
 
TRANS(i),GAUSS(i),AXIS(i), HYDR(i),HEAT(i),HSINK(i),CNSRC(i),CNSINK(i) 
 transient(1)/steady(0) state, no. of Gauss points, coordinate system (0-Cartesian, 1-cylindrical), 
indices of functions defining hydraulic characteristics, heat source, heat sink, component cN sources 
and sinks. 
 
HH(i),DD(i),ALPHA(i),AREA(i) thickness, diameter of pipe, heat transf.coef., cross-section,  
 
KX(i),CP(i),DENS(i),KAPPA(i),VISC(i),BETA(i),DN(i) thermal conductivity, heat capacity, 
density, electric conductivity, dynamic viscosity, thermal expansion, and diffusion coefficient in the i-
th group EGROUP, RCONST or MPROP respectively. 
 
 Vectors of nodal parameters and interpolating functions of nodal parameters are also important 
V1(LPU(parameter name)+I)    value of selected parameter in the I-th node (boundary and loads) 
V2(LPU(parameter name)+I)    value of selected parameter in the I-th node (actual results) 
V3(LPU(parameter name)+I)    value of selected parameter in the I-th node (initial conditions) 
The most import parameter name are TEMP (temperature), PRES (pressure), VX,VY,VZ (velocities), 

VOLT (voltage), CN,CD,CA (concentrations) 
Examples: DISP V2(LPU(CN)+10)  displays actual concentration cN in 10th node. 
       V1(LPU(TEMP)+5)=A    point heat source in the 5th node is set to the value A 

 
 Vector of element parameters makes use the function IEP(parameter name,element index) for 
calculation of a specified parameter index. Frequently used parameter name are ERE (Reynolds), EQ 
(volumetric flowrate), ETAU (shear stress, usually at wall), EPOWER (for example duty of a heat 
exchanger), EII (second invariant of rate of strain tensor), EFOUL (thickness of fouling layer), EDISS 
(dissipated power), ETX,ETY,ETZ (gradient of temperature), ETMEAN (mean temperature in an 
element), EMISE (von Mises stress), ELAV (Length or Area or Volume of element). 
 Example: DISP E1(IEP(EFOUL,5))   displays thickness of fouling in element 5 
 
 While the vectors V1(i),V2(i),V3(i) and E1(i) ensure a direct access to nodal and element 
parameters, the following functions DOF and EPA transfer interpolated values of nodal and element 
parameters at any point x,y,z (and not only at a node). 
 
DOF(parameter name, zone, x,y,z) this function interpolates selected nodal parameter in specified 

zone (zone =1 boundary conditions and loads, zone=2 actual results, zone=3 
initial conditions) at point x,y,z. 

EPA(parameter name, x,y,z) this function interpolates parameter of elements, gradients, stresses and 
so on. 

 
Remark: The functions DOF, EPA and also other operations which need to calculate values in a 
general point x,y,z can be effectively realised only if it is known inside which element the point x,y,z 
occurs. This relationship between a point and the corresponding element is hidden in the file 
$RUNBOX.BIN which is created by the operation BOX h. This operation encloses a finite element 
mesh into a fine rectangular grid with uniform spacing ∆x, ∆y, ∆z and this spacing is determined by the 
parameter h (h is ratio of the grid size ∆x, ∆y, ∆z to the smallest element size hx, hy, hz , default value is 
0.3). Then for each grid point an enclosing element is found (if such an element exists, of course) and 
its index is saved to the file $RUNBOX.BIN.  
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2.2.1. Temperature distribution in a plate 
 
This example demonstrates a typical procedure of the finite element modelling, using simple 

geometry (rectangular plate with a hole), simple equation (heat transfer) and simple triangular 
elements (PLANE2D - only one degree of freedom TEMP is used at every node).  

Heat transfer modelled by the element PLANE2D can be rather complex, and generally the 
following transport equation  
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or similar equation for cylindrical coordinate system, can be solved.  
 

2.2.1.1. Steady state temperature distribution, Dirichlet boundary conditions 
 
 In the case that velocities are zero, that there are no production or sink terms (Q=S=κ=0), that 
the heat conductivity λ is constant and that we are looking only for a steady temperature field, the 
equation (1) reduces to the Laplace equation for temperature 
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And this is just this equation we shall try to solve first: 
 

C* Opening test date:27.11.02 at 11:55 
ANALYS 2; 
EGROUP 1,PLANE2D,0,4,0,0; 
 
 
 
 
MPROP 1,PLANE2D,.6,0,4200,0,998,0,0,0,0,0,0,0,0,0; 
 
 
 
 
 
RCONST 1,PLANE2D,1,0,0,0; 

RCONST sets real constants of group number 1 (next parameter 1 = means the plate thickness) 

EGROUP Element group 1 consists of PLANE2D elements (a plate). The following values determine the calculation 
procedure of local matrices. 0 – steady state solution, 4 - four-points Gauss integration (permitted values are 
1,3,4,6,7,12,16 for triangular elements, and 1,2,3,4 for quadrilaterals), 0 – Cartesian coordinate system. 

MPROP Material property in group 1, necessary for elements PLANE2D: Kx=0.6 – thermal conductivity, 
transformation of Kx (0 - none), heat capacity cp=4200, transformation of cp, density ρ=998, transformation of ρ 
and so on (see dialog). In this case all functions have index zero, therefore all material properties are constant, 
independent of T,t,x,y,…   

 
 
 
 
SCALE -0.1,1.1,-0.1,1.1; 
PT 1,0,0; 
PT 2,.5,0; 
PT 3,1,0; 
PT 4,1,.5; 
PT 5,1,1; 
PT 6,.5,1; 
PT 7,0,1; 
PT 8,0,.5; 
PT 9,.2,.2; 
PT 10,.2,.8; 
PT 11,.8,.8; 
PT 12,.8,.2; 
PT 13,.5,.5; 
PT 14,.65,.65; 
 
CIRCLE 1,13,14; 

Reference points. Using a mouse, L-click confirms the 
selection, R-click finishes the entering sequence. 

Scale X,Y  for  graphs 
(xmin,xmax,ymin,ymax) 

Point on the circle, divided 
to 4 quadratic curves. 

Circle center 
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SF8PT 1,1,3,20,18,2,12,19,9; 
Surface from 8 pointsSF8PT 2,3,5,14,20,4,11,21,12; 

SF8PT 3,5,7,16,14,6,10,15,11; 
SF8PT 4,7,1,18,16,8,9,17,10; 
 
A=15 
B=14 
 
 
MSF 1,A,B,1,1,6; 
MSF 2,A,B,1,1,6; 
MSF 3,A,B,1,1,6; 

Sometimes, it is useful to specify variables or expressions instead of numerical values of command 
parameters and the whole problem can be parametrised (we could use it in all previous commands 
describing geometry). In this case we will use parameters A,B  to determine number of segments, on 
which surface edges will be divided when generating elements using MSF commands. Some 
identifiers are pre-declared, e.g. single-character general purpose variables A,B,C,…,Z.  
Instead the assignments A=15 and B=15 the commands VALUE A  and  VALUE B could be used. In 
this case the variables would have been specified interactively even in the case, that the problem is 
processed as a batch. 

MSF 4,A,B,1,1,6; Grid generation on surfaces 1 to 4, A x B, regular 
(1,1), triangles (6 nodes, permitted values 3,4,6,8)  

 
 
 Nodes with the same coordinates x,y is to be merged. Coincident nodes arise on surface boundaries 

because each MSF does not take into account that previous MSF command, applied on the adjacent 
surface, has already generated nodes on the coincident edge. Coincident nodes will be merged and 
renumbered using operation NMERGE. 

NMERGE ; 
 
 
 

At this moment, a grid of triangular elements PLANE2D is created and nodes with their 
parameters (DOF) are defined – we will use only one parameter, the temperature TEMP. Each DOF 
has an attribute, so called status of node parameter (integer number). So far, this status is zero at all 
nodes, which means that all DOF are to be calculated. Strong boundary conditions (prescribed 
temperatures on the plate edge in our case) are characterised by negative status (the range from –10 to 
–1 corresponds up to 10 different transformation functions, defining variable strong boundary 
conditions). 
 
 
 
 
 
 
 
 
 
 
NFCR 12,TEMP,-1,10,10,0; 
 
 
NFCR 8,TEMP,-1,100,20,50; 

NFCR fixes values of the selected DOF on the curve 12 

0

10

10

20

50

100

Entered values represents boundary conditions 
(minus sign) with transformation number –1. 
The transformation -1 is not defined, so the 
temperature on the boundary is fixed. The 
value 10 is specified at end-points, while at the 
mid-point it is 0 0C. This defines quadratic 
temperature profile on the curve 12. 

DOF 

 
 
SOLVE 0,1,10000,0,0,0,1,0,0; 
 The command SOLVE starts temperature analysis. 0 is initial time, 1=number of time steps, 10000=time step. Beacuse only steady-state analysis is 

demanded (see EGROUP), the value of time step is not important and results are independent of it. The following parameters specify maximum 
number of iterations in each time step for analysis of electrical field, flow field, temperatures, concentrations and stresses. Because our problem is 
linear, one iteration of temperature field calculation is sufficient. Calculated temperatures are written into a file xxxxx.OUT in alphanumeric form 
and they are transferred into a zone of “initial conditions“ at the end of each time step. 

 
 
 
 
GRAPH TEMP,2  
 
 
 

 

 The first parameter of the GRAPH command specifies a variable (here it is temperature TEMP) to be displayed as isolines. The second parameter 
(2) determines if the results (2) or initial conditions (3) will be presented. The GRAPH (or synonymum GD2) can be used only in 2D problems, for 
1D graphs use its equivalent GD1. If you want to draw a temperature profile in a cross section use commands GCR or GFCR, see chapter 3. 

The calculated results correspond to the Dirichlet boundary conditions of the first kind or to the 
Neumann boundary conditions of the second kind on a perfectly insulated boundary. In other words, 
the parts of boundary with no temperature specification are considered as insulated (note that the 
isotherms are perpendicular to the boundary in this case). In the following part we shall show how to 
include also boundary conditions of the third kind into the problem definition. 
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2.2.1.2.Steady state temperature distribution, Newton’s boundary condition 
 
Newton’s boundary conditions of the third kind (finite thermal resistance at boundary) are 

more complicated:  

   )( TTα
n
T

e −=
∂
∂λ       .           (2.2.1-3) 

First it is necessary to specify the part of boundary, where the heat transfer coefficient α and ambient 
temperature Te are to be prescribed: The nodes lying in this part of boundary are assigned with status 
from 21 to 50 (remind that the values of status from –10 to –1 denote strong boundary conditions, 
status =0 has a calculated parameter without any source or load, and status 1 to 10 characterise 
calculated parameters with a point source and the values of status higher than 20 indicate boundary 
conditions of the third kind). Thus the prescribed value of nodal parameter, having status higher than 
20, does not represent neither temperature nor a point source, but the heat transfer coefficient value. 
Ambient temperature is an element parameter (see RCONST) and can be specified either by calling 
RCONST, or more simply by assignment the system vector TE(i), where i is index of group RCONST: 
 
TE(1)=200 Ambient temperature is assigned to elements having 

one or more sides on boundary, Te=200 0C. )(1 TTq e −= α

)(2 TTq eRC −= α

 

 
Remark: It seems to be strange, that not only the ambient temperate Te 
but also some heat transfer coefficient αRC appear as an RCONST 
parameter. However, this coefficient concerns the heat transfer at the 
element surface and not through the element boundary (see the heat flux 
q2 in the figure) – what is interesting now is the heat flux q1. 
 
We shall specify the boundary condition of the third kind at the top of plate, which is the curve number 
10.  
 
NFCR 10,TEMP,21,100,100,100 
 
 
 
 

 
 
NID   
 
 
       
 Node 0477 XY: .2000 1.0000 Zone 1: TEMP status[ 21] value= .100E+03 
 
 
SOLVE 0,1,10000,0,0,0,1,0,0; 
 
 
Let us summarise:  
 At the part of boundary with no boundary conditions, perfect insulation is assumed, the part 
with prescribed status -10,-9,...,-1 has prescribed temperatures (can be a function of x,y), the part with 
status 1,2,...,20 is insulated but with point sources of heat, and finally the part with status of nodes 
21,22,... is characterised by heat transfer across the boundary with the heat transfer coefficient 
specified as the nodal parameter TEMP at input. Looking forward: The heat transfer coefficient need 
not be a constant as soon as a function with the index 21,22,..., corresponding to the status of node, has 
been defined by FUNDEF or CURDEF (therefore the heat transfer coefficient can be a function of 
calculated temperatures). Very specific is treatment of the part of boundary with status 21,22,... at 
direct ohmic heating: In this case besides the heat transfer resistance, the part of boundary is 
considered also as an electric current resistance and therefore a line source of heat (this option is 
important when calculating effect of fouling layer to distribution of temperature as well as electrical 
field). 

Set status 21 to TEMP in nodes on curve number 10. Heat transfer coefficient is 
constant, 100 W/m2K (this value is assigned to all three definition points of curve, 
different values would define a parabolic function).  

This command NID (Node IDentification) has nothing to do with computation – it is 
only very useful tool for quick information about calculated values in nodes picked by 
mouse (similar command is EID for  information about elements) 
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2.2.1.3.Transient temperatures, initial conditions defined by function 
  

Transient temperature field is a solution of partial differential equation 
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There exists a parameter EGROUP S/T (steady/transient), determining algorithm applied in 
individual elements. Some elements can be therefore set to transient according to Eq.(4) and other to a 
steady solution according to Eq.(2)8. However, there is only one group of elements in this case and  
therefore we switch to transient using the command EGROUP. Initial condition must be defined as a 
function of coordinates XX,YY. 

 
 
 
EGROUP 1,PLANE2D,1,4,0,0; 
 
 
FUNDEF 1,100*(1+SIN(10*XX*YY)); 
 
 
 
INITIA TEMP,1; 
 
 
 
GRAPH TEMP,3 
 
 
SOLVE 0,10,10000,0,0,0,1,0,0; 
 
 
 
GRATIM TEMP 
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8 This can be important only in elements, which „react“ much faster than others, an example is combination of materials 
with very different thermal capacities and conductivities (this option enables to overcome the “stiff problem“ ).  

Define transform No.1 (in this case as an expression). Variables TIME,TEMP,XX,YY,UX,UY can be used. 

 Redefined attribute TRANSIENT (1) 

Initial condition for  temperature is defined as 
function number 1. 

Plot contours of initial temperature field 
(initial conditions are in the zone 3). 

10 steps with a constant time step 10000 s. 

GRATIM - Using mouse it is possible to 
pick several nodes (L-click pick a node, R-
click ends selection). Afterwards the time 
courses of specified parameter (in this case 
temperature) in the selected nodes will be 
plotted. Data are retrieved from the file 
problem.OUT and saved in memory as a 
table – you can list the table (TCL) and 
process the curves (TCF,…). 

THERMAL ANALYSIS test     ND=   440 
        .0       1000.000 (time, dtime) INITIAL
     1    10.000 
     2   100.000 
       ....    
   440   194.081 
    1000.0       1000.000 (time, dtime) 
     1    10.000 
     2   101.050 
       .... 
   440      .000 
     .... 
   10000.0       1000.000 (time, dtime) 
     1    10.000 
       .... 
   440      .000 

Results have been written into the text file problem.OUT  
(see example, 440 nodes and  10 time steps). It is possible to 
read data from this file into the zone of initial conditions 
using command LOADT. 



FEM3AI2.DOC   Last update 21.3.2005                                         / 128 18

2.2.1.4.Transient temperatures, boundary conditions defined by function 
 
 Boundary conditions as well as loads can be also functions of time. For example we shall show 
how to solve the problem when temperature at one quadrant of circle (curve number 3) oscillates with 
a constant frequency and amplitude:  
 
FUNDEF –2,50*(1+SIN(1E-6*TIME)) 
FUNLIST;  
 
NFCR 3,TEMP,-2,1,1,1 
 
 
 
 
 
 
 
 
 
INITIA TEMP,1 
SOLVE 0,100,100000,0,0,0,1,0,0; 
 
GRATIM TEMP 
 
 
 
 

 
Let us summarise: 
 Simple initial conditions are defined by using FUNDEF (simple expression of variables 
XX,YY), while the time dependent boundary conditions by FUNDEF (expression with variable TIME) 
or also by CURDEF (small table of points ti,yi). Looking forward: More complicated function, defined 
by a program or by large tables of experimental points, can be defined too, see the end of this chapter. 
 

2.2.1.5.Non-linear problems, temperature dependent conductivity 
 

The problem has been linear so far, and iterations were not necessary. Non-linearity can be 
caused by temperature dependence of boundary conditions or material properties, e.g. thermal 
conductivity λ.  

 

)()(0
y
T

yx
T

x ∂
∂

∂
∂

+
∂
∂

∂
∂

= λλ         (2.2.1-5) 

 
There is an index of a user defined function assigned to any material property and if such a 

function exists the material parameter (a constant) is multiplied by this function. Thus the material 
property can be defined as a function of temperature (TEMP), time (TIME), pressure (PRES), 
velocities (VX,VY,VZ), rate of strain (II) and others. In this example we shall substitute formerly 
constant thermal conductivity (λ=0.6 W/m/K) by the linear function of temperature λ=0.6 + 0.01 T.  
 
EGROUP 1,PLANE2D,0,4,0 
 
FUNDEF 2,0.6+0.01*temp 
 
MPROP 1,PLANE2D,1.0,2,4200,0,998,0,0,0,0,0,0,0,0,0; 
 
SOLVE 0,1,1,0,0,0,5,0,0; 
 
 

Material parameter Kx (=1.0) will be multiplied by function 2  

Reset attribute Static/Transient to static (0) 

5 iteration steps are sufficient (and result will be independent of 
specified time step DT=1).  
You can see (GRAPH) changes of contours due to nonlinearity. 

Index_RPN_Function 
  -02   015 : 50*(1+SIN(1E-6*TIME))                              
  -01   005 :     1                                              
   01   018 : 100*(1+SIN(10*XX*YY)) 

Temperature (TEMP) is prescribed on curve 3 (one quadrant of circular hole) as a strong boundary 
condition number -2 (-2 is the status of temperature in nodes on curve 3). The last three values 
generally define quadratic course of temperature along the curve, which is reduced to a constant in our 
case (triplet of constant values 1,1,1). This basic course is multiplied by the function having the index 
of status, if such a function exists. And it exists in our case – thus the boundary values are product of 
the constant 1 times the function number -2. 
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There is an index of a user defined function assigned to any material property and if such a 

function exists the material parameter (a constant) is multiplied by this function. Thus the material 
property can be defined as a function of temperature (TEMP), time (TIME), pressure (PRES), 
velocities (VX,VY,VZ), rate of strain (II) and others. In this example we shall substitute formerly 
constant thermal conductivity (λ=0.6 W/m/K) by the linear function of temperature λ=0.6 + 0.01 T.  
 
EGROUP 1,PLANE2D,0,4,0 
 
FUNDEF 2,0.6+0.01*temp 
 
MPROP 1,PLANE2D,1.0,2,4200,0,998,0,0,0,0,0,0,0,0,0; 
 
SOLVE 0,1,1,0,0,0,5,0,0; 
 
 

Material parameter Kx (=1.0) will be multiplied by function 2  

Reset attribute Static/Transient to static (0) 

5 iteration steps are sufficient (and result will be independent of 
specified time step DT=1).  
You can see (GRAPH) changes of contours due to nonlinearity. 

Index_RPN_Function 
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  -01   005 :     1                                              
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Temperature (TEMP) is prescribed on curve 3 (one quadrant of circular hole) as a strong boundary 
condition number -2 (-2 is the status of temperature in nodes on curve 3). The last three values 
generally define quadratic course of temperature along the curve, which is reduced to a constant in our 
case (triplet of constant values 1,1,1). This basic course is multiplied by the function having the index 
of status, if such a function exists. And it exists in our case – thus the boundary values are product of 
the constant 1 times the function number -2. 
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2.2.1.4.Transient temperatures, boundary conditions defined by function 
 
 Boundary conditions as well as loads can be also functions of time. For example we shall show 
how to solve the problem when temperature at one quadrant of circle (curve number 3) oscillates with 
a constant frequency and amplitude:  
 
FUNDEF –2,50*(1+SIN(1E-6*TIME)) 
FUNLIST;  
 
NFCR 3,TEMP,-2,1,1,1 
 
 
 
 
 
 
 
 
 
INITIA TEMP,1 
SOLVE 0,100,100000,0,0,0,1,0,0; 
 
GRATIM TEMP 
 
 
 
 

 
Let us summarise: 
 Simple initial conditions are defined by using FUNDEF (simple expression of variables 
XX,YY), while the time dependent boundary conditions by FUNDEF (expression with variable TIME) 
or also by CURDEF (small table of points ti,yi). Looking forward: More complicated function, defined 
by a program or by large tables of experimental points, can be defined too, see the end of this chapter. 
 

2.2.1.5.Non-linear problems, temperature dependent conductivity 
 

The problem has been linear so far, and iterations were not necessary. Non-linearity can be 
caused by temperature dependence of boundary conditions or material properties, e.g. thermal 
conductivity λ.  
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There is an index of a user defined function assigned to any material property and if such a 

function exists the material parameter (a constant) is multiplied by this function. Thus the material 
property can be defined as a function of temperature (TEMP), time (TIME), pressure (PRES), 
velocities (VX,VY,VZ), rate of strain (II) and others. In this example we shall substitute formerly 
constant thermal conductivity (λ=0.6 W/m/K) by the linear function of temperature λ=0.6 + 0.01 T.  
 
EGROUP 1,PLANE2D,0,4,0 
 
FUNDEF 2,0.6+0.01*temp 
 
MPROP 1,PLANE2D,1.0,2,4200,0,998,0,0,0,0,0,0,0,0,0; 
 
SOLVE 0,1,1,0,0,0,5,0,0; 
 
 

Material parameter Kx (=1.0) will be multiplied by function 2  

Reset attribute Static/Transient to static (0) 

5 iteration steps are sufficient (and result will be independent of 
specified time step DT=1).  
You can see (GRAPH) changes of contours due to nonlinearity. 
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generally define quadratic course of temperature along the curve, which is reduced to a constant in our 
case (triplet of constant values 1,1,1). This basic course is multiplied by the function having the index 
of status, if such a function exists. And it exists in our case – thus the boundary values are product of 
the constant 1 times the function number -2. 
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2.2.1.6.Internal heat sources 
 

There are three possible ways how to define internal sources of heat: Volumetric heat source is 
calculated automatically if a voltage is applied and electrical conductivity is non-zero. Point sources of 
heat can be defined as loads in selected nodes (FND): if you define for example non-zero nodal 
parameter TEMP (e.g. 1.23) and positive status (within the range 1-10), the value 1.23 will not be a 
temperature, but intensity of heat source in the node (1.23 Watts). The third and the most frequent 
method is to prescribe the volumetric heat source Q (W/m3) as a function f(TIME,TEMP,XX,….) or 
by a table of values.  
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Index of this function Q must be specified as an EGROUP parameter (heat source), see example  
 
 
FUNDEF 10,1E6*(1-XX); 
 
 
EGROUP 1,PLANE2D,0,4,0,0,10; 
 
 
 
OHMI=1 
 
 
SOLVE .200E+05,1,.100E+05,0,0,0,1,0,0; 
 
 

2.2.1.7.Ohmic heating and fouling 
 
 A special case of internal heat source is ohmic heating, where volumetric source depends upon 
intensity of electric field (intensity E is gradient of electric potential-voltage): 
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Original solution with 
constant therm.conduct. 

Solution with temperature 
dependent conductivity. 

)1(106 xQ −=

Calculation of heat sources is suppressed as default. It 
must be switched on for example by using assignment 
OHMI=1, or using the command OPTION. 
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Calculation of heat sources is suppressed as default. It 
must be switched on for example by using assignment 
OHMI=1, or using the command OPTION. 
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where κ [S/m] is specific electrical conductivity. Computation of temperature field has to be preceded 
by solution of differential equation describing electric field. This equation is a perfect analogy of 
Fourier equation with electric conductivity replacing thermal conductivity 
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However aim of this paragraph is something different: to explain the way how to describe the effect of 
a thin layer of deposits at surface to heat transfer and ohmic heating. This is a typical problem of 
fouling: gradually forming layer of deposits, for example minerals or denaturated proteins, represents 
additional thermal and electrical resistance at wall. Thickness of this layer h is a key parameter and its 
time growth is described in FEMINA by a rate equation dh/dt=f , where f is a user defined function of 
temperature, shear stress, concentrations,... Properties of this layer are characterised by 3 parameters: 
thickness h, temperature conductivity λf (system variable KXF(i)) and electrical conductivity κf 
(KAPPAF(i)) and these parameters enable to calculate additional thermal resistance of the fouling 
layer (r=h/ λf). More complicated is the case of ohmic heating, because then the fouling layer not only 
increases electric resistance but becomes additional line source of heat! FEMINA accounts for these 
effects by modification of Newton’s boundary conditions for temperature and electric field. What is 
modified (automatically and only temporarily): external temperature (system variable TE(i)) and 
external voltage (UE(i)) as well as heat transfer coefficient and analogous electric current transfer 
coefficient.  

It is obvious, that a lot of additional parameters have to be specified; it is possible to use 
commands MPROP, RCONST, EGROUP, but if only some parameters are to be changed the system 
variables assignment is more straightforward. The last approach will be used for the solution of case 
when outer perimeter is hold at zero temperature and voltage, while a part of the hole (curve 3) is an 
electrode with a layer of fouling (external voltage 220V, external heat transfer coefficient 100 
W/m2/K, fouling layer of the thickness 0.01 m is generated by an auxiliary rate equation assuming a 
constant fouling rate): 

 
C* Rate of fouling defined by rate equation No.3 
FUNDEF 3,A; 
A=1E-7 
RT=3 
OHMI=1 
KAPPA(1)=1 
KAPPAF(1)=0.01 
TE(1)=0 
UE(1)=220 
KX(1)=0.6 
KXF(1)=0.2 
NFCR 5,TEMP,-1,0,0,0; 
NFCR 8,TEMP,-1,0,0,0; 
NFCR 10,TEMP,-1,0,0,0; 
NFCR 12,TEMP,-1,0,0,0; 
NFCR 5,VOLT,-1,0,0,0; 
NFCR 8,VOLT,-1,0,0,0; 
NFCR 10,VOLT,-1,0,0,0; 
NFCR 12,VOLT,-1,0,0,0; 
NFCR 3,VOLT,21,1E10,1E10,1E10; 
NFCR 3,TEMP,21,100,100,100; 
INITIA TEMP,0; 
TRANS(1)=1 
SOLVE 0,10,.100E+05,0,1,0,1,0,0,0,0; 

 
  

 

List of variables, which is to be defined for ohmic heating with a layer of fouling: 
RT – model of fouling defined by function 3 (dh/dt=A) 
OHMI – flag activating inner sources calculation 
KAPPA(1) – electric conductivity of media (in this case material of plate, group 1)  
KAPPAF(1) – electric conductivity [S/m] of fouling layer  
TE(1) – external temperature [0C] for elements in group RCONST = 1 
UE(1) – external voltage [V] for elements in group RCONST=1 
KX(1) – thermal conductivity [W/m/K] for elements in group MPROP=1 
KXF(1)- thermal conductivity [W/m/K] of fouling layer 

Status of voltage and temperature is changed to 21 on curve 3 – it means 
that at this part of boundary Newton’s boundary conditions are 
prescribed. Value of nodal parameter VOLT is reciprocal electric 
resistence (1010 is a very high conductivity of metalic electrode) and heat 
transfer coefficient of parameter TEMP (100 – corresponds for example 
water cooled electrode) 
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2.2.1.8.How to calculate integral quantities (mean temperatures, heat flux,...) 
 
 An arbitrary function defined either by FUNDEF as an expression or by CURDEF as a table 
can be integrated along a curve (CR) or on a surface (SF) using commands IC (Integrate on Curve) or 
IS (Integrate on Surface)9. You can use a system function DOF(parameter_name, zone, x,y,z), giving 
value of any selected nodal parameter DOF in an arbitrary point x,y,z as a part of the integrand 
definition. The command BOX should be issued before the function DOF calling because the BOX 
command creates the file $RUNBOX.BIN defining correspondence between a general point x,y,z, and 
an element enclosing the point (this information is necessary for efficient interpolation of nodal 
parameters). We shall illustrate the procedure on example of calculation of the mean temperature on a 
selected surface.  
 
BOX 0.3; 
FUNDEF 11,DOF(TEMP,2,XX,YY,ZZ); 
FUNDEF 12,1; 
IS 1,11; 
S=INTEGRAL 
IS 1,12; 
DISP S/INTEGRAL 
 
 
EXIT 
 

2.2.1.9.How to define more complicated functions  
 
 FUNDEF and CURDEF allow to define only simple functions. For example CURDEF enables 
to define a table with maximum of only 8 points. This restriction can be overcome easily by calling 
system function CVT(i,x), interpolating data in the i-th column of sufficiently large matrix of 
observation points, where the first column is independent variable x (e.g. time, temperature, 
coordinate,…). This approach will be explained in more details later in the RTD analysis.  
 In the case that a function cannot be defined as a single algebraic expression by FUNDEF, it is 
possible to define this function as a program in a script language used by FEMINA for interpreting 
commands or models. While the standard functions are referred by indices -10 up to 60 the extended 
functions are referred by indices -105, -104,-103,-102,-101 and 101,102,103,104,105 (negative indices 
for definition of Dirichlet boundary conditions, positive indices for Newton’s boundary conditions, for 
variable material properties, or for more complicated initial conditions). The extended model definition 
is in fact identical with the description of models usually used for RTD models (see later) and the 
whole procedure will be explained on example: Functions, which we are going to use, must be written 
as a text into a file (for example with the name func1.mdt)  
 
\\ini 
if temp>100 then yv(1)=c+d*temp+e*temp**2 else yv(1)=a+b*temp 
yv(2)=f*time*exp(-g*time) 
\\ 
 
This definition file has to be announced to FEMINA in the initialisation file $FEMINA.CMD, where 
keywords (e.g. F1) are assigned to the model definition files (e.g. func1.mdt). 
… 
\\model 
f1 func1.mdt 
… 
The selected model must be activated using the command RM keyword, and for example RM F1 reads 
and compiles the file func1.mdt. Since then two new functions having indices 101 and 102 (and at the 
                                                           
9 It is also possible to calculate integrals over selected finite elements using INTGEL DOF,function,... see example 2.2.1.12 

End of  FEMINA 

Function number 11 is defined as a temperate in a general point x,y,z, and function 
12 as identity (we shall use it for calculation of area). The command IS 1,11 
calculates integral of temperature across a surface number 1 and result is in 
variable INTEGRAL. We save the value into variable S and calculate area by 
repeated integration IS 1,12. Mean temperature is then S/INTEGRAL. 
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same time -101, -102 for strong boundary conditions) are available and their values are elements 
YV(1) and YV(2) in the model definition file above.  
 The extended functions 101,...,105 or -101,...,-105, defined in terms of the *.mdt script file, can 
be used whenever it is necessary to perform a more specific actions: for example if we need to 
prescribe boundary condition or a source at a node, and intensity of the source is to be calculated by 
integration of flowrate (element parameter). Example of a more complicated function, describing 
attenuation of radiation in a mixed vessel with internal baffles, will be presented later, in chapter 2.5. 
The extended functions can be also used as „hooks“, called at the beginning of each time step of the 
FE solution – index of this function must be specified in the menu OPTION (in this case the script file 
makes use the variable I which informs us of the type of operation, I=1-voltage, I=2-flow, I=3-thermal, 
I=4,5,6-concentrations, I=7-stress analysis).  
 

2.2.1.10. Advanced meshing 
 

Meshing is a formation of elements and nodes (finite element entities) using information from a 
geometrical model. In the previous paragraphs and also in most of the following chapters the so called 
parametric meshing is used, based upon decomposition of complex geometrical model to simple 
forms, like surfaces with three or four sides (curves) or in the case of 3D into hexahedral “bricks”. 
These simple elements are covered by a structured mesh of M x N elements. Parametric meshing 
results in a mesh which is quite under your control and you can draw a mesh approximately by hand or 
you can calculate the number of generated elements in advance. However, sometimes it is rather 
laborious to decompose a model into many small surfaces and volumes, and still, especially if you are 
working with parametrically defined geometry (for example if the radius and the position of the hole in 
rectangle is defined by variables), an optimum meshing need not be achived. In this case it is better to 
use automatic generators of triangular mesh, which fills a region defined by a contour. The contour is 
nothing else than the list of succesive curves, which is closed. The list of curves is created by the 
command CT index of contour and the counter-clockwise oriented list of curves is specified by mouse 
(left-click, right-click as usually).  

The command MRG (Mesh ReGion) is capable to fill interior of only one region and therefore 
in the case of multiply connected regions you have to include inner boundaries into a one closed 
contour for example in the way shown in the following figure 

 
 Further on it is desirable to specify location of nodes along the contour, it means at curves 
defining this contour. This is done by the command  
 

CRN index of curve, number of nodes, last/first  
 
with parameters having the same meaning as parameters of the command MSF used previously. The 
parameter last/first determines uniformity of distribution of nodes along the curve10 
 
last/first > 1                                                                0< last/first < 1 
 
last/first< -1                                                               -1<last/first <0 
                                                           
10 Values last/first=1 or –1 correspond to uniform distribution of nodes (equidistant nodes). 
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The command CRN does not create nodes, it only assigns the specified parameters to selected curve 
and this information is used later by the command MRG  
 
MRG index of contour, number of nodes, number of internal nodes, default number of nodes on 
curve, smoothing iterations, subdivision of triangles, attractivity of boundary nodes, size, near 
 
The MRG command creates triagular elements with 3 or 6 nodes (this is a restriction with respect to 
the MSF command which enables generation of a more complicated elements). Parameters of MRG 
seems to be complicated, however in most cases default values can be accepted. 
 

We shall demonstrate the whole procedure using previous geometry – rectangle with a hole.  
 

NE=0 
ND=0 
CTR 1,10,5,6,3,2,1,4,6,8,10,12; 
CRN 5,15,1; 
CRN 8,15,1; 
CRN 10,15,1; 
CRN 12,15,1; 
CRN 6,9,1; 
CRN 1,5,1; 
CRN 2,5,1; 
CRN 3,5,1; 
CRN 4,5,1; 
MRG 1,3,0,2,50,0,2,1,1; 
 
 
 
 
 

2.2.1.11.  Processing problem as a batch or by using macro 
 

The whole rather long example is available also as the session file THOLE3.GEO which is a 
part of the installation package. You can run the session either as a batch (command F) or by using the 
command M (macro) step by step or continuously. Batch processing is necessary for solution of 
problems requiring repetition of commands in a loop, macro is better for interactive processing: 
 
M 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The command M activates 
selection of files with postfix 
.GEO for interpretation. 

Step by step or 
continuous run 

Listing of 
selected file
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2.2.1.12. Processing a batch with loops 
 
 This example demonstrates how to prepare a parametric model, how to repeat solution for 
different parameters using a loop, and how to store results. Suitable problem is evaluation of hydraulic 
characteristics of a duct with different cross-sections. Steady and fully developed flow of Newtonian 
liquid in such a duct is described by the following Poisson equation for axial velocity u(x,y) 
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         (2.2.1-9) 

 
where P is an axial gradient of pressure along the duct, divided by viscosity. As soon as we are able to 
solve the distribution of velocity u(x,y) for an arbitrary P, we can calculate hydraulic characteristics, 
relationship between pressure gradient and mean velocity. This characteristic is usually expressed in 
terms of friction factor λ or f (Fanning friction factor), which is indirectly proportional to Reynolds 
number for laminar flows 
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A

=λ           (2.2.1-10) 

 
where A is a constant, that depends only upon the shape of cross section (A=64 for circular cross-
section of pipe, A=96 for very narrow slit). The following batch calculates A for L-profiles with 
different relative thickness of arms H/L=0.025,0.05,…,0.975 solving temperature field which is also 
described by Eq.(9). This approach is an application of principle of analogy between temperature, 
electric of velocity fields. Value P (=1) corresponds to a constant heat source (function =1) and unit 
material properties (unit heat capacity, density and thermal conductivity). 
 
H=.025 
OHMI=1 
K=0 
#LOOP LAB,39; 
K=K+1 
NPT=0 
NCR=0 
NSF=0 
NE=0 
ND=0 
PT 1,0,0; 
PT 2,1,0; 
PT 3,1,H; 
PT 4,H,H; 
PT 5,H,1; 
PT 6,0,1; 
SF4PT 1,1,2,3,4; 
SF4PT 2,1,4,5,6; 
MSF 1,50,40,-1.5,-1.5,4,0; 
MSF 2,40,50,-.150E+01,-1.5,4,0; 
NMERGE ; 
NFCR 1,TEMP,-1,0,0; 
NFCR 2,TEMP,-1,0,0; 
NFCR 3,TEMP,-1,0,0; 
NFCR 5,TEMP,-1,0,0; 
NFCR 6,TEMP,-1,0,0; 
NFCR 7,TEMP,-1,0,0; 
FUNDEF 1,1; 
EGROUP 1,PLANE2D,0,3,0,0,1,0,0,0,0,0,0,0; 
RCONST 1,PLANE2D,1,0,0,0,0,0; 

LOOP will be repeated 
39-times, with increasing 
H (thickness of arm) and 
K (counter) 

Function number 1 defines unit heat source 

H
1
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A

=λ
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MPROP 1,PLANE2D,1,0,1,0,1,0,.400E-01,0,.210E+12,0,.280E+00,0,.120E-04, 
0,0,0,0,0,.100E-08,0,.100E-08,0,.100E-08,0,0,0,0,0,0,0,0,0,0,0; 
SOLVE 0,1,1,0,0,0,1,0,0,0,0; 
INTGEL TEMP,1,1,NE,1; 
C1(K)=H 
C2(K)=INTEGRAL 
C3(K)=2*(2*C1(K)-C1(K)**2)**3/C2(K) 
H=H+.025 
#LABEL LAB; 
NT=39 
GTC 1,3;            
 
 
Remark: In this example the integration over geometrical entities (over surfaces 1 and 2) was 
substituted by numerical integration over elements (command INTGEL instead of INTGSF). In this 
case it is not necessary to use the box operation (BOX) which speeds up computation substantially.  
 
 

2.2.1.13. Debugging 
 
 A short notice at the end of this introductory example: How to debug a problem? What to do 
when your results are obviously wrong or even none? You should realise that the solution is described 
only by finite elements, nodes, EGROUP, RCONST, MPROP groups, by defined functions and by 
parameters of solver. Geometrical entities like points PT, curves CR and so on, are not important and 
need not be checked. Recommended procedure is as follows: 
 
1. Check number of elements, nodes and groups looking at the status window. 
2. Look at the LIST window (or to the *.DBG file), where information about setting of switches 

(coordinate system, steady/transient, upwind, …) and elements used in the problem are displayed.  
3. Use commands ELIST, NDLIST, NFLIST to check elements and nodes. You should identify 

missing boundary conditions, coincident nodes or wrong number of nodes of specified kinds of 
elements (for example PIPE2D should have 2 nodes). Sometimes it is easier to use NID for 
checking boundary conditions (parameters in zone 1) and status of nodal parameters. In the same 
way EID can be used for checking elements and associated groups EGROUP, RCONST, MPROP. 

4. Check functions using FUNLIS (RPN parameter, length of translated function, should be greater 
than zero for each function) or simply by GF (graph of function). 

5. Problems with solution can be caused by improper setting of time step, maximum number of 
iterations, relaxation factor, number of Gauss points for numerical integration, wrong or missing 
material parameters (zero viscosity, thermal conductivity, diffusivity), parameters of elements (e.g. 
zero thickness of plate, zero diameter of tube). Use tables in menu Properties and Solution for 
checking. 

6. Execute RUNFEM.EXE manually after exiting FEMINA program. In this way you can locate 
errors like division by zero, overflow,… 

 
Anyway, FEMINA is not free from errors. In doubts do not hesitate to send a message to the address 
 Rudolf.Zitny@fs.cvut.cz . 
 

Operation INTGEL integrates temperatures multiplied 
by function number 1 (in this case it is identity) over all 
NE finite elements. Result is in the system variable 
INTEGRAL. 
 
Value A in Eq.(10) is placed into 3rd column of matrix 
of observation points with NT=39 rows. This final 
result can be listed by TCL or plotted using GTC  (see 
the Figure above, parameters GTC 1,3 denote only one 
graph, and 3rd column). 
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2.2.2. Phase changes (melting/solidification) 
 

Previous example analysed a steady or transient temperature field in a body (it was a solid 
block, however it could have been a flowing fluid as well) without phase changes. Analysis of freezing 
or melting is more complicated and several different methods can be used: 

The simplest approach is based upon specification of temperature dependent specific heat 
capacity cp(T) in the following way (the function is defined as a table using CURDEF command) 

 
where peek of specific heat capacity 
 

 
depends upon the latent heat r , selected width of the phase change temperature range ∆ and also upon 
specific heats of solid and liquid phases. This method cannot accurately describe an isothermal phase 
change, because the melting temperature range ∆ cannot be zero and in fact must be rather high or the 
time step must be extremely small. 

 FEMINA offers also methods based upon enthalpy balances, 
where melting point Tm [0C] and melting enthalpy hm [J/kg] are 
explicitly specified as material parameters. These methods are 
selected by the parameter Phase Change in the OPTION command 
or in the OPTION menu (selected from the toolbar Solution): 

 
0 - this is the previously described method based upon temperature dependent cp 
1 - two nodal parameters, temperature T and specific enthalpy h, are computed simultaneously.  

The following methods take into account only temperature as a computed nodal parameter, 
enthalpy is calculated internally at an element level and the methods differs by the way how the term 
dh/dT is approximated using the nodal temperatures and associated enthalpies 
2 - Lemmon’s method 
3,4 - Lewis, Morgan  
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5 - Del Guidice. 
 

As an example we shall solve a simple problem of thawing rectangular box of ice, having 
initial temperature T0=-50C, left side is hold at temperature -50C and right side at temperature 200C. 
Temperature of thawing is 00C, latent heat of fusion r is 340 kJ/kg, specific heat of ice cp1=2 kJ/(kg.K), 
specific heat of water cp2=4.2 kJ/(kg.K), thermal conductivity of ice is λ1=2.2 W/(m.K) and thermal 
conductivity of water is λ=0.6 W/(m.K). Density of ice is 917 kg/m3 and density of water 1000 kg/m3. 
All these material parameters are defined as step-wise functions  
 
C* TMELT.GEO melting a frozen box 
ANALYS 2; 
PT 1,.000E+00,.000E+00; 
PT 2,.100E+01,.000E+00; 
PT 3,.100E+01,.100E+01; 
PT 4,.000E+00,.100E+01; 
SF4PT 1,1,2,3,4; 
EGROUP 1,PLANE2D,1,3,0,0,0; 
RCONST 1,PLANE2D,1,0,0,0; 
MPROP 1,PLANE2D,.600E+00,1,4200,2,1000,3, 
.400E-01,0,.210E+12,0,.280E+00,0,.120E-04, 
0,0,0,340000,0; 
CURDEF 1,4,4,-
10,2.2/0.6,0,2.2/0.6,0.001,1,10,1; 
CURDEF 2,4,4,-10,2/4.2,0,2/4.2,.100E-02,1,10,1; 
CURDEF 3,4,4,-10,917/1000,0,917/1000,.100E-02,1,10,1; 
MSF 1,20,5,1,1,3; 
NFCR 4,TEMP,-1,-5,-5; 
NFCR 2,TEMP,-1,20,20; 
FUNDEF 4,-5; 
INITIA TEMP,4; 
OPTION 0,0,0,0,1,0,0,15,.1E-11,1,.1E+08,1,.1E+01,1,0,2,.1E-04,.1E-
04,0,0,0,0,0,0,0, 
SOLVE 0,50,1000,0,0,0,3,0,0,0,0; 
 
Resulting temperature contours up to the time 4.4 millions of seconds (it means approximately 51 
days) for method 2 (Lemmon) are shown in the following figure  
 

 
Temperature profile along the bottom of the block at the last 
time shows, that the temperature profile at the thawed part is 
still nonlinear (and it seems to be suspicious because at this 
time the temperature profile should be steady and λ is a 
constant?) 
Hint: For plotting temperature profiles in a cross section you 
can use a curve passing through nodes and plot selected 
degree of freedom by command GCR. If you want to plot it 
along an arbitrary curve (not passing through nodes), you 
should perform BOX operation first and plot an arbitrary 
function (e.g. FUNDEF 1,DOF(TEMP,2,XX,YY,ZZ)) by 
command GFCR. 

t=5.104 t=1,5.105 t=9.105 t=1,9.106 t=4,4.106
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2.2.3. Ohmic heating 3D 
 

The following example is a 3D model of temperature and electrical field in an electrically 
heated block of solid material with dimensions 8 x 8 cm (bottom) and height 10 cm. It is assumed that 
the block is filled by material having thermodynamic properties of water and that several rather big 
spherical particles with different material properties are located inside the block, see figure  
 
 
 
 
 
 
 
 
 
 
 
 
 
The two opposite sides of block (left and right) represent cooled electrodes maintained at a constant 
temperature 100 C. The remaining sides are electrically insulated, however heat transfer to the ambient 
is considered, assuming constant ambient temperature and heat transfer coefficient α=50 W/(m2K). 
 Problem is described by partial differential equations for steady state balances of heat and 
conservation of electrical charge 
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where λ and κ are thermal and electrical conductivities, T is temperature and U electric potential. 
While temperature as well as electrical potential are fixed at electrodes (x=0 and x=0.08 m), zero 
normal derivative of potential U and Robin’s boundary conditions for temperature 
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are to be applied at lateral faces of box. 
 Geometrical model is represented in this case by a hexahedron with 8 vertices which can be 
created directly from vertices (command VL8PT) or, as will be done in this case, by extrusion of a 
surface in a certain direction (command SFEXTR). To define elements with different properties of 
particles, several auxiliary points PT, defining centres of spheres (of particles) are located inside the 
box. These points and auxiliary surfaces (number 7,8,9) will be located in planes z=0.25, 0.5 and 0.75 
(the surfaces have nothing to do with computation, they will be used for graphic purposes only).  
 
PT 1,.000E+00,.000E+00; 
PT 2,.800E-01,.000E+00; 
PT 3,.800E-01,.800E-01; 
PT 4,.000E+00,.800E-01; 
SF4PT 1,1,2,3,4; 
SFEXTR 1,1,0,0,.1; 
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 Geometrical model is represented in this case by a hexahedron with 8 vertices which can be 
created directly from vertices (command VL8PT) or, as will be done in this case, by extrusion of a 
surface in a certain direction (command SFEXTR). To define elements with different properties of 
particles, several auxiliary points PT, defining centres of spheres (of particles) are located inside the 
box. These points and auxiliary surfaces (number 7,8,9) will be located in planes z=0.25, 0.5 and 0.75 
(the surfaces have nothing to do with computation, they will be used for graphic purposes only).  
 
PT 1,.000E+00,.000E+00; 
PT 2,.800E-01,.000E+00; 
PT 3,.800E-01,.800E-01; 
PT 4,.000E+00,.800E-01; 
SF4PT 1,1,2,3,4; 
SFEXTR 1,1,0,0,.1; 
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2.2.3. Ohmic heating 3D 
 

The following example is a 3D model of temperature and electrical field in an electrically 
heated block of solid material with dimensions 8 x 8 cm (bottom) and height 10 cm. It is assumed that 
the block is filled by material having thermodynamic properties of water and that several rather big 
spherical particles with different material properties are located inside the block, see figure  
 
 
 
 
 
 
 
 
 
 
 
 
 
The two opposite sides of block (left and right) represent cooled electrodes maintained at a constant 
temperature 100 C. The remaining sides are electrically insulated, however heat transfer to the ambient 
is considered, assuming constant ambient temperature and heat transfer coefficient α=50 W/(m2K). 
 Problem is described by partial differential equations for steady state balances of heat and 
conservation of electrical charge 
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While temperature as well as electrical potential are fixed at electrodes (x=0 and x=0.08 m), zero 
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are to be applied at lateral faces of box. 
 Geometrical model is represented in this case by a hexahedron with 8 vertices which can be 
created directly from vertices (command VL8PT) or, as will be done in this case, by extrusion of a 
surface in a certain direction (command SFEXTR). To define elements with different properties of 
particles, several auxiliary points PT, defining centres of spheres (of particles) are located inside the 
box. These points and auxiliary surfaces (number 7,8,9) will be located in planes z=0.25, 0.5 and 0.75 
(the surfaces have nothing to do with computation, they will be used for graphic purposes only).  
 
PT 1,.000E+00,.000E+00; 
PT 2,.800E-01,.000E+00; 
PT 3,.800E-01,.800E-01; 
PT 4,.000E+00,.800E-01; 
SF4PT 1,1,2,3,4; 
SFEXTR 1,1,0,0,.1; 
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ZDEF .025; 
PT 9,.200E-01,.300E-01; 
PT 10,.600E-01,.200E-01; 
PT 11,.400E-01,.600E-01; 
PT 12,.000E+00,.000E+00; 
PT 13,.800E-01,.000E+00; 
PT 14,.800E-01,.800E-01; 
PT 15,.000E+00,.800E-01; 
SF4PT 7,12,13,14,15; 
ZDEF .05; 
PT 16,.400E-01,.400E-01; 
PT 17,.300E-01,.200E-01; 
PT 18,.600E-01,.200E-01; 
PT 19,.000E+00,.000E+00; 
PT 20,.800E-01,.000E+00; 
PT 21,.800E-01,.800E-01; 
PT 22,.000E+00,.800E-01; 
SF4PT 8,19,20,21,22; 
ZDEF 0.075; 
PT 23,.200E-01,.600E-01; 
PT 24,.600E-01,.400E-01; 
PT 25,.500E-01,.200E-01; 
PT 26,.000E+00,.000E+00; 
PT 27,.800E-01,.000E+00; 
PT 28,.800E-01,.800E-01; 
PT 29,.000E+00,.800E-01; 
SF4PT 9,26,27,28,29; 

Having defined geometry, a mesh of 20 x 20 x 20 elements SOLID with 8 nodes can be created using 
MVL command. All the generated elements will have the attribute EGROUP=RCONST=MPROP=1 
by default, however the index of material parameters should have been changed to MPROP=2 for 
elements having gravity centre inside the spheres with centres PT=9,10,… (MPROP=1 describes 
properties of liquid and MPROP=2 properties of spherical particles inside the box). This change can be 
accomplished by repeating use the command ERMOD (Egroup,Rconst,Mprop mODification). 
 
MVL 1,20,20,20,1,1,1,8; 
EGROUP 1,SOLID,0,2,0,1,0; 
MPROP 1,SOLID,.600E+00,0,4200,0,998,0,.400E-01,0,.100E-02,0,.500E-03,0,.100E-
08,0,0,0,0,0; 
MPROP 2,SOLID,1.,0,2500,0,1500,0,0.15,0,1,0,0,0,0,0,0,0,0,0; 
ERMOD 0,9,.013,1,1,2; 
ERMOD 0,10,.009,1,1,2; 
ERMOD 0,11,.006,1,1,2; 
ERMOD 0,16,.015,1,1,2; 
ERMOD 0,17,.009,1,1,2; 
ERMOD 0,18,.015,1,1,2; 
ERMOD 0,23,.013,1,1,2; 
ERMOD 0,24,.017,1,1,2; 
ERMOD 0,25,.015,1,1,2; 
 
 3D graphic allows to rotate coordinate axis (x,y,z) by specified angles using the command 
VIEW 0, ϕx, ϕy, ϕz . It is also possible to select axonometric projection by specifying position of 
observer’s eye using VIEW 1, xeye, yeye, zeye. The command EPLOT for element plotting can be 
specified in such a way, that only the elements having index MPROP=2, e.g. elements inside 
„particles”, will be plotted: 
 

Surface 4 - electrode

Surface 6 - electrode

EGROUP specifies type of elements (SOLID), steady state solution (0) and 
number of Gauss points (2 x 2 x 2). Note: If only one Gauss point of integration 
is used, results exhibit slight oscillations. 
The command MPROP 1,… defines  „liquid“ while the command MPROP 2,… 
spherical „particles“. Each particle is described by the command  
ERMOD Sphere(0)/Cube(1),center,radius,EGROUP,RCONST,MPROP. 
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ERMOD 0,17,.009,1,1,2; 
ERMOD 0,18,.015,1,1,2; 
ERMOD 0,23,.013,1,1,2; 
ERMOD 0,24,.017,1,1,2; 
ERMOD 0,25,.015,1,1,2; 
 
 3D graphic allows to rotate coordinate axis (x,y,z) by specified angles using the command 
VIEW 0, ϕx, ϕy, ϕz . It is also possible to select axonometric projection by specifying position of 
observer’s eye using VIEW 1, xeye, yeye, zeye. The command EPLOT for element plotting can be 
specified in such a way, that only the elements having index MPROP=2, e.g. elements inside 
„particles”, will be plotted: 
 

Surface 4 - electrode

Surface 6 - electrode

EGROUP specifies type of elements (SOLID), steady state solution (0) and 
number of Gauss points (2 x 2 x 2). Note: If only one Gauss point of integration 
is used, results exhibit slight oscillations. 
The command MPROP 1,… defines  „liquid“ while the command MPROP 2,… 
spherical „particles“. Each particle is described by the command  
ERMOD Sphere(0)/Cube(1),center,radius,EGROUP,RCONST,MPROP. 
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ZDEF .025; 
PT 9,.200E-01,.300E-01; 
PT 10,.600E-01,.200E-01; 
PT 11,.400E-01,.600E-01; 
PT 12,.000E+00,.000E+00; 
PT 13,.800E-01,.000E+00; 
PT 14,.800E-01,.800E-01; 
PT 15,.000E+00,.800E-01; 
SF4PT 7,12,13,14,15; 
ZDEF .05; 
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PT 29,.000E+00,.800E-01; 
SF4PT 9,26,27,28,29; 

Having defined geometry, a mesh of 20 x 20 x 20 elements SOLID with 8 nodes can be created using 
MVL command. All the generated elements will have the attribute EGROUP=RCONST=MPROP=1 
by default, however the index of material parameters should have been changed to MPROP=2 for 
elements having gravity centre inside the spheres with centres PT=9,10,… (MPROP=1 describes 
properties of liquid and MPROP=2 properties of spherical particles inside the box). This change can be 
accomplished by repeating use the command ERMOD (Egroup,Rconst,Mprop mODification). 
 
MVL 1,20,20,20,1,1,1,8; 
EGROUP 1,SOLID,0,2,0,1,0; 
MPROP 1,SOLID,.600E+00,0,4200,0,998,0,.400E-01,0,.100E-02,0,.500E-03,0,.100E-
08,0,0,0,0,0; 
MPROP 2,SOLID,1.,0,2500,0,1500,0,0.15,0,1,0,0,0,0,0,0,0,0,0; 
ERMOD 0,9,.013,1,1,2; 
ERMOD 0,10,.009,1,1,2; 
ERMOD 0,11,.006,1,1,2; 
ERMOD 0,16,.015,1,1,2; 
ERMOD 0,17,.009,1,1,2; 
ERMOD 0,18,.015,1,1,2; 
ERMOD 0,23,.013,1,1,2; 
ERMOD 0,24,.017,1,1,2; 
ERMOD 0,25,.015,1,1,2; 
 
 3D graphic allows to rotate coordinate axis (x,y,z) by specified angles using the command 
VIEW 0, ϕx, ϕy, ϕz . It is also possible to select axonometric projection by specifying position of 
observer’s eye using VIEW 1, xeye, yeye, zeye. The command EPLOT for element plotting can be 
specified in such a way, that only the elements having index MPROP=2, e.g. elements inside 
„particles”, will be plotted: 
 

Surface 4 - electrode

Surface 6 - electrode

EGROUP specifies type of elements (SOLID), steady state solution (0) and 
number of Gauss points (2 x 2 x 2). Note: If only one Gauss point of integration 
is used, results exhibit slight oscillations. 
The command MPROP 1,… defines  „liquid“ while the command MPROP 2,… 
spherical „particles“. Each particle is described by the command  
ERMOD Sphere(0)/Cube(1),center,radius,EGROUP,RCONST,MPROP. 
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Boundary conditions are to be applied on the surface of cube. This is especially easy for electric 
potential, where strong boundary conditions are specified only on surfaces 4 and 6 (electrodes), while 
natural boundary conditions hold on the remaining sides (insulation). Boundary conditions of the third 
kind are applied on sides 1,2,3,5 for heat transfer, by setting status of nodes to 21. Then the specified 
nodal parameters are interpreted as the heat transfer coefficient α. Ambient temperature is parameter 
of RCONST and can be set by assignment TE(i)=value, where i is index of the RCONST group. 
 
TE(1)=100 
NFSF 4,VOLT,-1,0,0,0,0; 
NFSF 6,VOLT,-1,100,100,100,100; 
NFSF 6,TEMP,-1,10,10,10,10; 
NFSF 4,TEMP,-1,10,10,10,10; 
NFSF 1,TEMP,21,50,50,50,50; 
NFSF 2,TEMP,21,50,50,50,50; 
NFSF 3,TEMP,21,50,50,50,50; 
NFSF 5,TEMP,21,50,50,50,50; 
 
Calculation of internal heat source can be set either by command OPTION or by using system variable 
OHMI (volumetric heating by electric current). Because steady state and constant properties are 
considered, only one time step and one iteration is sufficient:  
 
OHMI=1 
SOLVE 100,1,100,0,1,0,1,0,0; 
 
Command GFSF will be used for drawing contours of an interactively defined function on a selected 
surface. Because we need to plot nodal parameters TEMP and VOLT, we shall define functions 
number 1 and 2 as standard interpolating function DOF, calculating values of any nodal parameter in 
an arbitrary point x,y,z. This function DOF requires an auxiliary file, assigning finite elements to grid 
points, voxels, of a fine and uniform Cartesian grid (this file helps in fast search for element enclosing 
specified point x,y,z). This file is created by the command BOX. 
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BOX .5; 
FUNDEF 1,DOF(TEMP,2,XX,YY,ZZ); 
FUNDEF 2,DOF(VOLT,2,XX,YY,ZZ); 

 

Contours of voltage plotted on auxiliary surfaces 7,8,9 by command GFSF 7,2,0,100 
(function.2 on surface 7 in the range of voltage 0 - 100V. Points PT 23,24,25 are 
centres of spheres, where electrical conductivity is about 4 x higher and disturbs 
otherwise homogeneous electrical field. 

GFSF 7,1,0,100 (function 1, temperature, surface 7). 
This is stationary temperature field having maximum 
slightly higher than the ambient temperature. Non-
homogeneities are not so apparent ??
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2.2.4. Concentration of tracer in a pipe (stimulus response experiment) 
 
 In the same way as a temperature field, a concentration field cN(t,x,y) can be calculated, 
because transport equations for temperature and concentration are in principle the same.  
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If velocities u,v are known, it will be possible to predict responses to a tracer injection by solving 
transient concentration field cN(t,x,r). In the following example we shall consider seemingly trivial 
case: fully developed laminar flow in a straight pipe with velocity profile 
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where r is radial coordinate, d is diameter of tube, and u is mean velocity. If a tracer will be injected at 
inlet uniformly, it’s concentration will be a function of only two spatial coordinates x,r and the 
problem can be formulated as a 2D case, using the same elements PLANE2D as previously.  
 
 
 
 
 
 
 
 
 
 
 
 
 

2.2.4.1. Two dimensional solution of tracer distribution by Galerkin method 
 

The problem can be described and solved by the following program 
INTEGER NX,NY 
H=1 
R=0.01 
U=0.1 
W=3*H/U 
NX=50 
NY=30 
L=400 
PT 1,0,0; 
PT 2,H,0; 
PT 3,H,R; 
PT 4,0,R; 
SF4PT 1,1,2,3,4; 
MSF 1,NX,NY,1,.5,3; 
BOX 0.3; 
FUNDEF 1,2*U*(1-(YY/R)**2); 
FUNDEF 2,YY*U*(1-(YY/R)**2)*DOF(CN,3,H,YY,0) 
FUNDEF 3,YY*DOF(CN,3,H,YY,0) 
INITIA VX,1; 
INITIA VY,0; 
AXIS(1)=1 
UPW=1 
EGROUP 1,PLANE2D,1,3,1,0,0; 
CURDEF -1,0,4,0,0,W/L,1,2*W/L,1,3*W/L,0,W,0; 
NFCR 4,CN,-1,1,1; 
INITIA CN,0; 
SOLVE 0,L,W/L,0,0,0,0,1,0; 

User variables are used for parametric definition of geometry, mesh and 
boundary conditions: H-length of pipe, R-radius, U-mean velocity, W-
maximum time, L-number of time steps, NX x NY mesh. 

Operation BOX is something new. This operation is necessary if we want interpolate calculated nodal 
values (concentrations CN) to any point x,y,z. This operation creates direct access file assigning 
corresponding element to any grid point of a rectangular box enclosing a geometric model.  

Three functions are defined: function no.1 is radial 
velocity profile, function no.2 is used for calculation 
of mean mass concentration and function 3 will be 
used for calculations of area mean concentration. 
Because the command BOX has been performed, it is 
possible to use the system function 
DOF(param,zone,x,y,z) interpolating nodal values of 
param to a point x,y,z. Zone=3 indicates the zone of 
initial conditions.

Time course of tracer concentration at inlet is defined 
in form of a table as the function -1. NFCR uses this 
function at inlet (inlet is the curve no 4). 

wall 

Tracer 
injection

L=1m 

response 

EGROUP sets transient solution, 
3 Gauss points, and cylindrical 
coordinate system for PLANE2D.

Use GF to plot the 
stimulus function 

Use GD2 to plot 
the CN distribution 
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 In the same way as a temperature field, a concentration field cN(t,x,y) can be calculated, 
because transport equations for temperature and concentration are in principle the same.  
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If velocities u,v are known, it will be possible to predict responses to a tracer injection by solving 
transient concentration field cN(t,x,r). In the following example we shall consider seemingly trivial 
case: fully developed laminar flow in a straight pipe with velocity profile 
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where r is radial coordinate, d is diameter of tube, and u is mean velocity. If a tracer will be injected at 
inlet uniformly, it’s concentration will be a function of only two spatial coordinates x,r and the 
problem can be formulated as a 2D case, using the same elements PLANE2D as previously.  
 
 
 
 
 
 
 
 
 
 
 
 
 

2.2.4.1. Two dimensional solution of tracer distribution by Galerkin method 
 

The problem can be described and solved by the following program 
INTEGER NX,NY 
H=1 
R=0.01 
U=0.1 
W=3*H/U 
NX=50 
NY=30 
L=400 
PT 1,0,0; 
PT 2,H,0; 
PT 3,H,R; 
PT 4,0,R; 
SF4PT 1,1,2,3,4; 
MSF 1,NX,NY,1,.5,3; 
BOX 0.3; 
FUNDEF 1,2*U*(1-(YY/R)**2); 
FUNDEF 2,YY*U*(1-(YY/R)**2)*DOF(CN,3,H,YY,0) 
FUNDEF 3,YY*DOF(CN,3,H,YY,0) 
INITIA VX,1; 
INITIA VY,0; 
AXIS(1)=1 
UPW=1 
EGROUP 1,PLANE2D,1,3,1,0,0; 
CURDEF -1,0,4,0,0,W/L,1,2*W/L,1,3*W/L,0,W,0; 
NFCR 4,CN,-1,1,1; 
INITIA CN,0; 
SOLVE 0,L,W/L,0,0,0,0,1,0; 

User variables are used for parametric definition of geometry, mesh and 
boundary conditions: H-length of pipe, R-radius, U-mean velocity, W-
maximum time, L-number of time steps, NX x NY mesh. 

Operation BOX is something new. This operation is necessary if we want interpolate calculated nodal 
values (concentrations CN) to any point x,y,z. This operation creates direct access file assigning 
corresponding element to any grid point of a rectangular box enclosing a geometric model.  

Three functions are defined: function no.1 is radial 
velocity profile, function no.2 is used for calculation 
of mean mass concentration and function 3 will be 
used for calculations of area mean concentration. 
Because the command BOX has been performed, it is 
possible to use the system function 
DOF(param,zone,x,y,z) interpolating nodal values of 
param to a point x,y,z. Zone=3 indicates the zone of 
initial conditions.

Time course of tracer concentration at inlet is defined 
in form of a table as the function -1. NFCR uses this 
function at inlet (inlet is the curve no 4). 

wall 

Tracer 
injection

L=1m 

response 

EGROUP sets transient solution, 
3 Gauss points, and cylindrical 
coordinate system for PLANE2D.

Use GF to plot the 
stimulus function 

Use GD2 to plot 
the CN distribution 
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2.2.4.2. How to evaluate response (mean concentration of tracer at outlet) 
 

The calculated time history of concentration is saved in the file problem.OUT. Responses 
should have been in fact integrals of concentrations across the cross-section of pipe and these integrals 
can be calculated using the command IC (integral on CR) repeatedly at selected time steps. These time 
steps need not be necessary the same as those used in solution of transient problem, because the 
operation LTN time interpolates reloaded values from the file OUT to an arbitrary specified time. 
Result of integration must be transferred to the so called matrix of observation points (MOP), so that it 
would be possible to normalise and plot these time responses, to calculate moments and so on. Ten 
columns of MOP are accessible using system vectors C1(i),C2(i),…,C10(i) and we shall use the first 
column C1(i) for time, the second and the third columns for responses c2 and c3 

        ∫=
2/

0
3 ),,()(

d

drtrLrctc .    (2.2.4-3,4) 

 
You can see, that the integrands of c2 and c3 have been yet defined as functions 2 and 3, respectively. 
Because the integration must be carried out at several tenths of time step, it would be very inefficient 
to repeat the operation manually. This is just the case, when it is better to use a batch file with #LOOP 
command: 
 
RECORD GTIME 
 I=0 
 T=0 
 NT=50 
 #LOOP LAB,NT; 
 I=I+1 
 LTN T; 
 C1(I)=T 
 IC 2,2 
 C2(I)=INTEGRAL 
 IC 2,3 
 C3(I)=INTEGRAL 
 T=T+0.5 
 #LABEL LAB; 
ENDREC 
 
After the batch has been processed (F GTIME) it is possible to normalise responses (NORM), plot 
them (GTC), and calculate moments (MOM): 
 

 

This batch calculates always 50 points at times 0,0.5,1,1.5,…,24.5 no matter 
which time step has been used in FEM solution. 
 
I-row of the matrix of observation points, T-temporary time, NT-number of 
evaluated time steps (number of loops). For example command IC 2,3 
calculates integral on curve 2 of function number 3. Result of operation IC is 
always in the system variable INTEGRAL. 

This is where the loop begins and ends 

Responses to pulse evaluated at the end of pipe 
L=1m, d=0.02m, mean velocity u=0.1 m/s, 
D=10-8 m2/s  (very similar results also for 10-9)

∫= drtrLcrrutc ),,()()(2 , t =10.5 s

∫= drtrLrctc ),,()(3

∫= drtrLcrrutc ),,()()(2 ,  t =10 s 

The same data, but D=10-6 m2/s 

∫=
2/

0
2 ),,()()(

d

drtrLcrrutc
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Results show, that the responses depend strongly upon the diffusion coefficient. If it is small 
(of the order 10-8 or less, typical values for liquids), problem with numerical dispersion appears, 
because Peclet number of element is extremely high (of the order 105 !) and solution exhibits slight 
deficiencies at axis, no matter that the full upwind has been applied. Even at D=10-6 the Peclet number 
is still rather high, however the solution is smoother and quite different (radial diffusion starts to be 
significant), which is apparent from the quite different time responses (it is remarkable that the 
evaluated mean residence times more or less agree with the theoretical value 10.1 s).  

 
2.2.4.3. Comparison with 1D solution – axial dispersion model  

 
In the following chapters we shall demonstrate applications of simple 1D elements PIPE2D 

based upon the model of axial dispersion, with the dispersion coefficient De calculated according to the 
Taylor (1953), Aris (1958) theory 
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derived for laminar and Newtonian flow (it means for the same parabolic velocity profile as in the 2D 
case). This model is quite good if the diffusion coefficient D is at least ten times larger than the ratio of 
volumetric flow-rate and the length of pipe. This restriction holds e.g. for D=10-5 m2/s and 
corresponding results are shown in the figure left together with responses calculated from 2D models. 
It seems that in this case the simple 1D model of axial dispersion using only 30 elements is more 
accurate and insensitive to numerical dispersion than the 2D model with 3000 elements. The figure in 
right looks different: Diffusion coefficient is ten times lower (but still about 3 orders greater than a 
typical value for liquids) and the model of axial dispersion is not able to describe the impulse response 
correctly, because convection dominates in the tracer transport.  

 

 
What is apparent: Responses calculated from the 2D model are distorted by numerical diffusion, 
because results obtained using the same mesh and the same time step, but once with and once without 
upwind, differ considerably and it is obvious that the upwind increases the response variances . 
 

2.2.4.4. Two dimensional solution using method of characteristics  
 
 An attempt how to decrease the numerical dispersion is the method of characteristics. This 
method decomposes the time step ∆t into two phases. The first purely convective phase calculates 
trajectories starting from nodes at time t+ ∆t and ending at time t somewhere (these trajectories are 
characteristics of transport equation, along which the concentration remains constant). The trajectories 

Laminar flow in pipe, L=1m, d=0.02m.
 D=10-5 m2/s > 0.08 LV /& =0.25·10-5 
Mesh 50 x 30, ∆t=0.075 s 

Taylor Aris, Galerkin

Taylor Aris, upwind 

2D, Galerkin 

2D, upwind 

Laminar flow in a pipe D=10-6 m2/s, 
convection dominates  

2D Galerkin

2D upwind

Axial dispersion 
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are calculated from velocity field by numerical integration with a finer time step ∆t/M. If the trajectory 
ends inside an element, the concentration at time t is obtained by interpolating nodal values, otherwise 
it had to cross the boundary somewhere at inlet. Then the time of crossing is estimated and initial 
concentration is calculated from specified boundary condition at the nearest boundary node. The 
second phase of time step is pure diffusion, solved by a classical Galerkin method with zero velocities. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This result obtained by the method of characteristics seems promising, because responses calculated 
with a coarser mesh and a higher time step compare well with the previous result. 
Comparison between method of characteristics, Galerkin and Galerkin Petrov methods is shown in the 
following figure, calculated with the same mesh (30 x 30) and the same time step. Diffusion 
coefficient corresponds to liquids, and therefore is much lower, D=10-9 m2/s.  

 
The theoretical impulse response, given by the expression, see Thýn (2000), 

3)/(2
1)(

tt
tE =   for 2/tt >      (2.2.4-7) 

describes pure convection, and can be used as a reference response. It is obvious, that in this case the 
method of characteristics is superior, however it is not fool proof, sometimes fails and therefore the 
method is still under development. 
 

D=10-6 m2/s method of characteristics, 
mesh 30 x 20, ∆t=0.1 s, M=20

2 s

4 s
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D=10-9, 30 x 30, ∆t=0.15 s 
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upwind 
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response 
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concentration is calculated from specified boundary condition at the nearest boundary node. The 
second phase of time step is pure diffusion, solved by a classical Galerkin method with zero velocities. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This result obtained by the method of characteristics seems promising, because responses calculated 
with a coarser mesh and a higher time step compare well with the previous result. 
Comparison between method of characteristics, Galerkin and Galerkin Petrov methods is shown in the 
following figure, calculated with the same mesh (30 x 30) and the same time step. Diffusion 
coefficient corresponds to liquids, and therefore is much lower, D=10-9 m2/s.  

 
The theoretical impulse response, given by the expression, see Thýn (2000), 

3)/(2
1)(

tt
tE =   for 2/tt >      (2.2.4-7) 

describes pure convection, and can be used as a reference response. It is obvious, that in this case the 
method of characteristics is superior, however it is not fool proof, sometimes fails and therefore the 
method is still under development. 
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Note: If you want to plot several responses in one graph (GTC), use the command TCF for copying 
columns in matrix of observation points, and for creation responses defined by an analytical formula, 
e.g. the command TCFR 10,60,c3=1/c1**3 defines values in the third column and in the rows 
10,11,…,60 as a function 1/t3. 
 
Note: You can use system variables for selection of solution methods, e.g. HEPI=3 selects method of 
characteristics (solution method=3), RUPW=0.5 sets Galerkin Petrov method with optimum upwind 
reduced by coefficient 0.5. The same effect can be accomplished by using the OPTION command or 
its dialog equivalent selected from the toolbar Solution and item Option : 

 

Method of characteristics >0

Switch between Galerkin (0) 
and Galerkin Petrov (>0). 
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2.2.5. Laminar flow (stream function)  
 
FEMINA offers several methods for solution of two-dimensional flow field, i.e. for finding 

velocities and pressures of an incompressible liquid in laminar flow regime. One group of the methods 
(CREE, PSIN, CARE) is based upon the flow description by the stream function ψ and this approach 
has the advantage that the continuity equation is automatically satisfied. This is a direct consequence 
of the stream function definition which is tied together with velocity components by the following 
relations:  

 
 
 
 
 
 
 
 
 
CREE method calculates steady-state creeping flow of Newtonian or even non-Newtonian 

liquids by minimizing dissipation of energy F, expressed in terms of stream function ψ, (δF(ψ)=0), 
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Only the degrees of freedom PS, PSX, PSY - values of the stream function and its first derivatives, are 
used in the solution, while velocities VX, VY are derived from ψ afterwards. If viscosity µ is constant 
no iteration is necessary because the creeping flow is described by linear Stokes equation and 
therefore the CREE method is suitable as an initial approximation for higher Reynolds number flows 
solved by the method PSIN. The method PSIN is derived from Navier Stokes equations with 
eliminated pressure terms (shortly: momentum equation in the direction x is differentiated with respect 
y and subtracted from the y-equation differentiated with respect x; thus the pressure are cancelled). 
Remaining velocity terms in resulting equation are expressed in terms of stream function ψ:  
 

PSIN  ψµψρ 42 ∇=∇
Dt
D .        (2.2.5-6) 

 
The method PSIN makes use the same degrees of freedom and the same boundary conditions 

as CREE, but calculates unsteady solution and the influence of inertial terms is considered (it is 
suitable for Re only slightly greater than 0, because “upwind” is not implemented, see later). CREE 
and PSIN methods are implemented for triangular elements with three nodes only11 – this restriction 
does not apply to the CARE method which solves the stream function ψ and the vorticity ω 
simultaneously, and makes use of simpler base functions (therefore quadrilateral elements can be also 
used). The CARE method follows from the formulation (2.2.5-6) by introducing vorticity ω 

 

CARE  ψω 2∇=
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Dt
D  .  (2.2.5-7) 

 
The ψ-ω method is suitable even for higher values of Reynolds numbers due to implementation 

of Galerkin-Petrov upwind method.
 
 

                                                           
11 At least cubic polynomials having continuous first derivatives at nodes must be used for approximation of ψ(x,y) because 
also second derivatives (and not only first derivatives) appear in integrands of both the CREE and PSIN method. 

Plane flow  
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Method selection in the dialog Egroup 
(toolbar Properties). The same effect would 
have the command TYPE(1)=CARE.
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2.2.5.1. Steady laminar flow in a planar channel (CREE and PSIN) 
 
As an example of the described methods the analysis of laminar flow in a planar channel with 

geometry shown in the following figure will be presented (Cartesian coordinate system, the channel is 
symmetrical with respect to x – axis and dimensions are designed for Reynolds numbers of around 
100) 

 
 
When using the stream function, values of ψ and their first derivations at the inlet section must 

be specified. We will assume a fully developed parabolic velocity profile at the inlet 
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yyuy −=ψ .    (2.2.5-8,9) 

The mean velocity at the inlet section is taken as 0.00025 m/s, and the corresponding mean velocity in 
the expanded outlet section is 0.00005 m/s (Hinlet=0.2 m, Houtlet=1 m). Hydraulic diameter De measured 
at the outlet is double of the channel width, i.e. 2m. If water is used as a model liquid (viscosity 1 
mPa.s), the Reynolds number at the outlet section will be Reoutlet=100 which is the same as Reinlet=100 
at the inlet section (product of the mean velocity and diameter is constant in a planar channel). We 
estimate the channel length so that the model region would contain the velocity profile evolution 
behind the expansion according to relation 

Re05.0=
eD

L .          (2.2.5-10) 

 
C* Opening test date:22.04.03 at 08:53 
ANALYS 2; 
SCALE -.500E-02,12,-.500E-02,.6; 
PT 1,.000E+00,.000E+00; 
PT 2,.000E+00,.100E+00; 
PT 3,.100E+01,.100E+00; 
PT 4,.100E+01,.000E+00; 
PT 5,1.100E+01,.000E+00; 
PT 6,1.100E+01,.100E+00; 
PT 7,1.100E+01,.500E+00; 
PT 8,.100E+01,.500E+00; 
SF4PT 1,1,4,3,2; 
SF4PT 2,4,5,6,3; 
SF4PT 3,3,6,7,8; 
EGROUP 1,FLOW2D,0,7,0,CREE,0; 
MSF 1,3,5,1,1,3; 

Axis ( ψ=0)

Wall (velocity 0, ψ=0.000025)

Parabolic velocity profile 
at the outlet 
ψ=0.000075*Y-0.0001Y3

Parabolic velocity profile at 
the inlet 
ψ=0.0000375*Y-0.0125Y3

H/2=0.5

Elements FLOW2D. The CREE method is selected (creeping flow) and 
used for calculationof initial conditions: only one iteration is needed in 
this case (if the viscosity and density are constant). 

NEW! You can define inlet velocity profiles 
(parabolic, logarithmic, uniform) also using the 
command INLET 
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MSF 2,30,5,1.5,1,3; 
MSF 3,30,20,1.5,-1.5,3; 
NMERGE ; 
FUNDEF -2,0.000375*YY-.0125*YY**3; 
FUNDEF -3,0.000075*YY-0.0001*YY**3; 
FUNDEF -4,0.000375*(1-100*YY**2); 
NFCR 4,PS,-2,1,1; 
NFCR 4,PSX,-1,0,0; 
NFCR 4,PSY,-4,1,1; 
NFCR 1,PS,-1,0,0; 
NFCR 1,PSX,-1,0,0; 
NFCR 5,PSX,-1,0,0; 
NFCR 5,PS,-1,0,0; 
NFCR 3,PSX,-1,0,0; 
NFCR 3,PSY,-1,0,0; 
NFCR 10,PSY,-1,0,0; 
NFCR 10,PSX,-1,0,0; 
NFCR 9,PSX,-1,0,0; 
NFCR 9,PSY,-1,0,0; 
NFCR 3,PS,-1,0.000025,0.000025; 
NFCR 10,PS,-1,0.000025,0.000025; 
NFCR 9,PS,-1,0.000025,0.000025; 
NFCR 6,PSX,-1,0,0; 
NFCR 8,PSX,-1,0,0; 
NFCR 6,PS,-3,1,1; 
NFCR 8,PS,-3,1,1; 
SOLVE 0,1,1,0,0,1,0,0,0; 
 
 
 
EGROUP 1,FLOW2D,0,7,0,PSIN,0; 
RELFAKT=.3 
OPTION 0,0,0,1,0,15,.100E-11,.1,.100E+08,1,.100E-04,.100E-04,0,20,0,0,0; 
 
 The method PSIN solves the unsteady Navier-Stokes equation (the parameter Steady/Transient 
of the EGROUP command is ignored, the type of solution is always Transient if the method PSIN is 
selected). It is necessary to specify the time step and number of iterations even if the aim is a steady-
state solution. A rough estimate about the time scale can be obtained from the ratio of the channel 
length (L=10 m) and the mean velocity (0.00005 m/s), i.e. 200000 s. The time step is chosen 20 times 
lower, i.e. 10000 s. 
 
SOLVE 10,3,10000,0,0,20,0,0,0; 
 
Note: The main problem in solution of the Navier-Stokes equation is a convergence which can be 
influenced primarily by the time step and eventually by the underrelaxation factor (see command 
RELFAKT=0.3). The final solution is usually obtained through a repeated sequence of computations 
with different time steps. The essential thing is that the procedure SOLVE updates initial conditions in 
every time step, so the repetition of the SOLVE command continues the results of the previous time 
step. If we like to repeat the whole computation from the beginning, we would have to overwrite the 
initial conditions explicitly (e.g. by the INI command or, in this case, by the solution of steady-state 
problem using the method CREE for creeping flow). 
 
SOLVE .300E+05,3,.100E+05,2,0,20,0,0,0; 
VISC(1)=VISC(1)/2 

The creeping flow calculated 
by the CREE method will be 
used as an initial condition. 

Velocity profiles at the inlet and outlet of the 
channel. In fact, the profile of the ψ(y) function 
calculated from the velocity profiles is specified. 

Functions –2, -3, -4 describe strong boundary 
conditions: stream function profiles at the inlet and 
outlet sections, and velocity profile at the inlet  (ψ,y).

Start the computation: here, only 1 time step for ∆t=1 and 1 iteration. 

Method PSIN for Re = 100. 
Streamlines ψ>0.000025 mark 
off recirculation zones.  
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MSF 2,30,5,1.5,1,3; 
MSF 3,30,20,1.5,-1.5,3; 
NMERGE ; 
FUNDEF -2,0.000375*YY-.0125*YY**3; 
FUNDEF -3,0.000075*YY-0.0001*YY**3; 
FUNDEF -4,0.000375*(1-100*YY**2); 
NFCR 4,PS,-2,1,1; 
NFCR 4,PSX,-1,0,0; 
NFCR 4,PSY,-4,1,1; 
NFCR 1,PS,-1,0,0; 
NFCR 1,PSX,-1,0,0; 
NFCR 5,PSX,-1,0,0; 
NFCR 5,PS,-1,0,0; 
NFCR 3,PSX,-1,0,0; 
NFCR 3,PSY,-1,0,0; 
NFCR 10,PSY,-1,0,0; 
NFCR 10,PSX,-1,0,0; 
NFCR 9,PSX,-1,0,0; 
NFCR 9,PSY,-1,0,0; 
NFCR 3,PS,-1,0.000025,0.000025; 
NFCR 10,PS,-1,0.000025,0.000025; 
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NFCR 6,PSX,-1,0,0; 
NFCR 8,PSX,-1,0,0; 
NFCR 6,PS,-3,1,1; 
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EGROUP 1,FLOW2D,0,7,0,PSIN,0; 
RELFAKT=.3 
OPTION 0,0,0,1,0,15,.100E-11,.1,.100E+08,1,.100E-04,.100E-04,0,20,0,0,0; 
 
 The method PSIN solves the unsteady Navier-Stokes equation (the parameter Steady/Transient 
of the EGROUP command is ignored, the type of solution is always Transient if the method PSIN is 
selected). It is necessary to specify the time step and number of iterations even if the aim is a steady-
state solution. A rough estimate about the time scale can be obtained from the ratio of the channel 
length (L=10 m) and the mean velocity (0.00005 m/s), i.e. 200000 s. The time step is chosen 20 times 
lower, i.e. 10000 s. 
 
SOLVE 10,3,10000,0,0,20,0,0,0; 
 
Note: The main problem in solution of the Navier-Stokes equation is a convergence which can be 
influenced primarily by the time step and eventually by the underrelaxation factor (see command 
RELFAKT=0.3). The final solution is usually obtained through a repeated sequence of computations 
with different time steps. The essential thing is that the procedure SOLVE updates initial conditions in 
every time step, so the repetition of the SOLVE command continues the results of the previous time 
step. If we like to repeat the whole computation from the beginning, we would have to overwrite the 
initial conditions explicitly (e.g. by the INI command or, in this case, by the solution of steady-state 
problem using the method CREE for creeping flow). 
 
SOLVE .300E+05,3,.100E+05,2,0,20,0,0,0; 
VISC(1)=VISC(1)/2 

The creeping flow calculated 
by the CREE method will be 
used as an initial condition. 

Velocity profiles at the inlet and outlet of the 
channel. In fact, the profile of the ψ(y) function 
calculated from the velocity profiles is specified. 

Functions –2, -3, -4 describe strong boundary 
conditions: stream function profiles at the inlet and 
outlet sections, and velocity profile at the inlet  (ψ,y).

Start the computation: here, only 1 time step for ∆t=1 and 1 iteration. 

Method PSIN for Re = 100. 
Streamlines ψ>0.000025 mark 
off recirculation zones.  
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lower, i.e. 10000 s. 
 
SOLVE 10,3,10000,0,0,20,0,0,0; 
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SOLVE .296E+06,1,3000,2,0,20,0,0,0; 

 
2.2.5.2. Heat and mass transfer in planar channel (upwind)  

 
Because the velocity field is already known, it is possible to solve the temperature field in the 

same way as in the previous paragraph (i.e. arbitrary boundary conditions and time and temperature 
dependencies of parameters can be specified, etc.). We will consider a simple case when the 
temperature of the inlet liquid is 100 0C, and each wall except the upper extended part of the channel is 
thermally insulated (temperature of the upper wall is 20 0C). We change the parameter EGROUP to the 
steady-state solution (thus the steady-state solution of a temperature field can be obtained in only one 
“time“ step) and we shall try to compare two variants of the solution, one without the upwind 
modification (“pure“ Galerkin method) and the other with upwind (Galerkin-Petrov). The upwind 
method is to be used when solution stability problems arise at high values of Péclet numbers in the 
element, i.e. at high flow velocities and a coarse grid of finite elements. The disadvantage is of course 
a numerical diffusion (in our case it is rather a numerical thermal diffusivity) and consequently 
inaccurate results. This modification together with other operational parameters can be set by the 
OPTION command (it is also sufficient to write UPW=1, the variable UPW means “upwind“): 
 
NFCR 4,TEMP,-1,100,100; 
NFCR 9,TEMP,-1,20,20; 
EGROUP 1,FLOW2D,0,7,0,6,0; 
SOLVE .463E+06,1,2000,2,0,0,2,0,0;  
OPTION 0,0,0,0,0,15,.100E-11,.100E+00,.100E+08,1,.100E-04,.100E-04,0,0,2,0,0; 
SOLVE .465E+06,1,2000,2,0,0,2,0,0; 

 

Re=100 no upwind 

Re=200 

1.7 m 
Re=100
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It is evident that the temperature profile is not fully developed and the effect of the recirculation zone 
is self-evident. The results also show that the upwind modification is not required at all. It is surprising 
because the Péclet number of the element is very high (more than 100 near the channel axis).  
 
 When the direct ohmic heating is to be solved, the electric potential field must be calculated 
first. We shall assume that electrodes are formed by the opposite walls of the channel and the potential 
difference is 220 V. The potential anti-symmetry will be used to specify boundary conditions: potential 
is set to zero in the centre (y=0), and 110 V at electrode (at the upper wall): 
 
NFCR 9,VOLT,-1,110,110; 
NFCR 1,VOLT,-1,0,0; 
NFCR 5,VOLT,-1,0,0; 
SOLVE .467E+06,1,2000,2,1,0,1,0,0; 
 
Using the calculated electric potential field, the temperature field corresponding to direct ohmic 
heating of transported liquid will be computed. First, a parameter which ensures calculation of 
volumetric heat sources must be set using the OPTION command (or by assignment OHMI=1) 
 
OPTION 0,0,1,1,0,15,.100E-11,.100E+00,.100E+08,1,.100E-04,.100E-04,1,0,1,0,0; 
SOLVE .469E+06,1,2000,2,1,0,1,0,0; 

 
 

Knowing the flow field, mass transport problems can be solved, for example concentration 
responses to a tracer, injected instantaneously into the inlet section. The injection is modelled by 
prescribing a time dependency of the tracer concentration cN at each node of the inlet section with the 
following table (this table stands for the function number –5 applied on the curve number 4 – it is just 
the inlet section) 
 
CURDEF -5,0,5,0,0,1000,1,5000,1,6000,0,1000000,0; 
NFCR 4,CN,-5,1,1; 
 
 
EGROUP 1,FLOW2D,1,7,0,6,0; 
SOLVE 0,30,2000,0,0,0,0,1,0; 
 
 
 
 
 
 
 
 

Re=100 upwind 
ohmic heating
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The figure on the left shows the tracer concentration field at time 60000 s. If the liquid was moving  at 
constant velocity along the whole channel axis (0.000075 m/s in the extended part12) the tracer should 
reach the distance 5.3 m. However it is clear that the mass centre of the tracer goes further – 
approximately 7 m. It can be caused (and with no doubt it is) by the cross-section contraction behind 
the step, but uncertainties are evoked by the concentration field which is evidently distorted by the 
numerical diffusion (diffusion coefficient DN=10-9 m2/s and the corresponding penetration depth for 
time 60000 s is approximately only 1.5 cm!). 
 

2.2.5.3. Transient laminar flow over obstacle in a channel  
 
 Precceeding example has been aimed to 
the steady state flow analysis even if the solution 
was obtained by a transient method (the method 
PSIN can not solve the steady state directly). 
However, sometimes a steady state does not exist 
at all, for example in the so called Karman vortex 
street formed by periodically detached vortices 
behind an obstacle in flow. We shall try to use 
the method PSIN for evaluation of transversal 
flow around a cylinder in a planar channel as an 
example. We shall assume fully developed 
parabolic velocity profile at the channel inlet 
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At the cylinder surface a constant value of stream function, corresponding to symmetric distribution of 
flow, is assumed. This assumption is not quite correct and generally speaking the methods, operating 
with stream functions, are not very suitable for modelling of flow around obstacles because values of 
stream function at the obstacle surface are not known in advance. The value ψ at the surface should not 

                                                           
12 Results correspond to Re=100, mean velocity at inlet 0.00025 m/s and mean velocity in expanded part of channel 
0.00005 m/s. Assuming fully developed parabolic velocity profile, the maximum velocity at axis is 1.5 times the mean 
velocity (it is a slit and not a pipe!), that is the stabilised velocity at axis equals 0.000075 m/s. 

xtheor=5.3 m 

Injection, function no.-5 

Graph of time courses is obtained by 
command GRATIM CN and picking the
nodes where the concentration CN is to 
be recorded into MOP and plotted. 

D=0.14
H=0.4

Creeping 
flow 

Mean velocity at inlet  
      u = 0.0002 m/s 
Viscosity 

µ=0 0005 Pa s

PSIN 
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be fixed by a strong boundary condition and its constant value should follow from the condition that 
the both first derivatives of stream function are zero. However tests which have been performed by 
FEMINA shown that it does not work – maybe due to unsuitable formulation of problem (see 
theoretical part) and improper natural boundary conditions for stream function.  

These results (see the session file fkarman.geo) correponds to Re=320 (related to the hydraulic 
diameter of channel) and do not describe generation and detachment of isolated vortices, only a 
periodical oscilation of flow behind cylinder at frequency around 50000 s. Corresponding value of 
Strouhal number is  
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500000002.0
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2.2.5.4. Campion Renson method (stream function and vorticity) 
 
 In this paragraph we shall illustrate the method, suggested by Campion-Renson and this is why 
it is called CARE in FEMINA. This method solves a pair of partial differential equations of the second 
order for stream function ψ, and vorticity ω, and these equations substitute the biharmonic equation of 
the fourth order for the stream function. Therefore much simpler base functions may be used in the 
CARE on contrary to the PSIN method, and any kind of elements, i.e. not only 3-nodal triangles, can 
be used. The only difference from point of view of user are boundary conditions, which have to be 
prescribed for stream function at inlet, axis and wall, while for vorticity only at inlet and at axis - not at 
the wall! This is because the boundary conditions for normal derivative of the stream function at wall 
are replaced by natural boundary conditions for vorticity. Boundary conditions at inlet and axis must 
be derived from the vorticity definition 
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theoretical part) and improper natural boundary conditions for stream function.  

These results (see the session file fkarman.geo) correponds to Re=320 (related to the hydraulic 
diameter of channel) and do not describe generation and detachment of isolated vortices, only a 
periodical oscilation of flow behind cylinder at frequency around 50000 s. Corresponding value of 
Strouhal number is  
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 In this paragraph we shall illustrate the method, suggested by Campion-Renson and this is why 
it is called CARE in FEMINA. This method solves a pair of partial differential equations of the second 
order for stream function ψ, and vorticity ω, and these equations substitute the biharmonic equation of 
the fourth order for the stream function. Therefore much simpler base functions may be used in the 
CARE on contrary to the PSIN method, and any kind of elements, i.e. not only 3-nodal triangles, can 
be used. The only difference from point of view of user are boundary conditions, which have to be 
prescribed for stream function at inlet, axis and wall, while for vorticity only at inlet and at axis - not at 
the wall! This is because the boundary conditions for normal derivative of the stream function at wall 
are replaced by natural boundary conditions for vorticity. Boundary conditions at inlet and axis must 
be derived from the vorticity definition 
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ANALYS 2; 
PT 1,.000E+00,.000E+00; 
PT 2,.100E+01,.000E+00; 
PT 3,.100E+01,.100E+00; 
PT 4,.000E+00,.100E+00; 
PT 5,.300E+01,.000E+00; 
PT 6,.300E+01,.100E+00; 
PT 7,.300E+01,.100E+01; 
PT 8,.100E+01,.100E+01; 
PT 9,.800E+01,.000E+00; 
PT 10,.800E+01,.100E+00; 
SF4PT 1,1,2,3,4; 
SF4PT 2,2,5,6,3; 
SF4PT 3,3,6,7,8; 
SF4PT 4,5,9,10,6; 
EGROUP 1,FLOW2D,1,3,0,CARE,0; 
MSF 1,5,5,.5,1,4; 
MSF 2,15,5,1,1,4; 
MSF 3,15,25,1,-.150E+01,4; 

MSF 4,15,5,4,1,4; 
NMERGE ; 
CR2PT 14,1,9; 
NFCR 14,PS,-1,0,0; 
NFCR 14,OMG,-1,0,0; 
FUNDEF -2,0.15*(YY-100*YY**3/3); 
FUNDEF -3,-30*yy; 
NFCR 4,PS,-2,1,1; 
NFCR 4,OMG,-3,1,1; 
NFCR 12,OMG,-3,1,1; 
NFCR 12,PS,-2,1,1; 
NFCR 3,PS,-1,0.01,0.01; 
NFCR 10,PS,-1,0.01,0.01; 
NFCR 9,PS,-1,0.01,0.01; 
NFCR 8,PS,-1,0.01,0.01; 
NFCR 13,PS,-1,0.01,0.01; 
SOLVE 0,10,100,0,0,10,0,0,0,0,0; 
VISC(1)=10 
SOLVE 1000,10,100,0,0,10,0,0,0,0,0; 
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2.2.6. Navier Stokes equations in primitive variables, velocities and pressure 
 
The methods UVP,UVPP,PENS calculating velocities and pressure (so called primitive variables) 

directly, are more frequently used than the stream function methods, because they can be easily 
extended to 3D. FEMINA implements the methods in Cartesian or cylindrical 2D coordinate system.  
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Remarks: All the methods consider buoyancy term, with β - coefficient of thermal volumetric 
expansion. UVPP is pseudocompressibility method approximating continuity equation 0=⋅∇ ur  by 
Eq. (2) with very high value of user defined parameter λ. In principle the same parameter is used in the 
penalty method PENS for elimination of pressure from Navier Stokes equations. 

 
All these methods are implemented for triangular elements with 6 nodes (velocities, approximated 

by quadratic functions, are identified by 6 nodes, vertices and midpoints of sides, while pressures, 
approximated only by linear polynomials are defined by 3 nodes in the triangular element vertices). 
Another option represents triangular elements with 3 nodes for linear approximation of velocities and 
one internal node for discontinuous pressure. The 3 nodes, allocated for velocities, can be either 
vertices (seems to be natural, but in fact not a very good idea) or midpoints of sides (much better 
elements). In a similar way quadrilateral finite elements with 5, 8 or 9 nodes are designed. All the 
methods make use upwind for improvement of convergence at higher Reynolds number flows.  

 
2.2.6.1.Planar channel – UVP and UVPP method 

 
The same problem, which has been solved in the preceding chapter, i.e. flow in symmetric planar 

channel with sudden expansion, will be used as an example of solution. Geometry and boundary 
conditions (parabolic velocity profile at inlet, Re=100) as well as number of triangular elements will be 
preserved.  

1530 elements, 3177 nodes 
continuous pressures at vertices 
velocities also at midpoints

detail of mesh
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ANALYS 1; 
SCALE -.500E-02,12,-.500E-02,.6; 
PT 1,.000E+00,.000E+00; 
PT 2,.000E+00,.100E+00; 
PT 3,.100E+01,.100E+00; 
PT 4,.100E+01,.000E+00; 
PT 5,1.100E+01,.000E+00; 
PT 6,1.100E+01,.100E+00; 
PT 7,1.100E+01,.500E+00; 
PT 8,.100E+01,.500E+00; 
SF4PT 1,1,4,3,2; 
SF4PT 2,4,5,6,3; 
SF4PT 3,3,6,7,8; 
EGROUP 1,FLOW2D,0,7,0,UVP,0; 
MSF 1,3,5,1,1,6; 
MSF 2,30,5,1.5,1,6; 
MSF 3,30,20,1.5,-1.5,6; 
NMERGE ; 

FUNDEF -4,0.000375*(1-100*YY**2); 
FUNDEF -3,0.75E-4*(1-(YY/.5)**2); 
NFCR 4,VX,-4,1,1; 
NFCR 4,VY,-1,0,0; 
NFCR 1,VY,-1,0,0; 
NFCR 5,VY,-1,0,0; 
NFCR 3,VY,-1,0,0; 
NFCR 10,VY,-1,0,0; 
NFCR 9,VY,-1,0,0; 
NFCR 3,VX,-1,0,0; 
NFCR 10,VX,-1,0,0; 
NFCR 9,VX,-1,0,0; 
NFCR 8,VX,-3,1,1; 
tol=tol*5 
NFCR 6,VX,-3,1,1; 
NFCR 6,VX,-3,1,1; 
NFCR 6,VY,-1,0,0; 

 
Note: There is no strong boundary condition for pressures!  
 
Note: Boundary conditions for velocities VX and VY were prescribed by commands NFCR. The 
command looks for nodes having distance from a selected curve less than TOL, where boundary 
conditions are applied (there is no direct connectivity between nodes and curves). Some nodes on the 
curve could be sometimes skipped due to round off errors and then the tolerance TOL should be 
enlarged (see the command TOL=5*TOL). However, the fact, that there is no connectivity between 
nodes and curves, can be utilised for definition of auxiliary curves and for plotting graphs based upon 
nodes being near the curves (graphs in arbitrary cross sections) using GCR command.  
 
OPTION 0,0,0,1,0,15,.100E-11,1,.100E+08,1,.100E-04,.100E-04,0,3,0,0,0; 
SOLVE .604E+06,20,.300E+05,0,0,3,0,0,0; 
PT 9,2.1074,0; 
PT 10,2.1074,.5; 
CR2PT 11,9,10; 
GCR 11 
 
 

 
 

 When using UVP and UVPP methods it is possible to select several different elements, and it is 
sufficient to change only the parameter in the MSF command. Available options are 
 
 

Re=100 upwind 

Velocity profile 
at  x=2.1074 m 

max.velocity 
at axis 

Graph of axial velocity at a selected cross section using newly defined curve 
number 11 (see next figure) 
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enlarged (see the command TOL=5*TOL). However, the fact, that there is no connectivity between 
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OPTION 0,0,0,1,0,15,.100E-11,1,.100E+08,1,.100E-04,.100E-04,0,3,0,0,0; 
SOLVE .604E+06,20,.300E+05,0,0,3,0,0,0; 
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 When using UVP and UVPP methods it is possible to select several different elements, and it is 
sufficient to change only the parameter in the MSF command. Available options are 
 
 

Re=100 upwind 

Velocity profile 
at  x=2.1074 m 

max.velocity 
at axis 

Graph of axial velocity at a selected cross section using newly defined curve 
number 11 (see next figure) 
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MSF 1,3,5,1,1,-4,1;   T1P0 
 
MSF 1,3,5,1,1,4,1;   P1P0 (frequently locks, LBB not fulfilled) 
 
MSF 1,3,5,1,1,5,1;   Q1P0 (LBB not fulfilled) 
 
MSF 1,3,5,1,1,6;    P2P1 (LBB stable, very good) 
 
MSF 1,3,5,1,1,8;     Q28 Q1 (serendipity, Hood 1973, LBB stable not very good) 
 
MSF 1,3,5,1,1,9,1;   Q29 Q1 (LBB stable, better element) 

 
The following figure corresponds to results obtained by using triangular elements with mid side 

nodes (3 velocities and constant pressure inside element): 

 
2.2.6.2.Planar channel – penalty method PENS 

 
 The penalty method PENS differs substantially from the previous methods UVP and UVPP. 
First of all by the fact that pressure is not a calculated nodal parameter and therefore any elements with 
arbitrary number of nodes can be used. The principle of the penalty method is as follows: The pressure 
is assumed to be proportional to the divergence of velocities (residuum of continuity equation), and 
this divergence, multiplied by a penalty factor λ, is substituted into the Navier Stokes equations instead 
of pressure. Thus the pressure is eliminated from the equations solved. A cost of this simplification is 
considerable – results depend upon value of penalty factor λ - if it is too small the continuity equation 
will be violated and if it is too large the Navier Stokes equations reduce in fact to the continuity 
equation having no unique solution. This is illustrated by results calculated for different values of λ 
from zero up to 108 (in all cases 6-node elements, upwind and natural boundary conditions at outlet 
have been used,) 
 
EGROUP 1,FLOW2D,0,7,0,PENS,0; 
SOLVE .249E+07,2,.300E+05,0,0,3,0,0,0; 
LAMBDA=1E8 
SOLVE .261E+07,5,.300E+05,0,0,3,0,0,0; 
 
 
 
 
 
 
 
 

 pressure 
 veloc+pressure
 velocities 

Planar channel Re=100, upwind. 
Axial velocity profile at x=2.1074 

ux,uy p 

GV command for plotting 
velocity field vx,vy using arrows
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2.2.6.3. Y channel – comparison of elements 
 

In this example we compare behaviour of different trinagular and quadrilateral elements when 
using UVP method. The problem is formulated as laminar flow in a branched duct (planar channels are 
considered). A uniform velocity profile is prescribed at inlet vx=1.25 m/s, channel width is 0.8 m 
(therefore the theoretical flowrate is 1 m3/s, for unit depth of channel). For viscosity 10 Pa.s and 
density 1000 kg/m3, the Reynolds number at inlet is 200.  

 
Solution based upon UVP method is described by the following session file, which allows 

interactive specification of mesh, elements (in terms of number of nodes) and number of Gauss 
integration points.  

 

λ=1000 PENS penalty method 
Re=100,  λ=105   upwind

λ=10000

λ=10 λ=0  λ=1 

PENS 
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C* FYPSIL.GEO 
ANALYS 2; 
FUNDEF 1,DOF(VX,2,XX,YY,ZZ) 
VALUE M 
VALUE N 
VALUE K 
PT 1,.100E+00,.100E+00; 
PT 2,.800E+00,.100E+00; 
PT 3,.500E+01,.000E+00; 
PT 4,.100E+00,.500E+00; 
PT 5,.800E+00,.400E+00; 
PT 6,.500E+01,.300E+00; 
PT 7,.500E+01,.600E+00; 
PT 8,.100E+00,.900E+00; 
PT 9,.800E+00,.900E+00; 
PT 10,.500E+01,.100E+01; 
SF4PT 1,1,2,5,4; 
SF4PT 2,2,3,6,5; 
SF4PT 3,4,5,9,8; 
SF4PT 4,5,7,10,9; 
C* Gauss points 
VALUE G 
EGROUP 1,FLOW2D,0,G,0,UVP,0; 
C* Kind of elements J (outer), I (inner) 
VALUE J 
VALUE I 

MSF 1,M,N,1,1,J,I; 
MSF 2,K,N,3,1,J,I; 
MSF 3,M,N,1,1,J,I; 
MSF 4,K,N,3,1,J,I; 
CR2PT 14,1,8; 
NMERGE ; 
NFCR 14,VX,-1,1.25,1.25,1.25; 
NFCR 14,VY,-1,0,0,0; 
NFCR 1,VX,-1,0,0,0; 
NFCR 1,VY,-1,0,0,0; 
NFCR 5,VY,-1,0,0,0; 
NFCR 5,VX,-1,0,0,0; 
NFCR 7,VX,-1,0,0,0; 
NFCR 7,VY,-1,0,0,0; 
NFCR 11,VY,-1,0,0,0; 
NFCR 11,VX,-1,0,0,0; 
NFCR 13,VX,-1,0,0,0; 
NFCR 13,VY,-1,0,0,0; 
NFCR 9,VY,-1,0,0,0; 
NFCR 9,VX,-1,0,0,0; 
VISC(1)=10 
BOX 0.3; 
SOLVE 0,2,20,0,0,10,0,0,0,0,0; 
INTGCR 12,1; 
INTGCR 6,1; 
INTGCR 14,1; 

 
Results shown in the following table look similar, flowrates (V1,V2 at outlet, Vin at inlet) indicate that 
the continuity equation is satisfied, however the calculated powers P differ substantially. 
 
UVP T6+T3   3 Gauss p. T3+1    3 Gauss p. Q4+1  4x4 Gauss.p. Q9+Q4  4x4 Gauss p. 
Grid 
15, 
15,  
30  

 
 
 
 
 
 
 

   

V1 0.693 0.621 0.668 0.736 
V2 0.293 0.267 0.279 0.290 
Vin 0.982  (2.365 : 1) 0.963  (2.326 : 1) 0.949  (2.394 : 1) 1.020  (2.538 : 1) 
P [W] 4756 4186 4422 6183 
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2.2.7. Pipeline networks 
 
The FEMINA program calculates pressure and flow rate distribution in a pipeline network 

using two-node elements PIPE2D, PUMP, CSTR (continuously stirred tank reactor) and four node 
elements HEXC (heat exchangers). The laminar and turbulent flow regimes together with buoyancy 
effects are considered, and the solution can include even rheologically more complicated liquids (only 
the dynamics of compressible fluids – hydraulic shocks cannot be solved). Besides the hydraulics, the 
distribution of temperatures and tracer concentration in liquid can be calculated at steady and unsteady 
state. Not only the straight pipe sections but also heat exchangers, ideal mixers or devices with user-
defined hydraulic characteristics can be used (e.g. pumps, elbows, valves). On the basis of the 
computed pressures and temperatures, structural analysis and stresses evaluation can be carried out. 

The basic element used for modelling pipelines is PIPE2D. The pipe need not have a circular 
cross section and only a part of its surface transfers a heat generally. And this is the role of RCONST 
parameters to complete description of geometry as well as some boundary conditions   

 
 
 
 
 
 
 
 
 

2.2.7.1. Pressure and flowrates in laminar/turbulent flows 
 
 The introductory example will demonstrate a computation of pressure losses and flowrates in a 
simple piping system which consists of three sections with flow splitting. Inner diameters of all pipes 
are identical (d=5 mm, roughness k=0) and water is used as a working liquid (µ=0.001 Pa.s). Pressures 
are specified at each boundary node of the system (zero at the outlet, the inlet pressure is going to be 
changed). 
 
 
 
 
PT 1,.000E+00,.500E+00; 
PT 2,.500E+00,.500E+00; 
PT 3,.100E+01,.100E+01;  
PT 4,.700E+00,.300E+00; 
CR2PT 1,1,2; 
CR2PT 2,2,3; 
CR2PT 3,2,4; 
 
 
 
 
EGROUP 1,PIPE2D,0,0,0; 
RCONST 1,PIPE2D,0.001,0.005,0,0,0,0,0,0; 
MPROP 1,PIPE2D,.600E+00,0,4200,0,998,0,.400E-01,0,.210E+12,0,.280E+00,0,.100E-
02,0,.500E-03,0,.100E-08,0,0 
MCR 1,10,1,2; 
MCR 2,10,1,2; 
MCR 3,5,1,2; 
NMERGE ; 
NFPT 1,PRES,-1,100000; 
NFPT 3,PRES,-1,0; 
NFPT 4,PRES,-1,0; 
SOLVE 0,1,0,0,0,20,0,0,0; 

EGROUP enables to specify nonstandard hydraulic characteristics 
of PIPE as a function (not used here), RCONST defines not only 
dimensions of pipe (diameter, thickness of wall) but also wall 
roughness and coefficient of local pressure losses (not used here). 

PERIMETER

H 

dU/dy 

AREA 

D 

Grid generation on curves 1 through 3. The second parameter is 
number of elements, the third parameter (1) determines uniform 
meshing, and the last parameter (2) specifies number of nodes. 

AREA – cross section (mean velocity is calculated as flowrate/AREA) 
D - equivalent diameter used in Re and Nu numbers definition  
H - thickness of wall is used only in stress analysis. 
PERIMETER - is in fact a part of the whole perimeter where heat transfer 
(defined by heat transfer coefficient ALPHA and external temperature TE), 
takes place. If specified as zero, substituded by πD. 
dU/dy – transversal component of electric field. 
Axial profiles of pressure, temperature, concentration, elect. potential and 
thermal boundary layer thickness as well as fouling layer are calculated. 
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elements HEXC (heat exchangers). The laminar and turbulent flow regimes together with buoyancy 
effects are considered, and the solution can include even rheologically more complicated liquids (only 
the dynamics of compressible fluids – hydraulic shocks cannot be solved). Besides the hydraulics, the 
distribution of temperatures and tracer concentration in liquid can be calculated at steady and unsteady 
state. Not only the straight pipe sections but also heat exchangers, ideal mixers or devices with user-
defined hydraulic characteristics can be used (e.g. pumps, elbows, valves). On the basis of the 
computed pressures and temperatures, structural analysis and stresses evaluation can be carried out. 

The basic element used for modelling pipelines is PIPE2D. The pipe need not have a circular 
cross section and only a part of its surface transfers a heat generally. And this is the role of RCONST 
parameters to complete description of geometry as well as some boundary conditions   

 
 
 
 
 
 
 
 
 

2.2.7.1. Pressure and flowrates in laminar/turbulent flows 
 
 The introductory example will demonstrate a computation of pressure losses and flowrates in a 
simple piping system which consists of three sections with flow splitting. Inner diameters of all pipes 
are identical (d=5 mm, roughness k=0) and water is used as a working liquid (µ=0.001 Pa.s). Pressures 
are specified at each boundary node of the system (zero at the outlet, the inlet pressure is going to be 
changed). 
 
 
 
 
PT 1,.000E+00,.500E+00; 
PT 2,.500E+00,.500E+00; 
PT 3,.100E+01,.100E+01;  
PT 4,.700E+00,.300E+00; 
CR2PT 1,1,2; 
CR2PT 2,2,3; 
CR2PT 3,2,4; 
 
 
 
 
EGROUP 1,PIPE2D,0,0,0; 
RCONST 1,PIPE2D,0.001,0.005,0,0,0,0,0,0; 
MPROP 1,PIPE2D,.600E+00,0,4200,0,998,0,.400E-01,0,.210E+12,0,.280E+00,0,.100E-
02,0,.500E-03,0,.100E-08,0,0 
MCR 1,10,1,2; 
MCR 2,10,1,2; 
MCR 3,5,1,2; 
NMERGE ; 
NFPT 1,PRES,-1,100000; 
NFPT 3,PRES,-1,0; 
NFPT 4,PRES,-1,0; 
SOLVE 0,1,0,0,0,20,0,0,0; 

EGROUP enables to specify nonstandard hydraulic characteristics 
of PIPE as a function (not used here), RCONST defines not only 
dimensions of pipe (diameter, thickness of wall) but also wall 
roughness and coefficient of local pressure losses (not used here). 

PERIMETER

H 

dU/dy 

AREA 

D 

Grid generation on curves 1 through 3. The second parameter is 
number of elements, the third parameter (1) determines uniform 
meshing, and the last parameter (2) specifies number of nodes. 

AREA – cross section (mean velocity is calculated as flowrate/AREA) 
D - equivalent diameter used in Re and Nu numbers definition  
H - thickness of wall is used only in stress analysis. 
PERIMETER - is in fact a part of the whole perimeter where heat transfer 
(defined by heat transfer coefficient ALPHA and external temperature TE), 
takes place. If specified as zero, substituded by πD. 
dU/dy – transversal component of electric field. 
Axial profiles of pressure, temperature, concentration, elect. potential and 
thermal boundary layer thickness as well as fouling layer are calculated. 
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NFPT 1,PRES,-1,1000; 
SOLVE 0,1,0,0,0,10,0,0,0; 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Results of computation are pressures in nodes and flow rates stored as parameters of individual 
elements (for a quick inspection of results, NID and EID can be used – parameter identification by a 
mouse pointer). Three different pressures 102, 103, 105 Pa at the inlet correspond to different flow 
regimes: laminar, mixed and turbulent – the following table presents the results which agree at all valid 
decimal positions with the accurate analytical solution. 
 

p1 [Pa] p2 [Pa] 
1V&  [ml/s] 2V&  [ml/s] 3V&  [ml/s] 

100 28.78 2.185 (Re=555) 0.6243 (Re=159) 1.561 (Re=397) 
1000 161.4 12.25 (Re=3110) 3.50 (Re=890) 8.75 (Re=3170) 

100000 20000 169.7(Re=43100) 63.1 (Re=16000) 106.6 (Re=2700) 
 
 If it is not a pressure but a flow rate which is to be specified at the inlet (for example if a 
positive displacement pump instead of a radial-flow pump or a pressure accumulator is used), the 
intensity of source, i.e. the mass flow rate (kg/s), must be given as the node parameter,  
 
NFPT 1,PRES,2,0.05; 
SOLVE 0,1,0,0,0,10,0,0,0; 
 
 

p1 [Pa] p2 [Pa] 
1V&  [ml/s] 2V&  [ml/s] 3V&  [ml/s] 

11850 2413 50 18.4 31.6 
 
Remark: You can specify inlet or outlet flowrate at any, even internal, node (in this way for example a 
leakage can be described). The point source/sink is indicated by the status of nodal parameter PRES 
within the range 1,2,...,10. Prescribed positive value of parameter PRES represents in this case the 
inflow in units kg/s or if you set the system variable VOLFLOW=1 in units m3/s! 13 It is possible to 
define also time variable flowrate by user defined function with an index 1,2,...,10 (time is represented 
by system variable TIME). If a function with the index of status PRES exists, prescribed value of 
nodal parameter (nominal flowrate) is multiplied by this function. In the same way a time dependent 
pressure can be prescribed using a function with an index -10,...,-1 (strong boundary condition). The 
rule is simple: Any specified nodal parameter is multiplied by a user defined function with the index of 
specified status. If such a function has not be defined, identity is assumed, it means that the prescribed 
value is multiplied by one. 
                                                           
13 This is not only a problem of units: VOLFLOW=0 means, that method of mass balancing will be applied, while at 
VOLFLOW=1 distribution of pressures will be solved from equations representing volumetric flowrate balances.  

Display results with commands GE1 (parameters EQ-flow 
rate, ERE-Reynolds number, ETAU-shear stress on wall) 
and GD1 (nodal parameter PRES – pressure distribution). 

Status of the node parameter PRESS is changed to 2 (a strong boundary 
condition is replaced by a load), and the mass flow rate value is specified 

smlV / 501 =&  corresponds to the mass flowrate skgm /05.01 =&      
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specified status. If such a function has not be defined, identity is assumed, it means that the prescribed 
value is multiplied by one. 
                                                           
13 This is not only a problem of units: VOLFLOW=0 means, that method of mass balancing will be applied, while at 
VOLFLOW=1 distribution of pressures will be solved from equations representing volumetric flowrate balances.  
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and GD1 (nodal parameter PRES – pressure distribution). 
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VOLFLOW=1 distribution of pressures will be solved from equations representing volumetric flowrate balances.  

Display results with commands GE1 (parameters EQ-flow 
rate, ERE-Reynolds number, ETAU-shear stress on wall) 
and GD1 (nodal parameter PRES – pressure distribution). 

Status of the node parameter PRESS is changed to 2 (a strong boundary 
condition is replaced by a load), and the mass flow rate value is specified 

smlV / 501 =&  corresponds to the mass flowrate skgm /05.01 =&      



FEM3AI2.DOC   Last update 21.3.2005                                         / 128 52

2.2.7.2. Non-Newtonian Power-law liquids  
 
 Computation with non-Newtonian liquids is more complicated because the Rabinowitsch, 
Mooney Weissenberg equation, see Steffe 1996, must be integrated numerically in each finite element 
connecting nodes i,j (radius Rij, length Lij, friction pressure drop ∆pij, shear stress τ): 
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 Rheological model characterising properties of a non-Newtonian liquid are usually specified as 
a function γ(τ), where γ is the deformation rate (1/s) and τ is the corresponding shear stress (Pa). The 
constitutive equation is specified in FEMINA in form of apparent viscosity µapparent as a function of 
shear stress TAU and temperature TEMP. Example: for probably the most often used power-law 
model (sometimes called Ostwald de Vaele model) the following constitutive equation holds 
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where K is the consistency coefficient and n is the flow behaviour index. The model parameters can be 
constants, but it is usually more convenient to use variables (for example, we will use the variable A as 
the consistency coefficient and the variable B as the flow behaviour index):  
 

FUNDEF 1,(A/MAX(1E-10,TAU)**(1-B))**(1/B);       
 

MPROP 1,PIPE2D,.600E+00,0,4200,0,998,0,.400E-01,0,.210E+12,0,.280E+00,0,.100E-02, 
1, .500E-03,0,0,0,0,0,0,0; 
A=1 
B=.8 
SOLVE 0,1,0,0,0,20,0,0,0; 
 
 This definition of the function number 1 should replace the Newtonian liquid rheological 
model, which is done by specifying a non-zero function number of the viscosity material parameter:  
Computations can be repeated for different values of flow indices n (K=1 Pa.sn, p1=1000 Pa) and the 
following table shows perfect agreement with the analytical solution (in laminar regime) 
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n (flow index) p2 [Pa] 

1V&  [ml/s] 2V&  [ml/s] 3V&  [ml/s] 
0.8 312 0.0227 0.00549 0.0173 
0.6 335 0.0246 0.00438 0.0202 
0.4 352 0.0298 0.00273 0.0270 
0.2 361 0.0639 0.000648 0.0633 

 
It should be noticed, that the strong nonlinearity of the rheological model at low values of the flow 
behaviour index n causes problems. For the values of the flow index n<0.5 the iterations do not 
converge and it is necessary to reduce the relaxation factor (system variable RELFAKT, e.g. 
RELFAKT=0.2).14  
                                                           
14 If the sum of flow rates in branching points of pipes is not zero, something is wrong. In our case the flow rate in the first 
pipe (it should be same in all elements from 1 to 10) should equal to the sum of flow rates in pipes 2 and 3. If this does not 
hold true the number iterations must be increased or eventually the RELFAKT must be decreased. 
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2.2.7.3.Non-Newtonian Bingham, Herschel Bulkley and Casson’s liquids  
 
Serious convergence problems have been encountered when calculating Bingham liquids (or 

generally liquids with significant yield stress) at turbulent flows. The Bingham liquid can be described  
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where µp [Pa.s] is plastic viscosity and τ0 [Pa] is yield stress. In this case improvement has been 
achieved by selective under-relaxation of the yield stress, more specifically by using the constitutive 
equation in the following form  
 
FUNDEF 1,A*TAU/MAX(1E-10,TAU-B*TIME/(N+TIME)) 
 
where the user variable A is plastic viscosity µp and the variable B is the yield stress τ0. TIME and 
TAU are system variables (simulation time and wall shear stress). If the variable N is much greater 
than TIME, that is at the beginning of calculation, the model reduces to the Newtonian liquid with 
apparent viscosity µp, and only with the increasing time (if TIME>>N) the computational yield stress 
is approaching to the correct value τ0. 

Resulting pressure and flowrate for p1=100 Pa at inlet and µp=1 Pa.s, calculated for different 
values τ0, are summarised in the following table 
 

τ0 (yield stress) p2 [Pa] 
1V&  [ml/s] 2V&  [ml/s] 3V&  [ml/s] 

0 17.51 0.09979 0.003866 0.06113 
0.01 30.31 0.001975 0.000494 0.00148 
0.03 33.21 0.001561 0.000246 0.001313 
 
Accuracy of results can be ascertained by comparison with flowrates, calculated from the Buckingham 
equation (expressed in terms of τw - wall shear stress) 
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A more general Herschel Bulkley model is a combination of the power law and the Bingham 

models (the HB model has three parameters, yield stress τ0, flow behaviour index n and consistency K) 
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The HB model can be specified as the function (variables A-consistency, B-yield stress, C-flow index) 
 
FUNDEF 1,TAU*(A/MAX(1E-10,TAU-B*TIME/(N+TIME)))**(1/C) 
 
Results obtained by Herschel Bulkley model can be verified in laminar regime by comparing with the 
analytical solution  
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It can be easily verified, that this equation reduces to the Buckingham equation for n=1 and K=µp. 
 
 Casson’s model is another example of a generalised Newtonian liquid, applied first of all for 
modelling of blood flow. This model has only two parameters: yield stress τ0 and viscosity coefficient 
Ke. In the case that the yield stress vanish, the model reduces to the Newtonian liquid, just like the 
Bingham model, however unlike the Bingham model the shear stress is not a linear function of shear 
rate. Apparent viscosity can be expressed as follows 
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Using variables A for Ke and B for the yield stress, the Casson’s model (8) can be defined as 
 
FUNDEF 1,TAU*A**2/MAX(1E-10,SQR(TAU)-SQR(B))**2 
 
Results can be tested again using analytical solution for mass flowrate of Casson’s liquid 
 

)])(1)((
3
1))(1(

7
4))(1(

4
1[ 3002/70040

2
3

wwwwwe

w

K
Rm

τ
τ

τ
τ

τ
τ

τ
τ

τ
ττ

ρπ −+−+−=&    (2.2.7-9) 

 
 
 

2.2.7.4. Non-Newtonian thixotropic liquids 
 

Thixotropic liquids are characterised by viscosity, that depends not only upon the actual rate of 
deformation, but also upon the whole deformation history of a material element. Memory of liquid is 
hidden in a structural parameter λ characterising state of structure: λ=0 – structure is completely 
destroyed and viscosity is low, λ=1 – structure is perfectly build and viscosity is high. It is assumed 
that the structural parameter is a transport property. Probably the simplest and still realistic constitutive 
equation can be written in the following form, which is a generalisation of the power-law liquid  
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where K+∆Kλ is effective consistency coefficient, n is power-law index, a is a measure of structure 
build-up, while b is a coefficient of structure decay. The equation (11) is in fact a rate equation This 
equation can be rewritten to the form with apparent viscosity expressed as a function of shear stress 
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We shall use concentration cN in the role of structural parameter λ described by Eq.(8) with source 
term (red circle) defined by function 10 with user variable A as the build up parameter a  
 
 FUNDEF 10,A; 
 

Sink term (blue circle) is the function 11 with user variables A=a, B=b, C=K, D=∆K, E=m, F=n 
 
 FUNDEF 11,A+B*(TAU/MAX(1E-10,C+D*CN))**(E/F); 
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We shall use concentration cN in the role of structural parameter λ described by Eq.(8) with source 
term (red circle) defined by function 10 with user variable A as the build up parameter a  
 
 FUNDEF 10,A; 
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We shall use concentration cN in the role of structural parameter λ described by Eq.(8) with source 
term (red circle) defined by function 10 with user variable A as the build up parameter a  
 
 FUNDEF 10,A; 
 

Sink term (blue circle) is the function 11 with user variables A=a, B=b, C=K, D=∆K, E=m, F=n 
 
 FUNDEF 11,A+B*(TAU/MAX(1E-10,C+D*CN))**(E/F); 
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Apparent viscosity is defined by function 1  
 
 FUNDEF 1,((C+D*CN)/MAX(1E-10,TAU)**(1-F))**(1/F); 
 
Sources and sink term functions are referenced in EGROUP, while the viscosity function 1 is 
referenced in MPROP.  
 We shall use the model of thixotropy for description of flow in the same Y-system of pipes as 
previously for the following values of rheological parameters characterising plaster NEOPONIT, see 
Šesták et al (1990): K=115 [Pa.sn], ∆K=94 [Pa.sn], n=0.42, m=0.4, a=0.0001 [1/s], b=0.003955 [sm-1]. 
The Eq.(8) assumes only convective transport, however some diffusion coefficient must be specified 
when using weighted residual method, for example by accepting very small default value (DN=10-8 
m2/s) and suppressing axial dispersion (TAUD=0). The solution is than described by the following 
batch 
 
PT 1,.000E+00,.500E+00; 
PT 2,.500E+00,.500E+00; 
PT 3,.100E+01,.100E+01; 
PT 4,.700E+00,.300E+00; 
CR2PT 1,1,2; 
CR2PT 2,2,3; 
CR2PT 3,2,4; 
FUNDEF 10,A; 
FUNDEF 11,A+B*(TAU/MAX(1E-10,C+D*CN))**(E/F); 
FUNDEF 1,((C+D*CN)/MAX(1E-10,TAU)**(1-F))**(1/F); 
FUNDEF 2,1; 
MPROP 1,PIPE2D,.600E+00,0,4200,0,998,0,.400E-01,0,.210E+12,0,.280E+00,0,1,1,.500E-
03,0,.100E-08,0,.100E-08,0,.100E-08,0,0,0,0,0,0,0,.120E-04,0; 
EGROUP 1,PIPE2D,0,0,0,0,0,10,11,0,0,0,0; 
MCR 1,10,1,2,0,3,1; 
NMERGE ; 
A=0.0001 
B=0.003955 
C=115 
D=94 
E=0.4 
F=0.42 
NFPT 1,PRES,3,0.01; 
NFPT 3,PRES,-1,0; 
NFPT 4,PRES,-1,0; 
NFPT 1,CN,-1,1; 
INITIA CN,2; 
RELFAKT=0.5 
TAUD=0 
OHMI=1 
SOLVE 0,3,1,1,0,20,0,10,0,0,0; 
 
It follows from results in table, that at higher flowrates the structure is not so much destroyed! 

inletm&  [kg/s] λ2 λ3 λ4 p1 [Pa] p2 [Pa] 
0.001 0.118 0.064 0.0575 3458 1048 
0.01 0.62 0.074 0.461 11540 3648 
0.05 0.845 0.3551 0.7611 24780 8300 

Structural parameter (λ=1 at inlet) 

1 2 

3

4 

0.5 m
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2.2.7.5. Heat transfer in pipes 
 
 It is possible to evaluate not only pressures and flowrates, but also concentration and 
temperature changes in pipes due to either internal sources (for example ohmic heating) or heat 
transfer between the pipe surface and surrounding. Heat transfer is determined by specified ambient 
temperature (as the RCONST parameter Te) and by the overall heat transfer coefficient enclosing 
thermal resistance of wall and outer heat transfer (this is specified as the RCONST parameter 
ALPHA), thermal resistance of fouling (this is calculated by selected model of fouling) and first of all 
by inner thermal resistance of liquid flowing inside the pipe. This last item is calculated separately at 
laminar and turbulent flow using correlations for thermal boundary layer thickness δ 

δ
λα = .          (2.2.7-14) 

Methods calculating axial profile of the thickness δ are described in the theoretical part of this manual, 
and from user’s point of view it is important only to know, that the thermal boundary layer thickness 
calculation works automatically for Newtonian and nonnewtonian liquids as well as for temperature 
dependent viscosity15. Only in non-circular tubes a manual correction is needed (parameter OPTION, 
BL-correction) and experience shows that this correction (usually BL<1, which means reduction of the 
thickness δ) is necessary if there exist factors increasing heat transfer, for example by buoyancy 
induced macroinstabilities, vortex generators,… 
 

2.2.7.6. Heat transfer coefficient – effect of axial dispersion 
 

Temperature profiles along pipes are obtained as a solution of enthalpy balance – Fourier 
Kirchhoff equation integrated across the cross section of pipe 
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where T(t,x) is a mean calorimetric temperature, ae is axial dispersion, k is overall heat transfer 
coefficient, O is perimeter of pipe, A cross section, and Te is ambient temperature. The coefficient ae 
describes axial thermal dispersion – a mechanism of smoothing temperature nonuniformities along a 
pipe. This dispersion is caused not only by the molecular diffusion in the axial direction (characterised 
by thermal diffusivity a) but also by a combined effect of radial diffusion and radial velocity profile. 
The axial dispersion coefficient ae has been theoretically derived for slow laminar flows by Taylor 
(1953) and for turbulent flow also by Taylor one year later (1954)16. In both cases the predicted axial 
dispersion ae is much higher than the molecular diffusivity a, typically hundred times or more and 
cannot be ignored. However, the axial dispersion model in the form implemented in FEMINA 
(according to Taylor’s results) is correct only if the pipe is insulated17. This restriction can be 
sometimes accepted, for example when modelling dispersion of temperature disturbances in an almost 
insulated pipe, nevertheless probably the most important problem – stationary heat transfer with a 
constant wall temperature is distorted significantly at very high values of axial dispersion coefficient 
ae. And this is subject of the following example: 
 We shall consider a straight pipe (d=0.02 m, L=1 m, hydraulically smooth) with nearly 
negligible external thermal resistance (αe=106 W.m-2.K-1), it means with approximately constant 
temperature of wall Te=Tw=100 oC. Inlet temperature is constant T0=0 oC and we shall calculate outlet 
                                                           
15 This is accomplished by numerical integration of RMW equation in individual elements, which is activated if the 
viscosity function is defined as a function of shear stress or if the index of viscosity function is greater than 10 (this is 
necessary if we need to take into account the influence of variable viscosity of Newtonian liquids to heat transfer). 
16 See also the model of axial dispersion of mass discussed in the paragraph 2.2.4.3. 
17 Not only insulated: Taylor’s model of axial dispersion assumes either slow laminar flow or on the other hand turbulent 
flow. There is a rather wide gap of flowrates (fast, but still laminar flows) when applicability of the axial dispersion model 
is questionable. 
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temperatures (mean calorimetric temperatures at distance L=1 m from inlet) for different mass 
flowrates of water starting with the slow laminar flow at 0.0005 kg/s (Re=32) up to turbulent flow at 
0.146 kg/s (Re=9300). There are several parameters in the OPTION dialog panel and corresponding 
system variables affecting the solution method: weighted residual/enthalpy balance method (variable 
HEPI), internal heating (OHMI), buoyancy (BUOY), effect of fouling (RF), correction of thermal 
boundary layer thickness (BL) and modification of axial dispersion model (system variable TAUD). 
This variable is the time constant τ in the emergency model  

 
π

τ2uaae +=           (2.2.7-16) 

and FEMINA applies the smallest value of dispersion coefficients calculated according to Eq.(11) or 
according to Taylor’s model for laminar/turbulent flows (with the aim to avoid excessively large 
dispersion ae). It means that if we select TAUD=0 axial dispersion will be suppressed (reduced to 
thermal diffusivity), while very large value, e.g. TAUD=106, ensures, that the dispersion will be 
evaluated according to Taylor. We shall calculate temperature profile for TAUD=0 and 106 
respectively, and save results (outlet temperatures for different mass flowrates) into second and third 
column of matrix of observation points. The whole procedure is described by the following command 
file, where the control command #LOOP is used for repeating solutions for increasing flowrates 
 
PT 1,.000E+00,.000E+00; 
PT 2,.100E+01,.000E+00; 
CR2PT 1,1,2; 
RCONST 1,PIPE2D,.200E-01,0,0,.100E-02,1E8,100; 
EGROUP 1,PIPE2D,0,0,0,0,0,0,0,0,0,0,0; 
MPROP 1,PIPE2D,.6,0,4200,0,998,0,.04,0,.21E+12,0,.28,0,.001; 
VALUE N 
MCR 1,N,1,2,0,0,1; 
NF ND,PRES,-1,0; 
NF 1,TEMP,-1,0; 
A=0.0005 
J=0 
NT=15 
#LOOP L,NT 
J=J+1 
C1(J)=A 
NF 1,PRES,1,A 
TAUD=0 
SOLVE 0,1,1,0,0,10,1,0,0,0,0; 
C2(J)=V2(LPU(TEMP)+ND) 
TAUD=1E6 
SOLVE 0,1,1,0,0,10,1,0,0,0,0; 
C3(J)=V2(LPU(TEMP)+ND) 
A=A*1.5 
#LABEL L 
 
Results in MOP (first column C1 is mass flowrates, second column C2 are outlet temperatures with 
reduced dispersion and third column C3 temperatures according to axial dispersion model) can be 
completed by column of results calculated according to the most common correlations for Nusselt 
number at laminar (Leveque) and turbulent (Colburn) flow regime 
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Use for example Excel to evaluate Eqs.(17-18), the command TCI to transfer results into matrix of 
observation points and the command GTD to plot the calculated temperatures as a function of mass 
flowrate in the log-log graph: 
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]/[ skgm&  Re ae [m2/s] T – τ=106 T – τ=0 T – Eqs.(8-9) 

0.0005 32 0.000037 95.4 96.7 90.8 
0.00253 161 0.00095 46.8 56.0 55.5 
0.02883 1836 0.0087 12.3 14.7 23.05 
0.146 9294 0.0053 20.3 20.6 17.3 

 
Discussion: Axial dispersion predicts always lower temperatures at outlet and apparently lower heat 
transfer coefficient. This is caused by the increased axial conductivity (thermal diffusivity a=1.4.10-7 is 
more than ten thousand times lower than dispersion ae) and by fixed temperature at inlet – heat flux is 
therefore against the flow direction. Therefore it is better to suppress the axial dispersion (e.g. by 
TAUD=0) if a steady state heat transfer is to be calculated. 
 

2.2.7.7.Heat transfer coefficient – temperature dependent viscosity 
 
 Temperature dependent viscosity influences not only the pressure drop, but also the heat 
transfer coefficient as soon as temperature depends upon radius and deforms the radial velocity profile. 
A problem is that the 1D solution contains only one piece of information about the radial temperature 
profile – nodal temperature (this is mean calorimetric temperature). Nevertheless, another piece of 
information is in the estimate of thermal boundary layer thickness δ. Assuming linear temperature 
profile within this layer and a uniform temperature in core the wall temperature Tw and the wall shear 
rate Г can be estimated  
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In terms of Eq.(20) the boundary layer thickness and therefore the heat transfer coefficient is corrected 
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where δ0 is boundary layer thickness in previous element (previous from point of view of flow 
direction), L is length of element and φ is coefficient determined from experiments (φ=1.845 is used in 
FEMINA).  
 

Example: Heating of liquid characterized by viscosity 
)(

0
0)( TTkeT −−= µµ , in a pipe with the constant 

wall temperature Tw=100 0C, when the inlet temperature is T0=0 0C. Dimension of pipe D=0.02 m, L=1 
m (the same formulation as in the previous example). Mean velocity u=0.1 m/s. Thermodynamic 
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Eq.(8) 

Eq.(9)
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parameters of liquid λ=0.6 W/(m.K), cp=4200 J/(kg.K), ρ=1000 kg/m3. The problem can be solved by 
the following simple program 
 
PT 1,.000E+00,.000E+00; 
PT 2,.100E+01,.000E+00; 
CR2PT 1,1,2; 
RCONST 1,PIPE2D,0.02,0,0,0.001,1E5,100,0,0,0,0,0,0,0,0,0,0,0; 
MPROP 1,PIPE2D,.600E+00,0,4200,0,998,0,.400E-01,0,.210E+12,0,.280E+00,0,.100E-
02,11,.500E-03,0,.100E-08,0,0,0,0,0,.120E-04,0; 
MCR 1,50,1,2,0,0,1; 
NFPT 1,TEMP,-1,0; 
NFPT 1,PRES,1,0.0314; 
NFPT 2,PRES,-1,0; 
OPTION 0,0,0,0,1,0,0,15,.1E-11,1,.1E+08,1,.1E-8,1,0,0,0,.1E-04,.1E-
04,0,3,1,0,0,0,0, 
FUNDEF 11,EXP(-0.001*TEMP) 
SOLVE 0,10,1,0,0,3,1,0,0,0,0; 
 
Results, temperatures at outlet, corresponding to different values of k (in previous program k=0.001 in 
the function number 11) can be compared with the analytical solution, based upon Leveque correlation 
and Sieder Tate correction 

 14.03
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= .        (2.2.7-21) 

The graphs demonstrate relative temperature increase with the increasing k for the case of heating due 
to decrease of viscosity at hot wall and therefore increased velocity gradient and decreased thickness of 
thermal boundary layer. For the case of cooling, when the temperature of wall is less than the inlet 
temperature, the trends are opposite. 
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2.2.7.8. Heat transfer and fouling in pipes  
 
 Gradually increasing thermal resistance r [m2.K/W] of fouling layer, caused by degradation of 
oil, proteins or crystallisation, depends first of all upon temperature T, but also upon wall shear stress τ 
and composition. Time changes of thermal resistance r are described by a model with the rate function 
f(T,τ,cN,cD,cA) 

f
dt
dr

= .          (2.2.7-22) 

The function f (its index) is specified as a parameter OPTION, usually using menu SOLVE-OPTION 
as a model of fouling (1- is reserved for the predefined Ebert Panchal model, while 2,3,…. are assessed 
for user defined fouling models).  



FEM3AI2.DOC   Last update 21.3.2005                                         / 128 60

Let us consider as an example the model for milk fouling described by de Jong, Toyoda and 
others. The model assumes that the rate of fouling as proportional to the concentration of agglomerated 
proteins cA. Let us define this model as the function 6, with the proportionality coefficient A 
(predefined user variable) 
 
 FUNDEF 6,A*CA 
 
The concentration of agglomerated proteins CA is determined by biochemical reactions between native 
proteins cN, denatured proteins cD and agglomerates cA (see chapter 4 – theory) and these 
concentrations have to be solved from appropriate transport equations with user defined source and 
sink terms, see the following table:  
 
Component Source term Sink term 
cN native protein 0 KN*exp(-EN/(R*TEMP)) 
cD denatured protein KN*exp(-EN/(R*TEMP))*CN CD*KD*exp(-ED/(R*TEMP)) 
cA aggregated protein CD**2*KD*exp(-ED/(R*TEMP)) 0 
 
All these source and sink terms must be defined as user functions and their indices should be specified 
as EGROUP parameters. Let us show this approach on a simple case: straight pipe, laminar flow, 
ohmic heating (insulated tube) 
 
C* Toyoda mode - fouling in a pipe 
PT 1,.000E+00,.500E+00; 
PT 2,.100E+01,.500E+00; 
CR2PT 1,1,2; 
EGROUP 1,PIPE2D,1,0,1,0,0,2,3,4,0,0; 
REAL KN,EN,KD,ED 
C* The following parameters (activation energies) are not realistics  
KN=1 
EN=300 
KD=1 
ED=200 
EGROUP 1,PIPE2D,1,1,0,0,0,0,2,3,4,5,0, 
RCONST 1,PIPE2D,.008,.1E-03,.0,.1E+01,.0,.0,.0,.0,.0,.0,.0,.0,.0,.0,.0,.0,.0, 
FUNDEF 2,KN*EXP(-EN/(TEMP+273)); 
FUNDEF 3,KN*EXP(-EN/(TEMP+273))*CN; 
FUNDEF 4,CD*KD*EXP(-ED/(TEMP+273)); 
FUNDEF 5,CD**2*KD*EXP(-ED/(TEMP+273)); 
FUNDEF 6,A*CA; 
FUNDEF 7,1; 
MCR 1,10,1,2,0,0,1; 
NF 1,PRES,1,.100E-02; 
NF 11,PRES,-1,0; 
INITIA CN,7; 
INITIA CD,0; 
INITIA CA,0; 
NF 1,CA,-1,0; 
NF 1,CD,-1,0; 
NF 1,CN,-1,1; 
NF 1,TEMP,-1,20; 
A=0.0001 
OPTION 0,0,0,1,1,6,0,15,.1E-11,1,.1E+08,1,.1E+01,1,0,0,0,.1E-04,.1E-
04,0,5,1,2,2,2,0, 
SOLVE 0,5,100,0,0,5,1,2,2,2,0; 
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The following graphs show results – concentrations of native, denaturated and agglomerated proteins 
along the pipe. 

 
Graphical representation of calculated thermal resistance of the fouled layer can be obtained by using 
GE1 command.  
 

2.2.7.9. Buoyancy and heat transfer between pipes 
 
 In the case that the flow is induced by buoyancy, it is necessary to specify the gravity 
acceleration (gy=-9.81 m/s2) and temperature dependent density of liquid– there are two possibilities 
how to do it: The first possibility is to prescribe density as a function of temperature (e.g. for water 
within the temperature range 20-80 0C correct the reference density ρ0=1000 kg/m3 by the function 
FUNDEF 1,1-0.000121*TEMP-3.2e-6*TEMP**2 where temperature TEMP is in degree of Celsius). 
The second possibility is to set a constant density (for example ρ0=1000 kg/m3 ), specify nonzero 
thermal expansion coefficient in MPROP (for example β=0.0005 [1/0C]) and select Boussinesque 
method in the menu OPTION. 

 
 
 The problems with buoyancy driven flows are usually rather difficult and results must be 
interpreted carefully. It will be demonstrated in the following example: Buoyancy driven circulation of 
water in a closed loop with some pipes heated and other cooled (similar arrangement is for example a 
system for domestic heating).  

Native proteins Unfolded proteins Agglomerates 
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 Mutual heat transfer between two PIPE2D elements can be realised by 4-node HEXC finite 
element (this connection represents the simplest form of a tubular or plate heat exchangers in parallel 
or counter-parallel flow arrangement). The arrangement when one vertical pipe is heated and the other 
vertical section is cooled (configuration A) seems to be similar to the arrangement when the loop is 
heated from below (B). This is not so, the arrangement shown left is nearly impossible to solve, 
because in this case the driving force depends only upon small differences in temperature profiles in 
vertical sections. It should be realised that the heat, transferred in both vertical sections, is the same, 
the flowrates are constant, and therefore the mean calorimetric temperature differences (temperature 
approaches) are identical. It is true that the mean temperature is not exactly the same as the mean 
calorimetric temperature, however the difference is small and therefore the mean densities are nearly 
identical in vertical channels and driving force – buoyancy is very small. It reveals as a strong 
sensitivity of flowrates upon model parameter (for example coefficient of axial dispersion). The model 
A is described by the following batch file 
 
 
GY=-9.81 
BETA(1)=0.00012 
BUOY=2 
BL=0 
PT 1,.100E+00,.000E+00; 
PT 2,.900E+00,.000E+00; 
CR2PT 1,1,2; 
PT 3,.900E+00,.100E+01; 
CR2PT 2,2,3; 
PT 4,.100E+00,.100E+01; 
CR2PT 3,3,4; 
PT 5,.100E+00,.000E+00; 
CR2PT 4,4,5; 
PT 6,.000E+00,.000E+00; 
PT 7,.000E+00,.100E+01; 
CR2PT 5,6,7; 
PT 8,.100E+01,.000E+00; 

PT 9,.100E+01,.100E+01; 
CR2PT 6,8,9; 
MCR2 5,4,5,1,1,1,1,2,1,2; 
MCR2 2,6,5,1,1,1,1,2,1,2; 
MCR 1,5,1,2,1,3,2; 
NMERGE ; 
NFPT 1,PRES,-1,0; 
NFPT 6,PRES,-1,10; 
NFPT 7,PRES,-1,0; 
NFPT 8,PRES,-1,10; 
NFPT 9,PRES,-1,0; 
NFPT 6,TEMP,-1,0; 
NFPT 8,TEMP,-1,100; 
RCHEX 2,0.1,200; 
EGROUP 2,HEXC,0,0; 
SOLVE 0,50,10,1,0,35,1,0,0,0,0; 

 
Older versions of FEMINA were not able to achieve a convergent solution of this problem. Since 
October 2004 additional procedure, improving mass conservation, is available and a convergent and at 
a first glance acceptable result can be obtained. However, when repeating the solution for different 
values of TAUD (axial dispersion), BL (boundary layer), heat transfer coefficient (see RCHEX), quite 
different results will be predicted.  
 
 
 Much more stable and realistic solution exists for the problem, 
where the loop is heated from bottom - in this case hot water is in the left 
ascending pipe, while the descending pipe is cooled – driving force is 
significantly greater than in the case A and the problem is well determined. 

Heater 1000C Cooler 00C 

g=9.81 m/s2

A B

B 

A
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Its formulation is in the following batch file 
 
PT 1,.000E+00,.100E+00; 
PT 2,.900E+00,.100E+00; 
CR2PT 1,1,2; 
PT 3,.900E+00,.100E+01; 
CR2PT 2,2,3; 
PT 4,.000E+00,.100E+01; 
CR2PT 3,3,4; 
CR2PT 4,4,1; 
PT 6,.000E+00,.000E+00; 
PT 7,.900E+00,.000E+00; 
CR2PT 6,6,7; 
PT 8,.100E+01,.100E+00; 
PT 9,.100E+01,.100E+01; 
CR2PT 8,8,9; 
EGROUP 1,PIPE2D; 
RCONST 1,PIPE2D,.05,.100E-03,0,0.001; 
FUNDEF 10,1-0.000121*TEMP-3.2E-6*TEMP**2 
MCR 1,10,1,2,0,4,1; 

MCR 6,10,1,2,0,0,1; 
MCR 8,10,1,2,0,0,1; 
EGROUP 2,HEXC,0,0; 
RCONST 2,HEXC,2000,0.1; 
MCR4 1,6,2,2; 
MCR4 2,8,2,2; 
NMERGE ; 
NFPT 6,PRES,1,1; 
NFPT 6,TEMP,-1,100; 
NFPT 8,TEMP,-1,0; 
NFPT 8,PRES,1,1; 
NFPT 7,PRES,-1,0; 
NFPT 9,PRES,-1,0; 
BUOY=2 
GY=-9.81 
TAUD=0 
BETA(1)=0.0005 
SOLVE 0,10,1,1,0,20,1,0,0,0,0; 

 
In this case we compare results obtained with two different methods of solution: The first (BUOY=1) 
makes use temperature dependent density defined by function number 10, and the second method is a 
Boussinesque approximation (BUOY=2) with thermal expansion coefficient β=0.0005 [1/K]. This 
value corresponds to the mean temperature of water 50 0C, which is mean temperature of water in the 
circulation loop (hot stream is 100 0C, cold 
stream 0 0C, and heat transfer coefficients 
equal in both heat exchangers). 
 
 
 
 
 
 
 
 
 
 
The most important result of calculation is 
mean velocity of water in the circulation 
loop, see the following table 
 
Temperature dependence of density 
BUOY 

TAUD [s] 
(dispersion ) 

u [m/s] 

1      )102.3000121.01(998 26TT −⋅−−=ρ  0 0.0574 

1      )102.3000121.01(998 26TT −⋅−−=ρ  1 0.0575 

1      )102.3000121.01(998 26TT −⋅−−=ρ  106 0.0602 
2       β=0.0005 0 0.06 
2       β=0.0005 1 0.061 
2       β=0.0005 106 0.0634 
 
Discussion of results: Velocity (which is rather sensitive parameter) calculated by Boussinesque 
method agrees acceptably with the method defining temperature dependent density. What is surprising: 
velocity slightly increases with dispersion-according to common sense it should have been reversaly. 

Temperature dependent relative density of 
water according to function 10. 
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Its formulation is in the following batch file 
 
PT 1,.000E+00,.100E+00; 
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CR2PT 1,1,2; 
PT 3,.900E+00,.100E+01; 
CR2PT 2,2,3; 
PT 4,.000E+00,.100E+01; 
CR2PT 3,3,4; 
CR2PT 4,4,1; 
PT 6,.000E+00,.000E+00; 
PT 7,.900E+00,.000E+00; 
CR2PT 6,6,7; 
PT 8,.100E+01,.100E+00; 
PT 9,.100E+01,.100E+01; 
CR2PT 8,8,9; 
EGROUP 1,PIPE2D; 
RCONST 1,PIPE2D,.05,.100E-03,0,0.001; 
FUNDEF 10,1-0.000121*TEMP-3.2E-6*TEMP**2 
MCR 1,10,1,2,0,4,1; 

MCR 6,10,1,2,0,0,1; 
MCR 8,10,1,2,0,0,1; 
EGROUP 2,HEXC,0,0; 
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In this case we compare results obtained with two different methods of solution: The first (BUOY=1) 
makes use temperature dependent density defined by function number 10, and the second method is a 
Boussinesque approximation (BUOY=2) with thermal expansion coefficient β=0.0005 [1/K]. This 
value corresponds to the mean temperature of water 50 0C, which is mean temperature of water in the 
circulation loop (hot stream is 100 0C, cold 
stream 0 0C, and heat transfer coefficients 
equal in both heat exchangers). 
 
 
 
 
 
 
 
 
 
 
The most important result of calculation is 
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2.2.8. Heat exchangers (enthalpy balance method) 
 

 The heat exchange between parallel channels has been modelled as a classical counter-current 
heat exchanger and using a classical weighted residual method in the previous example. This method 
cannot be applied in the case that more complicated heat exchangers (e.g. plate, shell and tube or 
cross-flow heat exchangers) form a part of analysed pipeline network. Then the enthalpy balance 
method is to be used, selected by the parameter Solution method in the OPTION command or menu 
bar Solution. The enthalpy balance method has been implemented also for PIPE2D and CSTR 
elements, therefore it can be considered as a more general than the weighted residual method from the 
point of view of range of applications. 
 

2.2.8.1. Chevron plate heat exchanger 
 

 In the following example the enthalpy balance method will be applied for 
modelling the chevron plate heat exchanger using elements HEXC with connected 
piping modelled by elements PIPE2D. The elements HEXC have 4 nodes, the nodes 
1 and 2 are endpoints of the first stream while the nodes 3 and 4 belong to the second 
stream. The nodes arrangement should correspond to the schematic figure right, 
however orientation of flows is arbitrary (it is in fact result of calculations, depending 
upon pressures at nodes 1,2,3,4). 
 
The heat exchanger considered in this example has 7 plates dividing two incoming streams into triplets 
of parallel streams, heat transfer surface of a stainless steel plate is 1 m2, and equivalent hydraulic 
diameter de=0.005 m. Water is used as working fluid in both streams, with inlet temperatures 1000C 
and 200C and pressure drops 1 kPa, and 2kPa in the first, and the second stream respectively.  
 
PT 1,.100E+00,.200E+00; 
PT 2,.800E+00,.200E+00; 
PT 3,.800E+00,.700E+00; 
PT 4,.100E+00,.700E+00; 
PT 5,.1,0; 
PT 6,.8,0; 
PT 7,.8,1; 
PT 8,.1,1; 
CR2PT 1,1,5; 
CR2PT 2,2,6; 
CR2PT 3,4,5; 
CR2PT 3,4,8; 
CR2PT 4,3,7; 
ND .100E+00,.200E+00; 
ND .800E+00,.200E+00; 
ND .800E+00,.700E+00; 
ND .100E+00,.700E+00; 
E 4,1,2,4,3; 
EGROUP 1,HEXC,0,11; 
RCHEV 1,1,1,1,3,0.001,0.005,45,15,1,0.5,1; 
EGROUP 2,PIPE2D,0,0,0; 
RCONST 2,PIPE2D,0.02,0,0,0,0,0,0,0,0,0; 
MCR 1,1,1,2,2,4,1; 
NMERGE ; 
NF 5,PRES,-1,1000; 
NF 6,PRES,-1,0; 
NF 7,PRES,-1,2000; 
NF 8,PRES,-1,0; 
NF 5,TEMP,-1,100; 
NF 7,TEMP,-1,20; 
NF 6,TEMP,21,0; 
NF 8,TEMP,21,0; 

ND-new node (index is automatically incremented) 
E-new element with 4 nodes 1,2,3,4. Associated EGROUP=RCONST=MPROP=1

Element HEXC can be any kind of heat exchangers. 
The following parameter of EGROUP command 
Method=11 selects chevron type plate heat exchanger 
and RCHEV defines RCONST parameters for this 
specific type (3 parallel streams, plate thickness 
0.001m, plate distance 0.005m, chevron angle 450, 
thermal conductivity of plate 15 W.m-1.K-1, heat 
transfer surface of a plate 1 m2,, dimensions of plate 
(width and height) 

Four pipes are connected to 
the inlet and outlet nozzles 
of heat exchanger. 

Pressures are specified at inlet and outlet, however temperatures at inlets only (1000C 
and 200C). Nothing would need to be prescribed at outlet if the weighted residual 
method is used, because then natural boundary conditions apply. However, when 
using the enthalpy balance method the outlet points have to be explicitly marked by 
assigning status of temperature higher than 20 and zero thermal load! 
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2.2.8. Heat exchangers (enthalpy balance method) 
 

 The heat exchange between parallel channels has been modelled as a classical counter-current 
heat exchanger and using a classical weighted residual method in the previous example. This method 
cannot be applied in the case that more complicated heat exchangers (e.g. plate, shell and tube or 
cross-flow heat exchangers) form a part of analysed pipeline network. Then the enthalpy balance 
method is to be used, selected by the parameter Solution method in the OPTION command or menu 
bar Solution. The enthalpy balance method has been implemented also for PIPE2D and CSTR 
elements, therefore it can be considered as a more general than the weighted residual method from the 
point of view of range of applications. 
 

2.2.8.1. Chevron plate heat exchanger 
 

 In the following example the enthalpy balance method will be applied for 
modelling the chevron plate heat exchanger using elements HEXC with connected 
piping modelled by elements PIPE2D. The elements HEXC have 4 nodes, the nodes 
1 and 2 are endpoints of the first stream while the nodes 3 and 4 belong to the second 
stream. The nodes arrangement should correspond to the schematic figure right, 
however orientation of flows is arbitrary (it is in fact result of calculations, depending 
upon pressures at nodes 1,2,3,4). 
 
The heat exchanger considered in this example has 7 plates dividing two incoming streams into triplets 
of parallel streams, heat transfer surface of a stainless steel plate is 1 m2, and equivalent hydraulic 
diameter de=0.005 m. Water is used as working fluid in both streams, with inlet temperatures 1000C 
and 200C and pressure drops 1 kPa, and 2kPa in the first, and the second stream respectively.  
 
PT 1,.100E+00,.200E+00; 
PT 2,.800E+00,.200E+00; 
PT 3,.800E+00,.700E+00; 
PT 4,.100E+00,.700E+00; 
PT 5,.1,0; 
PT 6,.8,0; 
PT 7,.8,1; 
PT 8,.1,1; 
CR2PT 1,1,5; 
CR2PT 2,2,6; 
CR2PT 3,4,5; 
CR2PT 3,4,8; 
CR2PT 4,3,7; 
ND .100E+00,.200E+00; 
ND .800E+00,.200E+00; 
ND .800E+00,.700E+00; 
ND .100E+00,.700E+00; 
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RCHEV 1,1,1,1,3,0.001,0.005,45,15,1,0.5,1; 
EGROUP 2,PIPE2D,0,0,0; 
RCONST 2,PIPE2D,0.02,0,0,0,0,0,0,0,0,0; 
MCR 1,1,1,2,2,4,1; 
NMERGE ; 
NF 5,PRES,-1,1000; 
NF 6,PRES,-1,0; 
NF 7,PRES,-1,2000; 
NF 8,PRES,-1,0; 
NF 5,TEMP,-1,100; 
NF 7,TEMP,-1,20; 
NF 6,TEMP,21,0; 
NF 8,TEMP,21,0; 

ND-new node (index is automatically incremented) 
E-new element with 4 nodes 1,2,3,4. Associated EGROUP=RCONST=MPROP=1

Element HEXC can be any kind of heat exchangers. 
The following parameter of EGROUP command 
Method=11 selects chevron type plate heat exchanger 
and RCHEV defines RCONST parameters for this 
specific type (3 parallel streams, plate thickness 
0.001m, plate distance 0.005m, chevron angle 450, 
thermal conductivity of plate 15 W.m-1.K-1, heat 
transfer surface of a plate 1 m2,, dimensions of plate 
(width and height) 

Four pipes are connected to 
the inlet and outlet nozzles 
of heat exchanger. 

Pressures are specified at inlet and outlet, however temperatures at inlets only (1000C 
and 200C). Nothing would need to be prescribed at outlet if the weighted residual 
method is used, because then natural boundary conditions apply. However, when 
using the enthalpy balance method the outlet points have to be explicitly marked by 
assigning status of temperature higher than 20 and zero thermal load! 
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elements, therefore it can be considered as a more general than the weighted residual method from the 
point of view of range of applications. 
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 In the following example the enthalpy balance method will be applied for 
modelling the chevron plate heat exchanger using elements HEXC with connected 
piping modelled by elements PIPE2D. The elements HEXC have 4 nodes, the nodes 
1 and 2 are endpoints of the first stream while the nodes 3 and 4 belong to the second 
stream. The nodes arrangement should correspond to the schematic figure right, 
however orientation of flows is arbitrary (it is in fact result of calculations, depending 
upon pressures at nodes 1,2,3,4). 
 
The heat exchanger considered in this example has 7 plates dividing two incoming streams into triplets 
of parallel streams, heat transfer surface of a stainless steel plate is 1 m2, and equivalent hydraulic 
diameter de=0.005 m. Water is used as working fluid in both streams, with inlet temperatures 1000C 
and 200C and pressure drops 1 kPa, and 2kPa in the first, and the second stream respectively.  
 
PT 1,.100E+00,.200E+00; 
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PT 3,.800E+00,.700E+00; 
PT 4,.100E+00,.700E+00; 
PT 5,.1,0; 
PT 6,.8,0; 
PT 7,.8,1; 
PT 8,.1,1; 
CR2PT 1,1,5; 
CR2PT 2,2,6; 
CR2PT 3,4,5; 
CR2PT 3,4,8; 
CR2PT 4,3,7; 
ND .100E+00,.200E+00; 
ND .800E+00,.200E+00; 
ND .800E+00,.700E+00; 
ND .100E+00,.700E+00; 
E 4,1,2,4,3; 
EGROUP 1,HEXC,0,11; 
RCHEV 1,1,1,1,3,0.001,0.005,45,15,1,0.5,1; 
EGROUP 2,PIPE2D,0,0,0; 
RCONST 2,PIPE2D,0.02,0,0,0,0,0,0,0,0,0; 
MCR 1,1,1,2,2,4,1; 
NMERGE ; 
NF 5,PRES,-1,1000; 
NF 6,PRES,-1,0; 
NF 7,PRES,-1,2000; 
NF 8,PRES,-1,0; 
NF 5,TEMP,-1,100; 
NF 7,TEMP,-1,20; 
NF 6,TEMP,21,0; 
NF 8,TEMP,21,0; 

ND-new node (index is automatically incremented) 
E-new element with 4 nodes 1,2,3,4. Associated EGROUP=RCONST=MPROP=1

Element HEXC can be any kind of heat exchangers. 
The following parameter of EGROUP command 
Method=11 selects chevron type plate heat exchanger 
and RCHEV defines RCONST parameters for this 
specific type (3 parallel streams, plate thickness 
0.001m, plate distance 0.005m, chevron angle 450, 
thermal conductivity of plate 15 W.m-1.K-1, heat 
transfer surface of a plate 1 m2,, dimensions of plate 
(width and height) 

Four pipes are connected to 
the inlet and outlet nozzles 
of heat exchanger. 

Pressures are specified at inlet and outlet, however temperatures at inlets only (1000C 
and 200C). Nothing would need to be prescribed at outlet if the weighted residual 
method is used, because then natural boundary conditions apply. However, when 
using the enthalpy balance method the outlet points have to be explicitly marked by 
assigning status of temperature higher than 20 and zero thermal load! 
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HEPI=1 
SOLVE 0,1,1,0,0,6,1,0,0; 
 
 
 It is important from practical point of view to design an optimal heat exchanger – to find out 
for example optimum chevron angle, number of plates, or distance of plates, satisfying prescribed heat 
exchanger duty and minimising pumping power. This is subject of optimisation which will be 
described later (methods OPTIMA and SOMA). However, it is usually sufficient to observe just only 
influence of a single key-parameter, for example chevron angle, upon heat exchanger performance. 
This is demonstrated in the following example, which generates a table (MOP – matrix of observation 
points) with four columns: chevron angle (1st column), corresponding heating power-duty (2nd 
column), temperature increase (3rd column) and pressure drop in the 1st stream (4th column). The 
commands are continuation of the previous case – it means that all design parameters are preserved, 
with the exception of chevron angle, which is changing from 15 to 85 degrees. Because repetition is 
ensured by the #LOOP command, it is necessary to process the sequence of commands as a batch (it is 
necessary to prepare the commands in a file and use F) 
 
J=0 
A=10 
NT=15 
#LOOP L,NT 
J=J+1 
A=A+5 
RCHEV 1,1,1,1,3,0.001,0.005,A,15,1,0.5,1; 
SOLVE 0,1,1,0,0,10,1; 
C1(J)=A 
C2(J)=E1(IEP(EPOWER,1)) 
C3(J)=V2(LPU(TEMP)+3)-V2(LPU(TEMP)+4) 
C4(J)=V2(LPU(PRES)+3)-V2(LPU(PRES)+4) 
#LABEL L 
 
A new feature in this example is the element parameters processing. All the parameters of all finite 
elements are in the array E1(ind) and the index ind is calculated by the system function 
IEP(name,index of element), in our case the name is EPOWER (heat exchanger duty) and the heat 
exchanger is element number 1.  
 Results located in the matrix of observation points can be listed by using the command TCL, 
exported to an ASCII file by using command WRITE or shown in form of graphs using GTC, see for 
example the following figure. The figure left shows relationship between heat exchanger duty and 
chevron angle at a constant pressure drop.The figure right was created by a modified batch for constant 
chevron angle 450, but for different number of plates (parallel streams): 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.2.8.2. Shell and tube heat exchanger 
 

HEPI=1 selects enthalpy balances method (default value 0 is weighted 
residuals and HEPI=2 would activate method of characteristics). 
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HEPI=1 
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 It is important from practical point of view to design an optimal heat exchanger – to find out 
for example optimum chevron angle, number of plates, or distance of plates, satisfying prescribed heat 
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influence of a single key-parameter, for example chevron angle, upon heat exchanger performance. 
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commands are continuation of the previous case – it means that all design parameters are preserved, 
with the exception of chevron angle, which is changing from 15 to 85 degrees. Because repetition is 
ensured by the #LOOP command, it is necessary to process the sequence of commands as a batch (it is 
necessary to prepare the commands in a file and use F) 
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A new feature in this example is the element parameters processing. All the parameters of all finite 
elements are in the array E1(ind) and the index ind is calculated by the system function 
IEP(name,index of element), in our case the name is EPOWER (heat exchanger duty) and the heat 
exchanger is element number 1.  
 Results located in the matrix of observation points can be listed by using the command TCL, 
exported to an ASCII file by using command WRITE or shown in form of graphs using GTC, see for 
example the following figure. The figure left shows relationship between heat exchanger duty and 
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2.2.8.2. Shell and tube heat exchanger 
 

HEPI=1 selects enthalpy balances method (default value 0 is weighted 
residuals and HEPI=2 would activate method of characteristics). 
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Results of solution can be inspected also by using mouse and 
the EID (Element IDentification) command. The EID suggests 
several options and for example the option 6 enables not only 
inspection of results but also modification of some parameters, 
e.g. chevron angle, dimension of plates, see the following 
dialog panel which appears when the element is picked by 
mouse (left click as usually). The most important item in the 
field RESULTS is the heat exchanger duty [W], besides 
calculated pressure drops and heat capacities of both streams 
W1,W2 [W/K]. Effectiveness of heat exchanger is the ratio of 
temperature range in the weak stream (stream having lower 
heat capacity) and the difference of inlet temperatures.  
 
Remark: Similar information are accesible also for other kinds 
of heat exchangers, tubular and shell & tube heat exchangers. 
However, the actions performed in dialog panels are not 
recorded in the session file! 
 
 
 

2.2.8.3. Shell and tube heat exchanger 
 
 Shell&tube heat exchangers are defined in a similar way as plate heat exchangers. The only 
difference is the fact that streams 1 and 2 are not exchangable: The first stream connecting nodes 1 and 
2 is always shell stream, while the second stream connecting nodes 3 and 4 is the tube stream.  
 

The shell and tube heat exchanger considered in this example has 1 pass in the tube section, 
600 tubes, and 5 baffles. Tube outer diameter is 0.05 m, thickness of wall is 0.001 m, tube length is 5 
m, tube bundle diameter is 1.9 m, shell inner diameter is 2 m, baffle distance is 1 m, baffle thickness is 
0.0025 m, baffle height is 1.75 m, clearance between tube and baffle is 0.001 m, clearance between 
shell and baffle is 0.002 m, layout angle of tubes is 45°, tube spacing is 0.056, wall roughness is 0.001 
m and heat conductivity of tube material (carbon steel) is 50 W.m-1.K-1.  
 Heat exchanger is designed for oil cooling by water. The first stream is oil with inlet 
temperature 900C, and the cooling water enters the exchanger at 50C. Instead of volumetric flowrate in 
both streams (which is a more common case) the pressure drop is specified by fixing pressures at inlet 
and outlet nozzles . 
 
PT 1,.100E+00,.200E+00; 
PT 2,.800E+00,.200E+00; 
PT 3,.800E+00,.700E+00; 
PT 4,.100E+00,.700E+00; 
ND .100E+00,.200E+00; 
ND .800E+00,.200E+00; 
ND .800E+00,.700E+00; 
ND .100E+00,.700E+00; 
PT 5,.1,0; 
PT 6,.8,0; 
PT 7,.8,1; 
PT 8,.1,1; 
CR2PT 1,1,5; 
CR2PT 2,2,6; 
CR2PT 3,4,8; 
CR2PT 4,3,7; 
E 4,1,2,4,3; 
EGROUP 1,HEXC,0,12; 
 

The parameter Method=12 selects shell and tube heat exchanger 

FEM3AI2.DOC   Last update 21.3.2005                                         / 128 66

Results of solution can be inspected also by using mouse and 
the EID (Element IDentification) command. The EID suggests 
several options and for example the option 6 enables not only 
inspection of results but also modification of some parameters, 
e.g. chevron angle, dimension of plates, see the following 
dialog panel which appears when the element is picked by 
mouse (left click as usually). The most important item in the 
field RESULTS is the heat exchanger duty [W], besides 
calculated pressure drops and heat capacities of both streams 
W1,W2 [W/K]. Effectiveness of heat exchanger is the ratio of 
temperature range in the weak stream (stream having lower 
heat capacity) and the difference of inlet temperatures.  
 
Remark: Similar information are accesible also for other kinds 
of heat exchangers, tubular and shell & tube heat exchangers. 
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2.2.8.3. Shell and tube heat exchanger 
 
 Shell&tube heat exchangers are defined in a similar way as plate heat exchangers. The only 
difference is the fact that streams 1 and 2 are not exchangable: The first stream connecting nodes 1 and 
2 is always shell stream, while the second stream connecting nodes 3 and 4 is the tube stream.  
 

The shell and tube heat exchanger considered in this example has 1 pass in the tube section, 
600 tubes, and 5 baffles. Tube outer diameter is 0.05 m, thickness of wall is 0.001 m, tube length is 5 
m, tube bundle diameter is 1.9 m, shell inner diameter is 2 m, baffle distance is 1 m, baffle thickness is 
0.0025 m, baffle height is 1.75 m, clearance between tube and baffle is 0.001 m, clearance between 
shell and baffle is 0.002 m, layout angle of tubes is 45°, tube spacing is 0.056, wall roughness is 0.001 
m and heat conductivity of tube material (carbon steel) is 50 W.m-1.K-1.  
 Heat exchanger is designed for oil cooling by water. The first stream is oil with inlet 
temperature 900C, and the cooling water enters the exchanger at 50C. Instead of volumetric flowrate in 
both streams (which is a more common case) the pressure drop is specified by fixing pressures at inlet 
and outlet nozzles . 
 
PT 1,.100E+00,.200E+00; 
PT 2,.800E+00,.200E+00; 
PT 3,.800E+00,.700E+00; 
PT 4,.100E+00,.700E+00; 
ND .100E+00,.200E+00; 
ND .800E+00,.200E+00; 
ND .800E+00,.700E+00; 
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PT 5,.1,0; 
PT 6,.8,0; 
PT 7,.8,1; 
PT 8,.1,1; 
CR2PT 1,1,5; 
CR2PT 2,2,6; 
CR2PT 3,4,8; 
CR2PT 4,3,7; 
E 4,1,2,4,3; 
EGROUP 1,HEXC,0,12; 
 

The parameter Method=12 selects shell and tube heat exchanger 
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Results of solution can be inspected also by using mouse and 
the EID (Element IDentification) command. The EID suggests 
several options and for example the option 6 enables not only 
inspection of results but also modification of some parameters, 
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dialog panel which appears when the element is picked by 
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calculated pressure drops and heat capacities of both streams 
W1,W2 [W/K]. Effectiveness of heat exchanger is the ratio of 
temperature range in the weak stream (stream having lower 
heat capacity) and the difference of inlet temperatures.  
 
Remark: Similar information are accesible also for other kinds 
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However, the actions performed in dialog panels are not 
recorded in the session file! 
 
 
 

2.2.8.3. Shell and tube heat exchanger 
 
 Shell&tube heat exchangers are defined in a similar way as plate heat exchangers. The only 
difference is the fact that streams 1 and 2 are not exchangable: The first stream connecting nodes 1 and 
2 is always shell stream, while the second stream connecting nodes 3 and 4 is the tube stream.  
 

The shell and tube heat exchanger considered in this example has 1 pass in the tube section, 
600 tubes, and 5 baffles. Tube outer diameter is 0.05 m, thickness of wall is 0.001 m, tube length is 5 
m, tube bundle diameter is 1.9 m, shell inner diameter is 2 m, baffle distance is 1 m, baffle thickness is 
0.0025 m, baffle height is 1.75 m, clearance between tube and baffle is 0.001 m, clearance between 
shell and baffle is 0.002 m, layout angle of tubes is 45°, tube spacing is 0.056, wall roughness is 0.001 
m and heat conductivity of tube material (carbon steel) is 50 W.m-1.K-1.  
 Heat exchanger is designed for oil cooling by water. The first stream is oil with inlet 
temperature 900C, and the cooling water enters the exchanger at 50C. Instead of volumetric flowrate in 
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PT 1,.100E+00,.200E+00; 
PT 2,.800E+00,.200E+00; 
PT 3,.800E+00,.700E+00; 
PT 4,.100E+00,.700E+00; 
ND .100E+00,.200E+00; 
ND .800E+00,.200E+00; 
ND .800E+00,.700E+00; 
ND .100E+00,.700E+00; 
PT 5,.1,0; 
PT 6,.8,0; 
PT 7,.8,1; 
PT 8,.1,1; 
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CR2PT 4,3,7; 
E 4,1,2,4,3; 
EGROUP 1,HEXC,0,12; 
 

The parameter Method=12 selects shell and tube heat exchanger 
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RCSTUB 
1,1,1,2,1,600,5,0.05,0.001,5,1.9,2,1,0.0025,1.75,0.001,0.002,45,0.055678,0.001,50; 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
EGROUP 2,PIPE2D,0,0,0; 
RCONST 2,PIPE2D,0.02,0,0,0,0,0,0,0,0,0; 
 
 
MCR 1,1,1,2,2,4,1; 
MPROP 1,PIPE2D,.598E+00,0,4180,0,998,0,.400E-01,0,.210E+12,0,.280E+00,0,.100E-
02,0,.500E-03,0,.100E-08; 
MPROP 2,PIPE2D,.4E+00,0,1890,0,866,0,.400E-01,0,.210E+12,0,.280E+00,0,.4E-
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OPTION 0,0,0,0,1,0,1,15,.1E-11,1,.1E+08,1,.1E+01,1,0,0,1,.1E-04,.1E-04, 
0,10,10,0,0,0,0, 
SOLVE 0,1,1,0,0,10,10,0,0,0,0; 
 

Purpose of rating is to calculate outlet temperatures in both streams and heat exchanger duty. 
These values can be best observed by using EID (picking element by mouse, use the option 6 if you 
want to modify design parameters interactively). 
 
Remark: There are several restrictions which must be respected: Only one pass in the shell and 
maximum four passes in tube section can be applied. Only the most frequently “E” shape of the heat 
exchanger shell (according to the TEMA classification) can be selected and only single-phase flows in 
heat exchanger can be considered. 
 

RCSTUB defines RCONST parameters for this specific type (1 passes in tube section, 600 tubes, 5 baffles, tube outer
diameter 0.05 m, tube thickness 0.001 m, tube length 5 m, tube bundle diameter 1.9 m, shell inner diameter 2 m, baffle
distance 1 m, baffle thickness 0.0025 m, baffle height 1.75 m, clearance between tube and baffle 0.001 m, clearance
between shell and baffle 0.002 m, layout angle of tubes 45°, tube spacing 0.056, wall roughness 0.001 m and heat
conductivity of tube 50 W.m-1.K-1).  

Four pipes are connected to the inlet and outlet nozzles of heat exchanger. 

Pressures are specified at inlet and outlet, however temperatures at inlets only (900C 
and 50C). Nothing would need to be prescribed at outlet if the weighted residual 
method is used, because then natural boundary conditions apply. However, when 
using the enthalpy balance method the outlet points have to be explicitly marked by 
assigning status of temperature higher than 20 and zero thermal load! 
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2.2.9. Pumps 
 

When using elements PIPE2D it is possible to define your own hydraulic characteristics of pipe 
pV ∆= /&ϕ as a function (index of the function is the parameter hydraulic characteristics of EGROUP); 

this is useful for example when modelling valves with a prescribed time sequence of closing, and this 
option could be used in principle also for pumps. However practical experience with this procedure is 
not very good, first of all due to problems with convergence. Therefore a special element PUMP has 
been designed replacing hydraulic characteristics pV ∆= /&ϕ  by the hydraulic characteristics of pump in 
the form )( pV ∆& . This approach is suitable for modelling centrifugal pumps with “soft” characteristics, 
and also for positive displacement pumps (piston or screw pumps) with “hard” characteristics 
independent of ∆p. These options are selected using parameter Method of EGROUP: 

 
Method <=0 volumetric flow-rate is defined as a function (hydraulic characteristic).  
 Example: Commands EGROUP 1,PUMP,1,-1,5; and FUNDEF 5,F define 

EGROUP number 1 for positive displacement pumps with flow-rate prescribed 
by the function number 5 (flow-rate specified by variable F is constant in this 
case, but could have been for example a function of time).18 

 In a similar way a centrifugal pump with user defined characteristics can be 
defined, when volumetric flow-rate is a function of discharge pressure.  

This approach will be demonstrated in the following example with two straight pipes (suction and 
discharge pipes) and a pump having linear hydraulic characteristics  

))
2000

||,9.0min(1(102 7 pV ∆
−⋅= −&  

C*  
PT 1,.000E+00,.500E+00; 
PT 2,.400E+00,.500E+00; 
PT 3,.600E+00,.500E+00; 
PT 4,.100E+01,.500E+00; 
CR2PT 1,1,2; 
CR2PT 2,3,4; 
CR2PT 3,2,3; 
MCR 1,3,1,2; 
MCR 2,3,1,2; 
EGROUP 2,PUMP,1,0,1,0; 
MCR 3,1,1,2; 
NMERGE ; 
RCONST 1,PIPE2D,.005; 
NFPT 1,PRES,-1,1000; 
NFPT 4,PRES,-1,2000; 
VISC(1)=1 
FUNDEF 1,.2E-5*(1-MIN(.9,ABS(DP)/2000)); 
SOLVE 4,3,1,0,0,2,0,0,0; 
 
Method > 0 centrifugal pump selected from a database (file $PUMPS.TXT), where basic 

characteristics of several tenths of commercial pumps (most of them produced 
by SIGMA GROUP a.s.) are recorded: pump type, range of applications, bitmap 
image, performance characteristics, and nozzle dimensions. The parameter 
Method is in fact the order of selected pump in the database. In the case that also 
the parameter Hydraulic characteristic in EGROUP is not zero, it is an index of 
function and the hydraulic characteristic of pump from database is multiplied by 
this function (this correction can be a function of time, temperature or ∆p).  

 

                                                           
18 Volumetric flowrate [m3/s] and not mass flowrate [kg/s] is to be specified for pumps, which corresponds to custom 
practice, however flowrates or leakage specified in nodal points in previous chapters are mass flowrates!! 

Function number 1 describes 
charakteristics )( pfV ∆=&  
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 To simplify the pump selection and because the meaning of RCONST parameters differs from 
other kind of elements, the commands RCPUMP or RCEPUM is to be used instead of the command 
RCONST. In these commands general specifications of pump are prescribed and the best matching 
pump is selected. Procedure will be explained in the following example 
  

 
SCALE -.500E-02,100,-.500E-02,200; 
PT 1,.000E+00,.000E+00; 
PT 2,.500E+02,.000E+00; 
PT 3,.600E+02,.000E+00; 
PT 4,.100E+03,.000E+00; 
PT 5,.100E+03,.150E+03; 
CR2PT 1,1,2; 
CR2PT 2,3,4; 
CR2PT 3,4,5; 
CR2PT 4,2,3; 
RCONST 1,PIPE2D,0.05; 
MCR 1,5,1,2; 
MCR 2,5,1,2; 
MCR 3,5,1,2; 
RCPUMP 2,2,0,0.05,10E-3,30; 
MCR 4,1,1,2; 
NMERGE ; 
NFPT 1,PRES,-1,1000; 
NFPT 5,PRES,-1,50000; 
BUOY=1 
GY=-9.81 
SOLVE 0,5,1,0,0,5,0,0,0; 
 
The simplest tool for results inspection is the command EID (Element IDentification by mouse) used 
with default values of parameters. First of all you should check calculated volumetric flow-rates, 
because it is the simplest test of convergence and accuracy (flow-rates should be the same in all 
elements in this example). 

Parameters in groups EGROUP=2 and RCONST=2 are defined by 
selection from database $PUMPS.TXT. Parameters 2,2 are indices of 
groups EGROUP and RCONST, the following parameters specify 
category of pumps (0-arbitrary), diameter of nozzles (0.05 m), 
estimated flowrate (10 l/s) and estimated displacement height (30 m). 

Working point-result of 
calculation 

When picking a pump by using mouse (command EID) the 
following information is displayed:  

1 2 3

5

Geometry, see previous figure 

One element, pump (MPROP=1,EGROUP=RCONST=2), is created 
on curve number 4.
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 Be careful when defining a pump – solution works only if the required displacement height is 
within the range of selected pump. For example in the previous example the selected pump is capable 
do deliver maximum height of 50m of water column, however the vertical pipe is 150 m long! 
Therefore the solution doesn’t converge and it is necessary to reduce the gravity coefficient GY, giving 
 
g [m/s2] Q [l/s] 
0 3.381 
-1 2.917 
-2 2.231 
-3 1.535 
-4 0.399 
-5 diverge 
 
 

Another type of pumps can be easily added to the file $PUMPS.TXT: 
 
2 'che.bmp' '65-cve-200-10' 2 0.065 0.065 5E-3 9E-3 7E-3 22 28 27 
… 
2 'che.bmp' '80-cve-230-12' 10 0.08 0.08 9E-3 14.4E-3 12E-3 132 170 153 
3 'chn.bmp' '100-CHN' 2 0.1 0.1 16E-3 25E-3 20E-3 130 155 150 
… 
3 'chn.bmp' '100-CHN' 10 0.1 0.1 16E-3 25E-3 20E-3 705 760 750 
4 'cvx1.bmp' '32-CVX-100-6-1' 1 0.04 0.032 1.13E-3 2.3E-3 1.75E-3 8 12 10 
… 
4 'cvx1.bmp' '32-CVX-100-6-12' 12 0.04 0.032 1.13E-3 2.3E-3 1.75E-3 95 142 122 
1 '50npb.bmp' '50-NPB-150-12.5' 1 0.05 0.05 2.7E-3 6.5E-3 5E-3 16 26 22.4 
… 
1 '50npb.bmp' '65-NPB-160-16' 1 0.065 0.065 5E-3 10E-3 8E-3 24 29.5 28 
1 'spb_a.BMP' '50-SPB' 1 0.05 0.05 3.2E-3 5.4E-3 4E-3 11.9 29.3 24.2 
4 '25ove.bmp' '25-ove-01' 1 0.025 0.025 0.1e-3 0.8e-3 0.5e-3 25 45 33 
4 '32cvi2.bmp' '32-cvi' 1 0.032 0.032 1.13e-3 2.3e-3 1.75e-3 8 12 10 
… 
4 '32cvi2.bmp' '32-cvi' 5 0.032 0.032 1.13e-3 2.3e-3 1.75e-3 40 59 51 
4 'slvd.bmp' 'S-LVN-4-D' 3 0.1 0.125 9.1E-3 16.5E-3 13.3E-3 33 45 39 
… 
4 'slvd.bmp' 'S-LVN-4-D' 7 0.1 0.125 9.1E-3 16.5E-3 13.3E-3 77 105 91 
4 '80SVA.BMP' '80-SVA' 1 0.08 0.08 4E-3 13E-3 8E-3 10 40 29 
… 
4 '80SVA.BMP' '80-SVA' 3 0.08 0.08 4E-3 13E-3 8E-3 29 110 84 
4 'HILGE.BMP' 'HILGE'  1 0.02 0.02 0.1E-3  5.55E-3  2.777E-3 12 53 38 
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 Be careful when defining a pump – solution works only if the required displacement height is 
within the range of selected pump. For example in the previous example the selected pump is capable 
do deliver maximum height of 50m of water column, however the vertical pipe is 150 m long! 
Therefore the solution doesn’t converge and it is necessary to reduce the gravity coefficient GY, giving 
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-3 1.535 
-4 0.399 
-5 diverge 
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finite volume and inside the volume the enthalpy (temperature) and concentration of species is 
constant (may be dependent on time, nevertheless the same inside the pump and therefore also at 
outlet). As a consequence of this assumption is that the nodal parameter (temperature or concentration) 
corresponding to the outlet node depends only upon the state of inlet node and upon the time 
accumulation of enthalpy of matter inside the pump. This nodal parameter characterises only the state 
of pump and is independent of streams connected to this node. Therefore it is not possible to join e.g. 
outlets of two pumps in the same node; what has to be done is to insert a pipe (maybe very short pipe) 
behind the outlets of pumps and even then the end points can be merged:  
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2.2.10.  Ideally mixed tanks 
 

Mixed tanks can be modelled using two node element CSTR (Continuous Stirred Tank 
Reactor) characterised by a uniform temperature and concentration inside the vessel and these values 
correspond to the outlet node (which of the two nodes represents outlet is not known in advance of 
course).  

It is assumed, that the vessel has a form of a big tube 
with cross section and inner volume given by the RCONST 
parameters (AREA and VOLUME). The cross section and 
flowrate determine mean axial velocity used for calculation of 
friction losses. However this part of pressure losses is usually 
small compared with the losses of kinetic energy at inlet nozzle, 
and this more significant part of pressure loss is calculated 
according to specified coefficient of local losses ζ (zeta) and diameter of nozzle d in the RCONST 
group (please do not confuse the meaning of d which is not the diameter of vessel). If the parameter 
AREA is not specified (=0) it will be calculated from the volume and the length of vessel, which 
equals the distance of nodes. The CSTR element can be used also for calculation of a chemical 
reaction, i.e. concentration of a component and also for heat balancing. In the later case the heat 
transfer coefficient and external temperature are specified in RCONST group, and heat transfer surface 
is calculated as the product of perimeter (in RCONST) and the length of vessel. 

 As an example of CSTR elements application we shall analyse a system with two parallel 
branches shown in the following figures. Geometry is selected in such a way that the role of CSTR 
dominates: the inner volume of all seven tanks together is 12 m3, while the volume of pipes is nearly 
negligible, 0.00314 m3. We shall calculate flowrates (given pressures at inlet and outlet) and also 
concentration response to a short injection of a tracer to the inlet. 
Remark: Problems with convergence can be encountered if elements having very different flow 
resistance are mixed together, and for example if we neglect local pressure losses at inlets to vessels 
their resistance will be many orders lower than the resistance of pipes. Even thought we specified ζ=1 
an underrelaxation was necessary in this case. 
 
PT 1,.000E+00,.500E+00; 
PT 2,.100E+00,.500E+00; 
PT 3,.100E+00,.200E+00; 
PT 4,.200E+00,.200E+00; 
PT 5,.800E+00,.200E+00; 
PT 6,.900E+00,.200E+00; 
PT 7,.900E+00,.500E+00; 
PT 8,.100E+01,.500E+00; 
PT 9,.900E+00,.700E+00; 
PT 10,.800E+00,.700E+00; 
PT 11,.200E+00,.700E+00; 
PT 12,.100E+00,.700E+00; 
CR2PT 1,1,2; 
CR2PT 2,2,3; 
CR2PT 3,3,4; 
CR2PT 4,5,6; 
CR2PT 5,6,7; 
CR2PT 6,7,8; 
CR2PT 7,7,9; 
CR2PT 8,2,12; 
CR2PT 9,12,11; 
CR2PT 10,10,9; 
CR2PT 7,9,7; 
CR2PT 11,4,5; 
CR2PT 12,11,10; 
EGROUP 1,PIPE2D,1,0,0; 
RCONST 1,PIPE2D,.500E-01,.100E-03,0,1,0,0,0,0,0,0; 

Area D

Volume

1 

2

Perimeter

FEM3AI2.DOC   Last update 21.3.2005                                         / 128 72

2.2.10.  Ideally mixed tanks 
 

Mixed tanks can be modelled using two node element CSTR (Continuous Stirred Tank 
Reactor) characterised by a uniform temperature and concentration inside the vessel and these values 
correspond to the outlet node (which of the two nodes represents outlet is not known in advance of 
course).  

It is assumed, that the vessel has a form of a big tube 
with cross section and inner volume given by the RCONST 
parameters (AREA and VOLUME). The cross section and 
flowrate determine mean axial velocity used for calculation of 
friction losses. However this part of pressure losses is usually 
small compared with the losses of kinetic energy at inlet nozzle, 
and this more significant part of pressure loss is calculated 
according to specified coefficient of local losses ζ (zeta) and diameter of nozzle d in the RCONST 
group (please do not confuse the meaning of d which is not the diameter of vessel). If the parameter 
AREA is not specified (=0) it will be calculated from the volume and the length of vessel, which 
equals the distance of nodes. The CSTR element can be used also for calculation of a chemical 
reaction, i.e. concentration of a component and also for heat balancing. In the later case the heat 
transfer coefficient and external temperature are specified in RCONST group, and heat transfer surface 
is calculated as the product of perimeter (in RCONST) and the length of vessel. 

 As an example of CSTR elements application we shall analyse a system with two parallel 
branches shown in the following figures. Geometry is selected in such a way that the role of CSTR 
dominates: the inner volume of all seven tanks together is 12 m3, while the volume of pipes is nearly 
negligible, 0.00314 m3. We shall calculate flowrates (given pressures at inlet and outlet) and also 
concentration response to a short injection of a tracer to the inlet. 
Remark: Problems with convergence can be encountered if elements having very different flow 
resistance are mixed together, and for example if we neglect local pressure losses at inlets to vessels 
their resistance will be many orders lower than the resistance of pipes. Even thought we specified ζ=1 
an underrelaxation was necessary in this case. 
 
PT 1,.000E+00,.500E+00; 
PT 2,.100E+00,.500E+00; 
PT 3,.100E+00,.200E+00; 
PT 4,.200E+00,.200E+00; 
PT 5,.800E+00,.200E+00; 
PT 6,.900E+00,.200E+00; 
PT 7,.900E+00,.500E+00; 
PT 8,.100E+01,.500E+00; 
PT 9,.900E+00,.700E+00; 
PT 10,.800E+00,.700E+00; 
PT 11,.200E+00,.700E+00; 
PT 12,.100E+00,.700E+00; 
CR2PT 1,1,2; 
CR2PT 2,2,3; 
CR2PT 3,3,4; 
CR2PT 4,5,6; 
CR2PT 5,6,7; 
CR2PT 6,7,8; 
CR2PT 7,7,9; 
CR2PT 8,2,12; 
CR2PT 9,12,11; 
CR2PT 10,10,9; 
CR2PT 7,9,7; 
CR2PT 11,4,5; 
CR2PT 12,11,10; 
EGROUP 1,PIPE2D,1,0,0; 
RCONST 1,PIPE2D,.500E-01,.100E-03,0,1,0,0,0,0,0,0; 

Area D

Volume

1 

2

Perimeter

FEM3AI2.DOC   Last update 21.3.2005                                         / 128 72

2.2.10.  Ideally mixed tanks 
 

Mixed tanks can be modelled using two node element CSTR (Continuous Stirred Tank 
Reactor) characterised by a uniform temperature and concentration inside the vessel and these values 
correspond to the outlet node (which of the two nodes represents outlet is not known in advance of 
course).  

It is assumed, that the vessel has a form of a big tube 
with cross section and inner volume given by the RCONST 
parameters (AREA and VOLUME). The cross section and 
flowrate determine mean axial velocity used for calculation of 
friction losses. However this part of pressure losses is usually 
small compared with the losses of kinetic energy at inlet nozzle, 
and this more significant part of pressure loss is calculated 
according to specified coefficient of local losses ζ (zeta) and diameter of nozzle d in the RCONST 
group (please do not confuse the meaning of d which is not the diameter of vessel). If the parameter 
AREA is not specified (=0) it will be calculated from the volume and the length of vessel, which 
equals the distance of nodes. The CSTR element can be used also for calculation of a chemical 
reaction, i.e. concentration of a component and also for heat balancing. In the later case the heat 
transfer coefficient and external temperature are specified in RCONST group, and heat transfer surface 
is calculated as the product of perimeter (in RCONST) and the length of vessel. 

 As an example of CSTR elements application we shall analyse a system with two parallel 
branches shown in the following figures. Geometry is selected in such a way that the role of CSTR 
dominates: the inner volume of all seven tanks together is 12 m3, while the volume of pipes is nearly 
negligible, 0.00314 m3. We shall calculate flowrates (given pressures at inlet and outlet) and also 
concentration response to a short injection of a tracer to the inlet. 
Remark: Problems with convergence can be encountered if elements having very different flow 
resistance are mixed together, and for example if we neglect local pressure losses at inlets to vessels 
their resistance will be many orders lower than the resistance of pipes. Even thought we specified ζ=1 
an underrelaxation was necessary in this case. 
 
PT 1,.000E+00,.500E+00; 
PT 2,.100E+00,.500E+00; 
PT 3,.100E+00,.200E+00; 
PT 4,.200E+00,.200E+00; 
PT 5,.800E+00,.200E+00; 
PT 6,.900E+00,.200E+00; 
PT 7,.900E+00,.500E+00; 
PT 8,.100E+01,.500E+00; 
PT 9,.900E+00,.700E+00; 
PT 10,.800E+00,.700E+00; 
PT 11,.200E+00,.700E+00; 
PT 12,.100E+00,.700E+00; 
CR2PT 1,1,2; 
CR2PT 2,2,3; 
CR2PT 3,3,4; 
CR2PT 4,5,6; 
CR2PT 5,6,7; 
CR2PT 6,7,8; 
CR2PT 7,7,9; 
CR2PT 8,2,12; 
CR2PT 9,12,11; 
CR2PT 10,10,9; 
CR2PT 7,9,7; 
CR2PT 11,4,5; 
CR2PT 12,11,10; 
EGROUP 1,PIPE2D,1,0,0; 
RCONST 1,PIPE2D,.500E-01,.100E-03,0,1,0,0,0,0,0,0; 

Area D

Volume

1 

2

Perimeter



FEM3AI2.DOC   Last update 21.3.2005       

MCR 1,2,1,2,0,10,1; 
EGROUP 2,CSTR,1,0,0; 
RCONST 2,CSTR,0.05,1,0,0,1,0,0,0; 
MCR 11,2,1,2,0,0,1; 
RCONST 3,CSTR,0.05,1,0,0,2,0,0,0; 
MCR 12,5,1,2,0,0,1; 
NMERGE ; 
NFPT 1,PRES,-1,5000; 
NFPT 8,PRES,-1,0; 
CURDEF -2,0,5,0,0,1,1,10,1,11,0,100,0; 
NFPT 1,CN,-2,1; 
INITIA CN,0; 
RELFAKT=0.5 
SOLVE 0,1,1,0,0,70,0,0,0; 
INITIA CN,0; 
RELFAKT=1 
SOLVE 0,600,10,1,0,0,0,1,0; 
 
 
 
 
Results can be inspected using e.g. E
CN at outlet): Overall flowrate 6.371
residence time 1884 s and residence
respectively. Because the response ca
of MOP (matrix of observation points
 
NORM 2,2,0; 
 
and plot it using GTC command.  
 
 It will be shown in the follo
different way, as a system of ordina
infinitely small and the stimulus fun
Prediction of this model (the Bishof
prediction obtained by the finite elem
 

 

Two CSTR will be created on curve 11 with associated 
EGROUP=RCONST=2 (parameters RCONST define inner 
volume of each tank 1 m3 , diameter of nozzles the same as the 
diameter of pipes 0.05m and ζ=1). 
In a similar way five CSTR are created on curve number 12 
(inner volume 2m3 as defined in associated RCONST=3). 
Pressure drop 5 kPa is specified using NFPT commands. 

Time course of tracer concentration at inlet is defined by table 
number –2 and prescribed as a strong boundary condition  
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Solving pressure distribution and flowrates with underrelaxation 
(RELFAKT=0.5) and 70 iterations in single time step (the value of time step 
can be arbitrary because ∆t has no effect upon pressure calculation).

Solving pressure distribution and flowrates with underrelaxation 
(RELFAKT=0.5) and 70 iterations in single time step (the value of time step 
can be arbitrary because ∆t has no effect upon pressure calculation).

Solving pressure distribution and flowrates with underrelaxation 
(RELFAKT=0.5) and 70 iterations in single time step (the value of time step 
can be arbitrary because ∆t has no effect upon pressure calculation).
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ID (flowrates, pressures) and GTIME (response of concentration 
 l/s, relative flowrate in the branch with 5 tanks f=0.4046, mean 
 times 3879 s and 527.3 s in the first and in the second branch 
lculated using GTIME has been recorded into the second column 
), it is possible to normalise it to unit area 

wing chapter, that nearly the same system can be modelled in a 
ry differential equations (the only difference is that the pipes are 
ction need not be approximated by a pulse of a finite duration). 
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 Combination of CSTR and PUMP elements enables modelling of systems with recycles, 
stagnant regions or backmixing between CSTR. In the following example we want to show, how 
useful are macros for definition of basic building blocks. Such a building block is for example 
mutually connected pair of CSTR with a low level of material exchange forming a basis for modelling 
stagnant regions. Lets us assume that we want to define a system consisting of four such a units 
connected in series, see figure 

Each building block consists of two CSTR, one positive displacement PUMP (the pump determines 
intensity of material exchange) and two PIPE2D element with axial dispersion. The elements are 
localised in space as shown in the figure above (position of point 1 is X,Y, total length is 2H). Let us 
assume that properties of pipes are described by EGROUP=RCONST=1, properties of CSTR (e.g. 
volumes) by EGROUP=2 and RCONST=2, 3 for the first and the second CSTR respectively, and 
PUMP is characterised by EGROUP=3 and RCONST=4. Then the procedure, generating one building 
block at position X,Y and which automatically increments coordinate X, can be described by the 
following macro with the name e.g. PSTAS (the macro file can be created interactively) 
 
RECORD PSTAS 
K=NPT 
PT NPT+1,X,Y; 
PT NPT+1,X+H,Y; 
PT NPT+1,X+2*H,Y; 
PT NPT+1,X+2*H,Y+H; 
PT NPT+1,X+H,Y+H; 
J=NCR 
C2P NCR+1,K+1,K+2 
C2P NCR+1,K+2,K+3 
C2P NCR+1,K+3,K+4 
C2P NCR+1,K+4,K+5 
C2P NCR+1,K+5,K+2 
C* EG=RC=1 PIPES 
ACTSET 1,1 

ACTSET 3,1 
MCR J+1,1,1,2; 
MCR J+5,1,1,2; 
C* EG=RC=2 CSTR1 
ACTSET 1,2 
ACTSET 3,2 
MCR J+2,1,1,2; 
ACTSET 3,3 
MCR J+4,1,1,2; 
C* EG=3 RC=4 PUMP 
ACTSET 1,3 
ACTSET 3,4 
MCR J+3,1,1,2; 
X=X+2*H 

ENDREC 
 
Using the macro PSTAS it is easy to describe systems with arbitrary number of stagnant region units, 
for example 
 
RCONST 1,PIPE2D,.500E-01,.100E-03,0,1,0,0,0,0,0,0; 
EGROUP 1,PIPE2D,1,0,0; 
EGROUP 2,CSTR,1,0,0; 
EGROUP 3,PUMP,1,-1,1,0; 
RCONST 2,CSTR,0.05,1,0,0,1,0,0,0; 
RCONST 3,CSTR,0.05,1,0,0,1,0,0,0; 
RCONST 4,PUMP,0,0,0,0.01,0,0; 
FUNDEF 1,F; 

1 (X,Y) 2 3 

4 5 

H 

H 

H 

1 

2 

EGROUP for pump selects positive displacement pump with 
flow-rate defined by function number 1. 
RCONST 2 and 3 define CSTR, both the same with diameter 
of nozzle 0.05 m and inner volume 1 m3.  
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F=0.001 
CURDEF -2,0,5,0,0,1,1,30,1,31,0,100,0; 
X=0 
Y=0 
H=0.1 
PSTAS 
PSTAS 
PSTAS 
PSTAS 
NMERGE ; 
NFPT 1,PRES,2,5E-3; 
NFPT 18,PRES,-1,0; 
NFPT 1,CN,-2,1; 
SOLVE 0,1,1,0,0,40,0,0,0; 
INITIA CN,0; 
SOLVE 0,400,20,1,0,0,0,1,0; 
 
Calculated response can be displayed as a graph using GT command. During execution of this 
command you can observe evolution of the injected tracer distribution 

FEMINA automatically calculates inner volume of apparatuses as the sum of volumes of pipes, pumps 
and tanks, and using this overall volume and the flow-rate at inlet the theoretical mean residence time 
is calculated and displayed in the LIST window. You can compare this value with the first moment 
calculated from response (NORM or MOM commands). Even if the tail is very long (which is typical 
for systems with stagnant regions) the calculated mean residence time is accurate within 1% tolerance, 
however, comparison with the „exact“ solution using the RTD model D00.mdt reveals the effect of 
numerical dispersion (the response peek is lower than it should be). 

 Next example is similar and very frequent: series of ideally mixed vessels with backmixing,  

 
This model seems to be simple, however, when 
modelling the backmixing stream using a positive  

Stimulus function (tracer injection) defined by table 

Just write PSTAS and enter – new building block will be immediately attached at the end of 
series. This action has to be done interactively, because you cannot call a macro from a batch file.

RTD model D00.mdt 
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displacement pump it is necessary to include PIPE2D elements behind the pump and also behind each 
CSTR. Not doing this, pressure distribution and flowrates would be calculated correctly, however the 
impulse response would be quite wrong (even not decreasing to zero, but approaching a positive 
value). The following program shows also the way how convergence problems can be avoided: 
calculate flowrates first by adjusting zero backmixing f (this always works) and even then continue 
iterations with desired level of backmixing, or gradually increasing f. 
 
H=0.1 
N=4 
G=0.005 
V=1 
F=0.001 
C* backmixing using FEM 
C* F-flowrate backmixing,  
C* V-volume of 1 vessel 
C* G-flowrate (inlet) 
C* N-number of units (vessels) 
T=N*V/G*3 
L=300 
W=T/L 
INIFEM 
EGROUP 3,PIPE2D,1,0,0; 
RCONST 3,PIPE2D,0.01; 
ND 0,0 
ND H,0 
E 2,1,2 
EGROUP 2,PUMP,1,-1,1,0; 
RCONST 2,PUMP,0,0,0,.001,.0001,0; 
EGROUP 1,CSTR,1,0,0; 
RCONST 1,CSTR,0.01,V,0,0,1,0,0,0; 
X=H 
#LOOP LAB,N 
K=ND 
ND X+H,0; 
ACTSET 1,1 
ACTSET 3,1 
E 2,K,K+1 
X=X+2*H 
ND X,0 
ACTSET 1,3 
ACTSET 3,3 
E 2,K+1,K+2 
#LABEL LAB 

X=H 
K=1 
#LOOP LABK,N-1 
ND X,H 
ACTSET 1,3 
ACTSET 3,3 
E 2,2*N+K+2,2*K 
ACTSET 1,2 
ACTSET 3,2 
E 2,2*K+3,2*N+K+2 
K=K+1 
X=X+2*H 
#LABEL LABK  
FUNDEF 1,F 
CURDEF -2,0,5,0,1,W,1,2*W,1,3*W,0,T,0 
K=2*N+2 
FND 1,PRES,2,G 
FND K,PRES,-1,0 
FND 1,CN,-2,1 
C* start calculation with zero F 
A=F 
F=0 
SOLVE 0,1,1,0,0,30,0,0,0 
F=A 
SOLVE 0,1,1,1,0,30,0,0,0 
SOLVE 0,L,W,1,0,0,0,1,0 
TSTEP L,W 
J=0 
#LOOP L1,L 
J=J+1 
C1(J)=W*(J-1) 
LTN C1(J) 
C2(J)=V3(LPU(CN)+K) 
#LABEL L1 
NORM 2,2,0 

 
Calculated response of 4 units, f=0.2, mean 
residence time 800 s, and 300 time steps, 
shown in the figure right, is compared with 
the solution of system of ordinary 
differential equations (model B00.mdt, 
which will be discussed in the next chapter). 
As you see agreement is quite good. 
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2.2.11. Case study – direct ohmic heater 
 
The one dimensional elements (for example PIPE2D) can be used also for modelling of a more 

complicated systems consisting not only from pipes. In this case the mathematical model is only an 
approximation of a real system with uncertainties in element characterisation, for example equivalent 
diameter of pipes, local pressure loss coefficients or even the lengths of pipes. These uncertainties can 
be reduced by experiments, comparing measured pressures or flow rates with the model prediction. It 
is also possible to make use of stimulus response experiments for identification of unknown model 
parameters, because FEMINA allows solution of thermal and concentration fields and therefore to 
calculate responses to a tracer injection. Both the energy and mass transport analysis is based upon the 
models of axial dispersion, where the dispersion coefficients are calculated according to the Taylor 
Aris theory in laminar flows and empirical correlations are used in turbulent flow. 

This approach will be demonstrated upon analysis of a direct 
continuous electric heater (see figure), with the aim to simulate stimulus 
response experiment. The following model calculates steady state 
distribution of pressure, flowrates and temperature, when the liquid in the 
central channel is heated ohmically (it will be demonstrated how to model 
volumetric heat source and heat transfer between parallel channels). 
Transient distribution of tracer inside the heater and the response to a 
simulated trace injection will be calculated as well . 
ANALYS 1 
SCALE 0,.3,-.1,1; 
PT 1,.100E+00,.100E+01; 
PT 2,.100E+00,.900E+00; 
PT 3,.500E-01,.800E+00; 
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PT 14,.150E+00,.800E+00; 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Important points 
1. liquid inlet into the head of equipment 
2. splitting into side channels 
7. stream intermixing at the bottom 
8-9. heating section (electric field acts accros 
the channel) 
10. outlet channel 

Cool liquid inlet (PT1). Specified 
pressure and temperature (FPT) 

Ohmic heating is given in PIPE elements on curve 13 
-see command MCRC 13,…6, . These elements 
correspond to the real constants group number 6, with 
nonzero value of electric field intensity (more 
accurately, it is the field component perpendicular to 
the channel axis), E=100000 V/m. 

Elements of heat exchangers represent liquid pre-
heating in the side channels by the liquid flowing in the 
central channel. 

Pressures 

Temperatures 
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CR2PT 1,1,2; 
CR2PT 2,2,3; 
CR2PT 3,3,4; 
CR2PT 4,5,4; 
CR2PT 5,5,6; 
CR2PT 6,6,7; 
CR2PT 7,7,11; 
CR2PT 8,11,12; 
CR2PT 9,12,13; 
CR2PT 10,13,14; 
CR2PT 11,14,2; 
CR2PT 12,7,8; 
CR2PT 13,8,9; 
CR2PT 14,9,10; 
C* MCRC CR-first,nelements,last/first,no of.nodes,RC-group, CR-last, CR-step 
MCRC   1,2,1,2,1,1; 
ACTSET 3,2; 
MCRC   2,2,1,2,2; 
MCRC   3,2,1,2,3; 
MCRC   4,10,1,2,3; 
MCRC   5,2,1,2,3; 
MCRC   6,2,1,2,4,7; 
MCRC   8,2,1,2,3; 
MCRC   9,10,1,2,3; 
MCRC   10,2,1,2,3; 
MCRC   11,2,1,2,2; 
MCRC   12,2,1,2,5; 
MCRC   13,10,1,2,6; 
MCRC   14,2,1,2,5; 
NMERGE ; 
EGROUP 1,PIPE2D,1,0; 
EGROUP 2,HEXC,1; 
MCR4 4,13,7,2; 
MCR4 13,9,7,2; 
RCONST 1,PIPE2D,0.02,0,0,0,10,20; 
RCONST 2,PIPE2D,0.02,0,0,0,10,20; 
RCONST 3,PIPE2D,0.02,0,0,0,10,20; 
RCONST 4,PIPE2D,0.03,0,0,0,10,20; 
RCONST 5,PIPE2D,0.04; 
RCONST 6,PIPE2D,.04,0,0,0,0,0,0,0,1E5; 
RCHEX 7,.1,5000; 
NFPT 1,PRES,-1,1.2E5; 
NFPT 10,12,-1,1E5; 
NFPT 1,TEMP,-1,20; 
NFPT 1,CN,-2,1; 
CURDEF -2,0,4,0,0,1,1,2,0,3,0; 
OHMI=1 
VISC(1)=1 
DN(1)=1E-8 
INITIA CN,0; 
SOLVE 0,100,0.25,0,0,3,1,1,0; 

 
 
Currently only results, corresponding to the time 25 seconds (100 steps x 0.25 seconds), are 

available in memory. You can pick nodes or elements (NID, EID) to look at the current values of 
pressures, flow-rates, temperatures and concentration in selected nodes and elements, you can use 
command GD1 to display contours of pressure, temperature and concentration, but all these values 
hold for time 25 s. The whole time history is available only in files *.OUT and *.TEP for nodal and 
element parameters respectively. Command GT reads the OUT-file and plots the time courses of nodal 
parameters selected by mouse. This procedure was used in the previous example (2D flow in a 
channel) and could have been used here as well. However, we shall use more complicated, but also a  

MCRC – generation of elements on a curve (or curves). Only two-node 
elements PIPE2D are used here, which differs in various groups RC-Real 
Constants (the fifth parameter), i.e. in various channel equivalent diameters, 
heat transfer coefficients and also transversal component of electric field 
intensity, determining intensity of volumetric heating in the central channel.

MCR4 – generation of four-node elements HEXC which represent heat exchangers – 
they model heat transfer between pairs of PIPE2D elements already defined on a pair 
of curves by command MCRC.  

RCONST defines tube diameter (e.g. 0.02 m), heat transfer 
coefficient (e.g. 10 W.m-2.K-1) and ambient temperature (e.g. 
200C) corresponding to heat losses from lateral channels.  
 
RCONST defines also transversal intensity of electric field in 
the central channel (Ey=105 V/m). 
 
RCHEX defines heat transfer surface (related to the unit 
length of heat exchanger) and heat transfer coefficient 
between central and lateral channels. 

Pressure is fixed at inlet (120 kPa) and outlet (100 kPa), 
constant temperature is specified only at inlet (200C). At inlet 
a time course of concentration simulates injection of tracer. 
This time course is defined by table number –2. 

OHMI sets calculation of internal sources, in this case 
volumetric heat source. VISC and DN define viscosity and 
diffusion coefficient in material group 1. INITIA sets initial 
concentration zero. SOLVE performs 100 time steps, with 
∆t=0.25 s, 3 iterations for velocity field and 1 iteration for 
temperature and concentration in each time step. 

FEM3AI2.DOC   Last update 21.3.2005                                         / 128 78

CR2PT 1,1,2; 
CR2PT 2,2,3; 
CR2PT 3,3,4; 
CR2PT 4,5,4; 
CR2PT 5,5,6; 
CR2PT 6,6,7; 
CR2PT 7,7,11; 
CR2PT 8,11,12; 
CR2PT 9,12,13; 
CR2PT 10,13,14; 
CR2PT 11,14,2; 
CR2PT 12,7,8; 
CR2PT 13,8,9; 
CR2PT 14,9,10; 
C* MCRC CR-first,nelements,last/first,no of.nodes,RC-group, CR-last, CR-step 
MCRC   1,2,1,2,1,1; 
ACTSET 3,2; 
MCRC   2,2,1,2,2; 
MCRC   3,2,1,2,3; 
MCRC   4,10,1,2,3; 
MCRC   5,2,1,2,3; 
MCRC   6,2,1,2,4,7; 
MCRC   8,2,1,2,3; 
MCRC   9,10,1,2,3; 
MCRC   10,2,1,2,3; 
MCRC   11,2,1,2,2; 
MCRC   12,2,1,2,5; 
MCRC   13,10,1,2,6; 
MCRC   14,2,1,2,5; 
NMERGE ; 
EGROUP 1,PIPE2D,1,0; 
EGROUP 2,HEXC,1; 
MCR4 4,13,7,2; 
MCR4 13,9,7,2; 
RCONST 1,PIPE2D,0.02,0,0,0,10,20; 
RCONST 2,PIPE2D,0.02,0,0,0,10,20; 
RCONST 3,PIPE2D,0.02,0,0,0,10,20; 
RCONST 4,PIPE2D,0.03,0,0,0,10,20; 
RCONST 5,PIPE2D,0.04; 
RCONST 6,PIPE2D,.04,0,0,0,0,0,0,0,1E5; 
RCHEX 7,.1,5000; 
NFPT 1,PRES,-1,1.2E5; 
NFPT 10,12,-1,1E5; 
NFPT 1,TEMP,-1,20; 
NFPT 1,CN,-2,1; 
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more general approach, based upon the command LTN time which reloads all nodal parameters from a 
specified time, using linear interpolation of data in the OUT-file (see also 2.2.2 where the same 
method has been applied). Using this, the procedure which transfers nodal values of concentrations for 
t=0,0.5,1.,1.5,…,25 into 50 rows of the observation matrix can be prepared in the following way  

 
RECORD GTIME 

I=0 
T=0 
NT=50 
#LOOP LAB,NT; 
I=I+1 
LTN T; 
C1(I)=T 
C2(I)=V3(LPU(CN)+1) 
C3(I)=V3(LPU(CN)+ND) 
T=T+0.5 
#LABEL LAB; 

ENDREC 
 
 
The batch file GTIME is processed using command 
 
F GTIME 
and resulting response in the 3rd column of MOP can be processed in a standard way (i.e. moments can 
be calculated, and time course plotted).  
 Before presenting and discussing results of stimulus-response experiments, we shall point out 
some problems related to the axial dispersion of enthalpy and concentration in the 1D flow in a pipe. 
In the analysed example a narrow triangular pulse of concentration has been defined at inlet as a 
stimulus function. At turbulent flow this concentration pulse is transferred in the flow direction by 
mean velocity of flow and at the same time is dispersed first of all by turbulent eddies. This situation 
can be described quite accurately by the model of axial dispersion, where dispersion coefficient is 
expressed as a function of Reynolds number. This is not so easy in laminar flows, because then at least 
two different regions must be analysed separately: region of a very slow flow, when the radial 
diffusion is sufficient to smooth out radial concentration profiles, and the region when diffusion can be 
completely neglected and dispersion is caused by convection only (by a non-uniform radial velocity 
profile). The slow flow region is characterised by inequality  

L
VkD
&

>     (2.2.11-1) 

where D is diffusion coefficient, L is a characteristic length of pipe, V&  is volumetric flowrate and the 
constant k is 0.044 according to Taylor (1953), or 0.08 according to Hunt (1977). Example: Blood flow 
is almost always laminar and can be modelled by axial dispersion in most cases (in arteries or 
capillaries), however the flow in an aorta does not fulfil the inequality (1) – convection dominates and 
in the case of zero hematocrit even the turbulent flow could be expected (Re ≅ 2500).  

In fact only the regions of turbulent or a very slow flow can be described using the model of 
axial dispersion correctly, because a pure convection at medium velocities is qualitatively different: 
convection disperses an initial short pulse into a broader pulse (but still a discontinuous pulse) and the 
speed of the pulse dispersion is constant and equals mean velocity of flow assuming parabolic velocity 
profile. On the other hand the diffusive dispersion is characterised by a continuous concentration 
profile and first of all by a decreasing rate of the peek expansion with time. In another words: while the 
initial peek is extended to the distance u.t in the convection dominated dispersion, the width is only 
√(πDet) if a dispersion De is used in the axial dispersion model. Therefore if we want at least to match 
velocities of broadening a pulse, the dispersion coefficient should be proportional to time (De≈t) ! 

LTN reloads initial values of all nodal parameters by values from time T. 

Assign current time T into the 1st column, values of concentration 
in the node 1 (inlet) to the 2nd and the value of response (the last 
node ND is outlet) to the 3rd column of MOP. The vector V3 is 
vector of initial conditions of all nodal parameters (similarly V1 is 
vector of boundary conditions, V2 is vector of current results). 
The vector LPU serves for localization of a parameter in vectors 
V1,V2,V3, e.g. LPU(TEMP) is the beginning of temperatures, 
LPU(PRES) pressures, and LPU(CN) concentration. 
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initial peek is extended to the distance u.t in the convection dominated dispersion, the width is only 
√(πDet) if a dispersion De is used in the axial dispersion model. Therefore if we want at least to match 
velocities of broadening a pulse, the dispersion coefficient should be proportional to time (De≈t) ! 

LTN reloads initial values of all nodal parameters by values from time T. 

Assign current time T into the 1st column, values of concentration 
in the node 1 (inlet) to the 2nd and the value of response (the last 
node ND is outlet) to the 3rd column of MOP. The vector V3 is 
vector of initial conditions of all nodal parameters (similarly V1 is 
vector of boundary conditions, V2 is vector of current results). 
The vector LPU serves for localization of a parameter in vectors 
V1,V2,V3, e.g. LPU(TEMP) is the beginning of temperatures, 
LPU(PRES) pressures, and LPU(CN) concentration. 
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VkD
&

>     (2.2.11-1) 
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 Let us return back to the ohmic heater. The calculated flow is laminar in all elements for 
specified parameters (volumetric flowrate 0.129 l/s) and theoretical mean residence time calculated by 
FEMINA is 13.1 s. The following figure presents calculated responses corresponding to the model of 
Taylor Aris dispersion for three different values of diffusion coefficient: 

It is obvious, that the responses calculated for small (realistic) diffusion coefficients are quite wrong, 
tracer appears too soon at the outlet and the predicted mean residence time is too short. 
 The reason why the results are wrong is obvious: Taylor Aris model of axial dispersion cannot 
be applied because the flow is too fast and the radial concentration is not smoothed out by diffusion 
sufficiently. This is the worst case, having no satisfying solution so far. The following figure presents 
result corresponding to the axial dispersion model with modified dispersion coefficient De  

 τπτ eDu =  → 
π

τ2uDDe +=        (2.2.11-2) 

which stems from comparison between the width of pulse at pure convection and the characteristic 
diffusion depth at time τ.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This is quite empirical approach, and the time τ is only a model parameter (system variable TAUD) 
which is to be identified either from real or from numerical experiments, as will be shown in the 
following chapter “Optimisation”. 

Dispersion calculated according to Taylor Aris model 
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Diffusion coefficient D=10-7, 10-6, 10-5 m2/s, L is length of element, d-tube diameter. 
Corresponding dispersion coefficients De=105, 10.5 and 1.05 m2/s!! Peh=0.0001–0.001.
Flowrate Q=0.129 l/s, 52 elements PIPE2D, time step 0.05 s. In fact similar results are 
obtained with or without upwind, with smaller time step 0.02 s and also with doubled 
number of elements 104. Obviously, dispersion coefficient is extremely overestimated. 
Inequality, presented by Taylor, is not fulfilled at least by an order of magnitude. 

Dispersion calculated 
according to 

π
τ2uDDe +=  τ=0.01

τ=0.1

τ=1

τ=10 
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 In a similar way like in a 2D problem it is possible to solve the transport equations using 
method of characteristics, i.e. as a pure convection assuming piston flow and dispersion superposed in 
the following step. This option is activated from menu Solution-Option 

It is difficult to come to the conclusion, that the method of characteristics decreases numerical 
dispersion, from a single numerical experiment, however in this case the method of characteristic 
predicts response having significantly smaller variance in comparison with the Petrov Galerkin and 
even pure Galerkin methods. 

Method of characteristicsτ=1    D=10-6 

Galerkin and upwind
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2.3. Finite elements for stress analysis 
 

Capability of FEMINA for stress analysis is rather restricted. Only static and linear analysis is 
available for some elements, it means that calculation of dynamics, large deformations or plastic 
behaviour of materials is not implemented. However, the most frequently encountered problems, for 
example static analysis of pipelines (where inner pressure and temperature have been calculated by the 
previous methods) or static analysis of rotationally symmetric pressure vessels can be performed.  

  
2.3.1. Trusses – nonlinear static analysis 
 
The simplest static element is TRUSS2D – 1D element connected by a joint for example with 

elements BEAM, PLANE,…. So far this is the only element applicable also for nonlinear static, i.e. 
for large deformations and displacements, as will be demonstrated on the example of a strut frame 
formed by two trusses with relatively large angle of span. In this case the stiffness changes 
significantly with load and loss of stability can be expected if the load exceeds a critical limit.  
 
PT 1,.000E+00,.000E+00; 
PT 2,.500E+00,.0500E+00; 
PT 3,.100E+01,.000E+00; 
CR2PT 1,1,2; 
CR2PT 2,2,3; 
EGROUP 1,TRUSS2D,0,0; 
RCONST 1,TRUSS2D,0,0,1E-4,0; 
MCR 1,1,1,2; 
MCR 2,1,1,2; 
NMERGE ; 
NFPT 1,UX,-1,0; 
NFPT 3,UX,-1,0; 
NFPT 3,UY,-1,0; 
NFPT 1,UY,-1,0; 
NFPT 2,UY,1,-1; 
SOLVE 0,1,0,0,0,0,0,0,3; 
 
Stability can be examined by gradual loading and monitoring the joint 2 displacement. The problem 
can be considered as a quasi-stationary, when force is a function of time, however the time plays no 
role from point of view of the system dynamics. We shall consider linear time increase of the force Fy 
(defined as function number 1) varying from 0 up to 8500 N at 85 increments. Predicted relationship 
between a load and displacement is compared with the analytical solution 

)2)((3 yyyy uHuHu
L
EAF −−=  

where A is cross-section of truss, L is length 
and H is an initial elevation of joint. Solution 
converges only up to the critical load when 
the trusses click. Up to this load the solution 
by FEMINA is remarkably accurate.  
 
 
FUNDEF 1,TIME; 
NFPT 2,UY,1,-1; 
SOLVE 0,100,85,0,0,0,0,0,5; 
 
 
 
 

uy(t), Fy(t) 

2 

1 3

0.05 m 

0.5 m

Cross section 1 cm2

Load in joint 2 by force 
F= -1 N  
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2.3.2. Beams and pipes 
 

Pipeline network, where pressures, flowrates and temperatures have been calculated, can be 
analysed also from point of view of stresses and it is possible to calculate forces and moments caused 
by internal pressure, dilatation and external loads. That is because the element PIPE2D is calculated as 
a beam with second moment of cross section 
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 , according to Di and h parameters in group RCONST 

It also possible to calculate beams with arbitrary cross section, and in this case it is necessary to 
specify both the cross section area A and the moment of inertia Jz explicitly (using the command 
RCONST). Beam elements (PIPE2D, BEAM2D) can be loaded by four possible ways 

1) Forces Fx, Fy (N) or moments Mz (N.m) in arbitrary nodes. 
2) Continuous load, specified as a pressure p in parameters RCONST. However, this is not an 

inner pressure, but a force acting on a unit length of pipe or beam perpendicularly to the 
element axis.  

3) Dilatation forces, caused by different temperature of wall (it is assumed that the wall 
temperature is the same as the temperature of liquid inside the pipe) and a reference 
mounting temperature Te, which is also specified as a RCONST parameter. 

4) The element PIPE2D, i.e. a pipe loaded by inner pressure (nodal parameter), exhibits a 
contraction, having a similar effect as the thermal dilatation. 

Results of solution are nodal parameters – displacements and rotations at nodes, and inner forces are 
calculated during postprocessing. These forces are located in the zone of element parameters: axial 
force (N) under name ENA (Nα), transversal force ENB (Nβ), and bending moment EMA (Mα). 
 
 The following example is a clamped beam loaded by a singular force at the end. In fact there 
are two identical beams in the example, demonstrating that results are independent of number of 
elements used (2 and 5 elements):  
 
PT 1,0,0; 
PT 2,1,0; 
PT 3,0,1; 
CR2PT 1,1,2; 
CR2PT 2,1,3; 
EGROUP 1,BEAM2D,0,0; 
RCONST 1,BEAM2D,0,0,0.0000785,0,4.909E-10; 
MCR 1,2,1,2; 
MCR 2,5,1,2; 
NMERGE ; 
NFPT 3,UX,1,1; 
NFPT 1,UX,-1,0; 
NFPT 1,UY,-1,0; 
NFPT 1,RZ,-1,0; 
NFPT 2,UY,1,1; 
SOLVE 0,1,1,0,0,0,0,0,1; 
 
Calculated displacements and rotation can 
be compared with the analytical solution  
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It also possible to calculate beams with arbitrary cross section, and in this case it is necessary to 
specify both the cross section area A and the moment of inertia Jz explicitly (using the command 
RCONST). Beam elements (PIPE2D, BEAM2D) can be loaded by four possible ways 

1) Forces Fx, Fy (N) or moments Mz (N.m) in arbitrary nodes. 
2) Continuous load, specified as a pressure p in parameters RCONST. However, this is not an 

inner pressure, but a force acting on a unit length of pipe or beam perpendicularly to the 
element axis.  

3) Dilatation forces, caused by different temperature of wall (it is assumed that the wall 
temperature is the same as the temperature of liquid inside the pipe) and a reference 
mounting temperature Te, which is also specified as a RCONST parameter. 

4) The element PIPE2D, i.e. a pipe loaded by inner pressure (nodal parameter), exhibits a 
contraction, having a similar effect as the thermal dilatation. 

Results of solution are nodal parameters – displacements and rotations at nodes, and inner forces are 
calculated during postprocessing. These forces are located in the zone of element parameters: axial 
force (N) under name ENA (Nα), transversal force ENB (Nβ), and bending moment EMA (Mα). 
 
 The following example is a clamped beam loaded by a singular force at the end. In fact there 
are two identical beams in the example, demonstrating that results are independent of number of 
elements used (2 and 5 elements):  
 
PT 1,0,0; 
PT 2,1,0; 
PT 3,0,1; 
CR2PT 1,1,2; 
CR2PT 2,1,3; 
EGROUP 1,BEAM2D,0,0; 
RCONST 1,BEAM2D,0,0,0.0000785,0,4.909E-10; 
MCR 1,2,1,2; 
MCR 2,5,1,2; 
NMERGE ; 
NFPT 3,UX,1,1; 
NFPT 1,UX,-1,0; 
NFPT 1,UY,-1,0; 
NFPT 1,RZ,-1,0; 
NFPT 2,UY,1,1; 
SOLVE 0,1,1,0,0,0,0,0,1; 
 
Calculated displacements and rotation can 
be compared with the analytical solution  
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2.3.3. Rotationally symmetric vessels (shells)  

 
Shell elements SHELLAX calculate deformations and distribution of internal forces and 

moments in rotationally symmetric and symmetrically loaded shells with the symmetry axis x (the 
coordinate y is radius). Shell can be loaded by inner pressure (specified as a parameter of RCONST) or 
by singular forces and moments. Finite elements having 3 degree of freedom in each node 
(displacements UX,UY and rotation RZ) are used.  

First we introduce examples, where analytical solution exists: We shall analyse a horizontal 
pipe loaded by inner pressure with one end clamped and the other end free (radius R=1m, thickness of 
wall h=0.01m, overpressure p=1 MPa, material steel E=2.1E11 Pa, µ=0.3). 

The following figures show graphs of circumferential stresses Nβ (positive, because radius is 
increased), bending moments Mα (sign is changing, there is a big positive moment near the clamp, 
causing inner filament elongation) and also radial displacement.  

 
Continuous graphs correspond to the analytical solution (Křupka 1986), points have been 

obtained by the following program 
 
PT 1,.000E+00,.100E+01; 
PT 2,.100E+01,.100E+01; 
CR2PT 1,1,2; 
EGROUP 1,SHELLAX,0; 
RCONST 1,SHELLAX,0.01,1E6; 
MPROP 1,SHELLAX,.210E+12,0,.3,0; 
MCR 1,20,1,2; 
NFPT 1,UX,-1,0; 
NFPT 1,UY,-1,0; 
NFPT 1,RZ,-1,0; 
SOLVE 0,1,0,0,0,1,1,0,1; 

 
 

NDLIST 1,2,1  
NIDENT 
EIDENT 
WRITE 1 
WRITE 2 
WRITE 4 
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stresses 

Mα circumf. bending 
moments

modulus of elasticity and  Poisson const. 

 wall thickness H and pressure

20 elements, uniform distr. (1), two nodes  
Fix displacements Ux,Uy and rotation Rz in point 1 
(boundary condition no..-1, with value 0). 

 element SHELLAX, stationary case (0) 

Solution. Only the last parameter is important, because specifies 
number of iteration in  STRESS analysis. 

Write information about nodes, elements and element parameters into files (*.NOD,*.ELE,*.EPA)

list nodes 

pick nodal parameters (UX,UY,RZ) using mouse 

pick element parameters (ENA,…) using mouse 
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The commands GD1,GE1,GC plot graphs of calculated nodal and element parameters. 
Almost the same program can be used for the pipe loaded by lateral moment and radial force 

(related to unit circumference).  
 

RCONST 1,SHELLAX,0.01,0; 
NFPT 1,RZ,1,1; 
SOLVE 0,1,0,0,0,1,1,0,1; 
NFPT 1,UY,1,1; 
SOLVE 0,1,0,0,0,1,1,0,1; 

 
The following figures present results of numerical solution with 20 elements and analytical 

solution (continuous graphs).  

 
Note: The calculated quantities are displacements UX,UY, rotations RZ (in radians) and unit 

forces, evaluated from deformation of individual elements (they are parameters of elements, named by 
ENA-Nα, ENB-Nβ, EMA-Mα, EMB-Mβ, EQ-Q). All these unit forces are related to the unit length of 
the shell section: Nα, Nβ (unit N/m) are normal forces acting in the meridian or in the circumferential 
direction respectively, Mα, Mβ (unit N) are bending moments invoking bending stresses in the 
meridian and circumferential direction and Q (N/m) is a force normal to the shell surface. Sign 
conventions differ when setting and interpreting these forces (because forces are specified in a global 
coordinate system x,r, while results are in the coordinate system of element): Positive calculated 
values Nα, Nβ indicate normal tensile stresses, and positive moments Mα, Mβ correspond to tensile 
stresses at inner surface (simply speaking positive calculated moments tend to “open” the shell). On 
the other hand a positive specified value of the bending moment Mz corresponds to the loading 
moment always oriented counter clockwise (therefore the positive value Mz=1 prescribed at the left 
edge of pipe would cause the edge shrinking, while the same positive moment at the right edge would 
cause the pipe opening). 

 
The following example is a model of connection of two pipes with different thickness of wall 

(radius is the same R=0.5 m, but one pipe has thickness 0.02 m and the second only 0.01m). 
Membrane stresses are perturbed and waves of bending stresses Mα appear when the pipe is loaded by 
inner pressure p=1 MPa. The range of disturbance depends upon the thickness of wall ≅ 3.12√Rh as 
you can observe in the following figure 
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Status of rotation RZ in node 1 (originally clamped) is changed to a 
positive value (within the range 1 up to 20). Specified value of DOF will 
be in this case interpreted as a corresponding load (moment Mα). The same 
procedure will be applied to force (parameter correponding to a force 
acting in the direction y is UY).
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Status of rotation RZ in node 1 (originally clamped) is changed to a 
positive value (within the range 1 up to 20). Specified value of DOF will 
be in this case interpreted as a corresponding load (moment Mα). The same 
procedure will be applied to force (parameter correponding to a force 
acting in the direction y is UY).
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PT 1,.000E+00,.500E+00;  
PT 2,.200E+00,.500E+00;  
PT 3,.400E+00,.500E+00;  
CR2PT 1,1,2;  
CR2PT 2,2,3;  
EGROUP 1,SHELLAX,0; 
MPROP 1,SHELLAX,.210E+12,0,0.333,0;  
RCONST 1,SHELLAX,.02,1E6;  
MCR 1,20,1,2;  
RCONST 2,SHELLAX,.01,1E6;  
MCR 2,20,1,2;  
NMERGE ; 
NFPT 1,UX,-1,0;  
SOLVE 0,1,0,0,0,1,1,0,1;  

 
The most important applications of elements SHELLAX are calculations of symmetrical and 

symmetrically loaded pressure vessels, tanks, bellows and so on. As an example a cylindrical vessel 
with spherical bottom will be calculated (material steel, wall thickness 0.01 m, inner pressure 1 MPa). 
The transition between the cylindrical and the spherical part of vessel is not smooth, because assumed 
angle of meridian at the edge of spherical bottom is 450. Therefore waves of bending stresses Mα and 
circumferential stresses Nβ appear as shown in the following figure (use the command GE1): 

 

PT 1,.000E+00,.500E+00;  
PT 2,.400E+00,.500E+00; 
PT 2,.500E+00,.500E+00; 
PT 3,.000E+00,.000E+00;  
CR2PT 1,1,2;  
ARC 2,3,2,-45,1;  
EGROUP 1,SHELLAX,0;  
RCONST 1,SHELLAX,0.01,1E6;  
MPROP 1,SHELLAX,.210E+12,0,.3,0; 
MCR 1,50,1,2;  
MCR 2,50,1,2; 
NMERGE ; 
NFPT 1,UX,-1,0; 
SOLVE 0,1,0,0,0,1,1,0,1; 

 
Actual membrane and bending stresses can be calculated from unit forces using expressions  

h
N

membrane =σ
 

 

The only new command ARC – forms approximately 
circular arch using one or more quadratic curves. What is 
specified: center (PT 3), initial point (PT 2), angle (-450 
means clockwise rotation) and numbe r of segments (1). 
It is an analogy of the command  CIRCLE, keypoints can 
be picked by mouse. 

Pipe having a thicker wall is opened by the  thin pipe. 
Therefore Mα  is positive in the left part. 

Expanded bottom „shrinks“ the 
edge of cylindrical part, giving 
compression stress Nβ at the 
place of transition. 

Similar situation like in the 
case of clamped pipe 
(positive bending moment). 

2
6
h
M

bending =σ
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Pipe having a thicker wall is opened by the  thin pipe. 
Therefore Mα  is positive in the left part. 

Expanded bottom „shrinks“ the 
edge of cylindrical part, giving 
compression stress Nβ at the 
place of transition. 

Similar situation like in the 
case of clamped pipe 
(positive bending moment). 

2
6
h
M

bending =σ
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PT 1,.000E+00,.500E+00;  
PT 2,.200E+00,.500E+00;  
PT 3,.400E+00,.500E+00;  
CR2PT 1,1,2;  
CR2PT 2,2,3;  
EGROUP 1,SHELLAX,0; 
MPROP 1,SHELLAX,.210E+12,0,0.333,0;  
RCONST 1,SHELLAX,.02,1E6;  
MCR 1,20,1,2;  
RCONST 2,SHELLAX,.01,1E6;  
MCR 2,20,1,2;  
NMERGE ; 
NFPT 1,UX,-1,0;  
SOLVE 0,1,0,0,0,1,1,0,1;  

 
The most important applications of elements SHELLAX are calculations of symmetrical and 

symmetrically loaded pressure vessels, tanks, bellows and so on. As an example a cylindrical vessel 
with spherical bottom will be calculated (material steel, wall thickness 0.01 m, inner pressure 1 MPa). 
The transition between the cylindrical and the spherical part of vessel is not smooth, because assumed 
angle of meridian at the edge of spherical bottom is 450. Therefore waves of bending stresses Mα and 
circumferential stresses Nβ appear as shown in the following figure (use the command GE1): 
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NMERGE ; 
NFPT 1,UX,-1,0; 
SOLVE 0,1,0,0,0,1,1,0,1; 
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be picked by mouse. 

Pipe having a thicker wall is opened by the  thin pipe. 
Therefore Mα  is positive in the left part. 
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place of transition. 
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2.3.4. Plane stress, plane strain  
 
 Programs for plane stress and strain analysis are more or less standard, models can be designed 
using triangular or quadrilateral elements. Results of post-processing are stresses σxx, σyy, τxy, σMises 
(mean element values).  
 
PT 1,.500E+00,.900E+00; 
PT 2,.550E+00,.850E+00; 
PT 3,.600E+00,.800E+00; 
PT 4,.650E+00,.750E+00; 
PT 5,.500E+00,.300E+00; 
CIRCLE 1,1,2,4; 
CIRCLE 5,1,3,4; 
CIRCLE 9,1,4,4; 
CR3PT 13,2,4,3; 
CR3PT 14,7,21,14; 
CR3PT 15,9,23,16; 
CR3PT 16,11,25,18; 
PT 27,.400E+00,.650E+00; 
PT 28,.450E+00,.550E+00; 
PT 29,.600E+00,.650E+00; 
PT 30,.579E+00,.577E+00; 
PT 31,.500E+00,.550E+00; 
PT 32,.500E+00,.450E+00; 
PT 33,.550E+00,.400E+00; 
PT 34,.600E+00,.400E+00; 
PT 35,.600E+00,.500E+00; 
PT 36,.650E+00,.400E+00; 
CIRCLE 17,5,33,4; 
CIRCLE 21,5,34,4;  
CIRCLE 25,5,36,4; 
SFCR 1,11,16; 
SFCR 2,12,13; 
SFCR 3,9,14; 
SFCR 4,10,15; 
SF8PT 5,28,30,4,25,31,29,26,27; 
CR3PT 32,33,36,34; 
CR3PT 33,42,56,49; 
CR3PT 34,41,55,48; 
SF8PT 6,28,33,36,30,44,34,35,31; 
SFCR 7,32,28; 
CR3PT 37,40,54,47; 
CR3PT 38,38,52,45; 
SFCR 8,33,27; 
SFCR 9,37,26; 
EGROUP 1,PLANE2D,0,3,0,0,0; 
MSF 1,10,10,1,1,3; 
MSF 2,10,10,1,1,3; 
MSF 3,10,10,1,1,3; 
MSF 4,10,10,1,1,3; 
MSF 5,10,10,1,1,3; 
MSF 6,10,10,1,1,3; 
MSF 7,10,10,1,1,3; 
MSF 8,10,10,1,1,3; 
MSF 9,10,10,1,1,3; 
NMERGE ; 
NF 436,UY,-1,0; 
NF 436,UX,-1,0; 
NF 847,UY,1,-1; 
NF 847,UX,-1,0; 
OPTION 0,0,0,1,0,30,.100E-11,1,.100E+08,1,.100E-04,.100E-04,0,1,1,0,0; 
SOLVE 0,1,1,0,0,0,0,0,1; 

Modified design Wrong design 

Geometry is defined using 
commands PT, CIRCLE, CR3PT, 
SF8PT, SFCR. May be that it 
would be faster to use CRSPOLY. 

Parameter of EGROUP, 
STRESS=0 – plane stress,  
STRESS=1 – plane strain. 
Results are almost the same in 
this case. 

Maximum stress von 
Mises 66 Pa. 
Plane stress. 

Maximum stress 
von Mises 36 Pa. 
Modified design. 
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2.3.4. Plane stress, plane strain  
 
 Programs for plane stress and strain analysis are more or less standard, models can be designed 
using triangular or quadrilateral elements. Results of post-processing are stresses σxx, σyy, τxy, σMises 
(mean element values).  
 
PT 1,.500E+00,.900E+00; 
PT 2,.550E+00,.850E+00; 
PT 3,.600E+00,.800E+00; 
PT 4,.650E+00,.750E+00; 
PT 5,.500E+00,.300E+00; 
CIRCLE 1,1,2,4; 
CIRCLE 5,1,3,4; 
CIRCLE 9,1,4,4; 
CR3PT 13,2,4,3; 
CR3PT 14,7,21,14; 
CR3PT 15,9,23,16; 
CR3PT 16,11,25,18; 
PT 27,.400E+00,.650E+00; 
PT 28,.450E+00,.550E+00; 
PT 29,.600E+00,.650E+00; 
PT 30,.579E+00,.577E+00; 
PT 31,.500E+00,.550E+00; 
PT 32,.500E+00,.450E+00; 
PT 33,.550E+00,.400E+00; 
PT 34,.600E+00,.400E+00; 
PT 35,.600E+00,.500E+00; 
PT 36,.650E+00,.400E+00; 
CIRCLE 17,5,33,4; 
CIRCLE 21,5,34,4;  
CIRCLE 25,5,36,4; 
SFCR 1,11,16; 
SFCR 2,12,13; 
SFCR 3,9,14; 
SFCR 4,10,15; 
SF8PT 5,28,30,4,25,31,29,26,27; 
CR3PT 32,33,36,34; 
CR3PT 33,42,56,49; 
CR3PT 34,41,55,48; 
SF8PT 6,28,33,36,30,44,34,35,31; 
SFCR 7,32,28; 
CR3PT 37,40,54,47; 
CR3PT 38,38,52,45; 
SFCR 8,33,27; 
SFCR 9,37,26; 
EGROUP 1,PLANE2D,0,3,0,0,0; 
MSF 1,10,10,1,1,3; 
MSF 2,10,10,1,1,3; 
MSF 3,10,10,1,1,3; 
MSF 4,10,10,1,1,3; 
MSF 5,10,10,1,1,3; 
MSF 6,10,10,1,1,3; 
MSF 7,10,10,1,1,3; 
MSF 8,10,10,1,1,3; 
MSF 9,10,10,1,1,3; 
NMERGE ; 
NF 436,UY,-1,0; 
NF 436,UX,-1,0; 
NF 847,UY,1,-1; 
NF 847,UX,-1,0; 
OPTION 0,0,0,1,0,30,.100E-11,1,.100E+08,1,.100E-04,.100E-04,0,1,1,0,0; 
SOLVE 0,1,1,0,0,0,0,0,1; 

Modified design Wrong design 

Geometry is defined using 
commands PT, CIRCLE, CR3PT, 
SF8PT, SFCR. May be that it 
would be faster to use CRSPOLY. 

Parameter of EGROUP, 
STRESS=0 – plane stress,  
STRESS=1 – plane strain. 
Results are almost the same in 
this case. 

Maximum stress von 
Mises 66 Pa. 
Plane stress. 

Maximum stress 
von Mises 36 Pa. 
Modified design. 
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2.3.4. Plane stress, plane strain  
 
 Programs for plane stress and strain analysis are more or less standard, models can be designed 
using triangular or quadrilateral elements. Results of post-processing are stresses σxx, σyy, τxy, σMises 
(mean element values).  
 
PT 1,.500E+00,.900E+00; 
PT 2,.550E+00,.850E+00; 
PT 3,.600E+00,.800E+00; 
PT 4,.650E+00,.750E+00; 
PT 5,.500E+00,.300E+00; 
CIRCLE 1,1,2,4; 
CIRCLE 5,1,3,4; 
CIRCLE 9,1,4,4; 
CR3PT 13,2,4,3; 
CR3PT 14,7,21,14; 
CR3PT 15,9,23,16; 
CR3PT 16,11,25,18; 
PT 27,.400E+00,.650E+00; 
PT 28,.450E+00,.550E+00; 
PT 29,.600E+00,.650E+00; 
PT 30,.579E+00,.577E+00; 
PT 31,.500E+00,.550E+00; 
PT 32,.500E+00,.450E+00; 
PT 33,.550E+00,.400E+00; 
PT 34,.600E+00,.400E+00; 
PT 35,.600E+00,.500E+00; 
PT 36,.650E+00,.400E+00; 
CIRCLE 17,5,33,4; 
CIRCLE 21,5,34,4;  
CIRCLE 25,5,36,4; 
SFCR 1,11,16; 
SFCR 2,12,13; 
SFCR 3,9,14; 
SFCR 4,10,15; 
SF8PT 5,28,30,4,25,31,29,26,27; 
CR3PT 32,33,36,34; 
CR3PT 33,42,56,49; 
CR3PT 34,41,55,48; 
SF8PT 6,28,33,36,30,44,34,35,31; 
SFCR 7,32,28; 
CR3PT 37,40,54,47; 
CR3PT 38,38,52,45; 
SFCR 8,33,27; 
SFCR 9,37,26; 
EGROUP 1,PLANE2D,0,3,0,0,0; 
MSF 1,10,10,1,1,3; 
MSF 2,10,10,1,1,3; 
MSF 3,10,10,1,1,3; 
MSF 4,10,10,1,1,3; 
MSF 5,10,10,1,1,3; 
MSF 6,10,10,1,1,3; 
MSF 7,10,10,1,1,3; 
MSF 8,10,10,1,1,3; 
MSF 9,10,10,1,1,3; 
NMERGE ; 
NF 436,UY,-1,0; 
NF 436,UX,-1,0; 
NF 847,UY,1,-1; 
NF 847,UX,-1,0; 
OPTION 0,0,0,1,0,30,.100E-11,1,.100E+08,1,.100E-04,.100E-04,0,1,1,0,0; 
SOLVE 0,1,1,0,0,0,0,0,1; 

Modified design Wrong design 

Geometry is defined using 
commands PT, CIRCLE, CR3PT, 
SF8PT, SFCR. May be that it 
would be faster to use CRSPOLY. 

Parameter of EGROUP, 
STRESS=0 – plane stress,  
STRESS=1 – plane strain. 
Results are almost the same in 
this case. 

Maximum stress von 
Mises 66 Pa. 
Plane stress. 

Maximum stress 
von Mises 36 Pa. 
Modified design. 
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2.3.5. Case study: pipeline design 
 

In this example we shall consider basic design of a simple pipeline with a pump and heater, 
comprising fluid flow analysis (flowrates), heat transfer analysis (temperature profiles at a steady 
state) and finally stress analysis taking into account dilatations and pressure load of pipes. First 
step is always definition of problem, shown in the following schematic figure 

 

 
Next step is a decision which kinds of finite elements should be used: Obvious choice is 

selection the PIPE2D elements for pipes and PUMP elements for pump. Heater is a heat 
exchanger and there are several possibilities, depending first of all upon the type of heat exchanger 
(plate, shell&tube, hairpin,…). In our case we select instead of the HEXC four nodal elements 
again a PIPE2D element with appropriate modification of boundary conditions, corresponding to 
the heat transfer from the condensing steam. 

Solution of the problem starts with definition of geometrical model, in fact only a polyline 
consisting of curves 1 (inlet pipe), 2 (pump), 3 (pipe), 4 (heated section), and 5-7 (insulated pipes). 
This can be created by a single command CRS using mouse (it is useful to set a grid using GON to 
simplify positioning of keypoints). 

Then the curves are meshed by selected finite elements using commands RC (definition of 
parameters – diameter, wall thickness and roughness for pipes), EG (definition of the element 
type, in our case PIPE2D or PUMP) and MCR (mesh curve). This is probably the most important 
and difficult part of our solution, because some parameters must be estimated, for example the 
heat transfer coefficient at the outer surface of pipes in the heater section and coefficients of local 
friction losses (you can use auxiliary tools accessed from menu bar Calculation or in dialog panels 
for setting parameters). Special attention should be devoted to pump: there are several options 
depending upon the type of pump (positive displacement pump, pump with a used defined 
hydraulic characteristics or selection a pump from database). We choose the last option: In this 
case the optimal pump is selected from the SIGMA catalogue, according to the specified 
requirements (kind of pump, diameter of nozzles, estimated flowrate and estimated pressure 
height). Meshing must be completed by the command NMERGE which connects the elements on 
adjoined curves. 

Because we are going to carry out three kinds of analysis (flow, heat and stress), three kind of 
boundary conditions must be specified for PRESS (pressure), TEMP (temperature), UX,UY,RZ 
(displacements and rotations). Assuming that there are no external supports, it is sufficient to 
specify these parameters only at inlet and outlet (red circles) using commands FPT (Fix PoinTs).  

inlet pressure 100 kPa 
temperature 500 C 

heater (condensing steam T=1000 C) 

centrifugal pump 

pipe (D=0.05 m, t=0.002 m, material plain 
construction steel, wall roughness Ra=0.01 mm)

outlet pressure 200 kPa 
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comprising fluid flow analysis (flowrates), heat transfer analysis (temperature profiles at a steady 
state) and finally stress analysis taking into account dilatations and pressure load of pipes. First 
step is always definition of problem, shown in the following schematic figure 

 

 
Next step is a decision which kinds of finite elements should be used: Obvious choice is 

selection the PIPE2D elements for pipes and PUMP elements for pump. Heater is a heat 
exchanger and there are several possibilities, depending first of all upon the type of heat exchanger 
(plate, shell&tube, hairpin,…). In our case we select instead of the HEXC four nodal elements 
again a PIPE2D element with appropriate modification of boundary conditions, corresponding to 
the heat transfer from the condensing steam. 

Solution of the problem starts with definition of geometrical model, in fact only a polyline 
consisting of curves 1 (inlet pipe), 2 (pump), 3 (pipe), 4 (heated section), and 5-7 (insulated pipes). 
This can be created by a single command CRS using mouse (it is useful to set a grid using GON to 
simplify positioning of keypoints). 

Then the curves are meshed by selected finite elements using commands RC (definition of 
parameters – diameter, wall thickness and roughness for pipes), EG (definition of the element 
type, in our case PIPE2D or PUMP) and MCR (mesh curve). This is probably the most important 
and difficult part of our solution, because some parameters must be estimated, for example the 
heat transfer coefficient at the outer surface of pipes in the heater section and coefficients of local 
friction losses (you can use auxiliary tools accessed from menu bar Calculation or in dialog panels 
for setting parameters). Special attention should be devoted to pump: there are several options 
depending upon the type of pump (positive displacement pump, pump with a used defined 
hydraulic characteristics or selection a pump from database). We choose the last option: In this 
case the optimal pump is selected from the SIGMA catalogue, according to the specified 
requirements (kind of pump, diameter of nozzles, estimated flowrate and estimated pressure 
height). Meshing must be completed by the command NMERGE which connects the elements on 
adjoined curves. 

Because we are going to carry out three kinds of analysis (flow, heat and stress), three kind of 
boundary conditions must be specified for PRESS (pressure), TEMP (temperature), UX,UY,RZ 
(displacements and rotations). Assuming that there are no external supports, it is sufficient to 
specify these parameters only at inlet and outlet (red circles) using commands FPT (Fix PoinTs).  
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temperature 500 C 

heater (condensing steam T=1000 C) 

centrifugal pump 

pipe (D=0.05 m, t=0.002 m, material plain 
construction steel, wall roughness Ra=0.01 mm)

outlet pressure 200 kPa 
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2.3.5. Case study: pipeline design 
 

In this example we shall consider basic design of a simple pipeline with a pump and heater, 
comprising fluid flow analysis (flowrates), heat transfer analysis (temperature profiles at a steady 
state) and finally stress analysis taking into account dilatations and pressure load of pipes. First 
step is always definition of problem, shown in the following schematic figure 

 

 
Next step is a decision which kinds of finite elements should be used: Obvious choice is 

selection the PIPE2D elements for pipes and PUMP elements for pump. Heater is a heat 
exchanger and there are several possibilities, depending first of all upon the type of heat exchanger 
(plate, shell&tube, hairpin,…). In our case we select instead of the HEXC four nodal elements 
again a PIPE2D element with appropriate modification of boundary conditions, corresponding to 
the heat transfer from the condensing steam. 

Solution of the problem starts with definition of geometrical model, in fact only a polyline 
consisting of curves 1 (inlet pipe), 2 (pump), 3 (pipe), 4 (heated section), and 5-7 (insulated pipes). 
This can be created by a single command CRS using mouse (it is useful to set a grid using GON to 
simplify positioning of keypoints). 

Then the curves are meshed by selected finite elements using commands RC (definition of 
parameters – diameter, wall thickness and roughness for pipes), EG (definition of the element 
type, in our case PIPE2D or PUMP) and MCR (mesh curve). This is probably the most important 
and difficult part of our solution, because some parameters must be estimated, for example the 
heat transfer coefficient at the outer surface of pipes in the heater section and coefficients of local 
friction losses (you can use auxiliary tools accessed from menu bar Calculation or in dialog panels 
for setting parameters). Special attention should be devoted to pump: there are several options 
depending upon the type of pump (positive displacement pump, pump with a used defined 
hydraulic characteristics or selection a pump from database). We choose the last option: In this 
case the optimal pump is selected from the SIGMA catalogue, according to the specified 
requirements (kind of pump, diameter of nozzles, estimated flowrate and estimated pressure 
height). Meshing must be completed by the command NMERGE which connects the elements on 
adjoined curves. 

Because we are going to carry out three kinds of analysis (flow, heat and stress), three kind of 
boundary conditions must be specified for PRESS (pressure), TEMP (temperature), UX,UY,RZ 
(displacements and rotations). Assuming that there are no external supports, it is sufficient to 
specify these parameters only at inlet and outlet (red circles) using commands FPT (Fix PoinTs).  

inlet pressure 100 kPa 
temperature 500 C 

heater (condensing steam T=1000 C) 

centrifugal pump 

pipe (D=0.05 m, t=0.002 m, material plain 
construction steel, wall roughness Ra=0.01 mm)

outlet pressure 200 kPa 
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From now on it is possible to start finite element analysis by the command SOLVE, where it is 
sufficient to specify only 1 time step (we consider only steady state analysis – magnitude of time 
step is unimportant) and number of iterations for flow (due to nonlinear characteristic of pump the 
number should be rather large, for example 20), heat transfer (1 iteration is sufficient because we 
consider temperature independent properties) and stress analysis (1 iteration – small deformation 
and linear elasticity is assumed). The three kinds of analysis can be performed together, using one 
command SOLVE, however in the following session file the analysis were performed separately – 
we believe that it is a good practice to start with the flow analysis, check results (pressure profiles 
and first of all flowrates – in this case flowrates should be the same in all elements!) and even than 
start the thermal and stress analysis. 

 
C* PIPELINE with a centrifugal pump 
C* FLOW,THERMAL, and STRESS analysis 
C* 
PT 1,.000E+00,.200E+02; 
PT 2,.200E+02,.200E+02; 
CR2PT 1,1,2; 
PT 3,.300E+02,.200E+02; 
CR2PT 2,2,3; 
PT 4,.500E+02,.200E+02; 
CR2PT 3,3,4; 
PT 5,.500E+02,.300E+02; 
CR2PT 4,4,5; 
PT 6,.500E+02,.600E+02; 
CR2PT 5,5,6; 
PT 7,.700E+02,.800E+02; 
CR2PT 6,6,7; 
PT 8,.900E+02,.800E+02; 
CR2PT 7,7,8; 
RCONST 1,PIPE2D,.5E-01,.1E-03,0,.1E+01,0,0,.196E-02,0,0,0,0,0,0,0,0,.12E-04,0, 
MCR 1,3,1,2,0,0,1; 
MCR 3,3,1,2,0,0,1; 
MCR 6,3,1,2,0,7,1; 
MCR 4,2,1,2,0,0,1; 
RCONST 2,PIPE2D,.5E-01,.1E-03,0,0,.1E+05,100,.196E-02,0,0,0,0,0,0,0,0,.120E-04,0; 
MCR 5,5,1,2,0,0,1; 
EGROUP 2,PUMP,0,-2,0,0; 
RCONST 3,PUMP,0,0,0,0,0,0,.100
RCEPUM 20,0,0.05,0.001,10; 
MCR 2,1,1,2,0,0,1; 
NMERGE ; 
NFPT 1,PRES,-1,1E5; 
NFPT 8,PRES,-1,2E5; 
RELFAKT=.1 
SOLVE 0,1,1,0,0,20,0,0,0,0,0; 
NFPT 1,TEMP,-1,50; 
SOLVE 25,20,1,1,0,0,1,0,0,0,0;
NFPT 1,UX,-1,0; 
NFPT 1,UY,-1,0; 
NFPT 1,RZ,-1,0; 
NFPT 8,UX,-1,0; 
NFPT 8,UY,-1,0; 
SOLVE 65,1,1,1,0,0,0,0,0,0,1; 

 
To see results use the comma

temperature and pressure profile
forces, flowrates by GE1 (grap
panels displayed when picking a

                                                           
19 All results are of course in output files *.O

GEOMETRY (points PT and curves CR). This is accomplished by single 
command CRS 

Meshing pipes (use dialog menu bar Properties, RCONST) 
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From now on it is possible to start finite element analysis by the command SOLVE, where it is 
sufficient to specify only 1 time step (we consider only steady state analysis – magnitude of time 
step is unimportant) and number of iterations for flow (due to nonlinear characteristic of pump the 
number should be rather large, for example 20), heat transfer (1 iteration is sufficient because we 
consider temperature independent properties) and stress analysis (1 iteration – small deformation 
and linear elasticity is assumed). The three kinds of analysis can be performed together, using one 
command SOLVE, however in the following session file the analysis were performed separately – 
we believe that it is a good practice to start with the flow analysis, check results (pressure profiles 
and first of all flowrates – in this case flowrates should be the same in all elements!) and even than 
start the thermal and stress analysis. 

 
C* PIPELINE with a centrifugal pump 
C* FLOW,THERMAL, and STRESS analysis 
C* 
PT 1,.000E+00,.200E+02; 
PT 2,.200E+02,.200E+02; 
CR2PT 1,1,2; 
PT 3,.300E+02,.200E+02; 
CR2PT 2,2,3; 
PT 4,.500E+02,.200E+02; 
CR2PT 3,3,4; 
PT 5,.500E+02,.300E+02; 
CR2PT 4,4,5; 
PT 6,.500E+02,.600E+02; 
CR2PT 5,5,6; 
PT 7,.700E+02,.800E+02; 
CR2PT 6,6,7; 
PT 8,.900E+02,.800E+02; 
CR2PT 7,7,8; 
RCONST 1,PIPE2D,.5E-01,.1E-03,0,.1E+01,0,0,.196E-02,0,0,0,0,0,0,0,0,.12E-04,0, 
MCR 1,3,1,2,0,0,1; 
MCR 3,3,1,2,0,0,1; 
MCR 6,3,1,2,0,7,1; 
MCR 4,2,1,2,0,0,1; 
RCONST 2,PIPE2D,.5E-01,.1E-03,0,0,.1E+05,100,.196E-02,0,0,0,0,0,0,0,0,.120E-04,0; 
MCR 5,5,1,2,0,0,1; 
EGROUP 2,PUMP,0,-2,0,0; 
RCONST 3,PUMP,0,0,0,0,0,0,.100
RCEPUM 20,0,0.05,0.001,10; 
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19 All results are of course in output files *.O

GEOMETRY (points PT and curves CR). This is accomplished by single 
command CRS 

Meshing pipes (use dialog menu bar Properties, RCONST) 
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E-02; 

 

nds NID (node identification), EID (element identification) or plot 
s by commands GD1 (graphs of Degree of freedoms), moments, 
h of Element parameters)19. The following screens show dialog 
 pump and a pipe by mouse (command EID): 

UT, *.TEP as usually, journal of processing in *.SES and *.DBG files. 

Create element PUMP 

Fixed (constant) pressure at inlet and outlet 

Fixed (constant) temperature at inlet (outlet temperature is calculated) 

Fixed support (displacement UX,UY and rotation RZ) at inlet, 
Fixed displacements at outlet. You can fix also for example the pump 
or heat exchanger. Remark: PUMP is considered as a rigid body. 
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 Remark: The previous example assumed that the heater is formed by single vertical jacketed 
pipe (steam condenses in a duplicator). However it is also possible to substitute the pipe with the 
bundle of pipes just only by changing a proper parameter in EGROUP (N-number of parallel pipes) – 
in this case any specified and any calculated parameter (diameter, cross section, roughness of wall, as 
well as wall shear stress, flowrate etc) concerns only one pipe of the bundle. 
 
 Remark: Previous figures demonstrate some auxiliary tools for engineering estimates of 
pressure drop in pipes, for evaluation of stresses in pipes, for calculation of heat transfer coefficient at 
outer surface of pipes and for estimation of local friction loss coefficient ζ. These tools are accessible 
from menu bar Calculator and also from dialog panels activated during inspection of elements by 
command EID-modify. 
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2.4. RTD models and response processing 
 

RTD modelling and response processing has nothing to do with finite element data structures and 
geometrical models (entities PR,CR,SF,VL,ND,EL), the only important data structure is the matrix of 
observation points (MOP) consisting of time responses stored as columns of MOP. The first column of 
MOP matrix is time and the following columns (2,3,…,10) are corresponding functions. Therefore the 
observation matrix can contain up to 9 different time functions represented by a table of values with a 
common time base. By the way, the MOP has been used in the previous examples for storing 
temperature and concentration time courses predicted by FEM and further on it will be used in 
regression and lumped parameter model analysis for storing inputs and predicted outputs of a system, 
as well as for the measured responses.  

The basic tasks concern the problem how to read data into MOP from an ASCII file, and how to 
modify, display and plot the data. 

 
Basic commands ensuring these operations are  
 

ROM reads selected columns of MOP from a file with postfix TXT or DAT, which can be created by 
any text processor, Excel or a data logger. Data can be in a free format with numbers or text 
items separated by one or more spaces (e.g. –1.2 –1,2 –1.2e+3 are valid formats of numbers), 
and in the rows describing the observation points only numerical items are expected. The data 
file is selected from menu and the selection is enhanced by continuous displaying the content of 
browsed files. After a file is selected it is necessary to specify the row containing column labels 
(used for headers) and first of all the rows with data which are to be transported into MOP. 
Further on a correspondence between columns in the data file and columns in MOP must be 
established (it is possible to select up to 10 columns in data and assign them arbitrary columns 
of MOP). The operation ROM is sufficient for most cases and only if it is necessary to import 
time courses having a different time base, the general command READ has to be used (in this 
case the data are transformed to a different time base using quadratic interpolation20). 

 
T n,∆t Creation of an empty matrix having n rows (n-observation points) and a time base (first column 

of MOP) with a constant time step. NT (number of points) and DT (time step) are system 
variables. 

 
TCEDIT (TCE)21  graphic editing of a selected time curve using mouse. 
TCINPUT (TCI)  manual input of MOP entries from keyboard. 
TCLIST (TCL)  list of all 10 columns of MOP in the window MODEL (TCS command can be 

used for naming selected columns) 
GTC n   plot several selected time curves (new window with automatic scale) 
TCP index  plot a selected time curve (add the curve to the existing graph) 
ZI,ZO,SCALE,CLS,MA Zoom-in, zoom-out, new scale, clear screen, magnify (the same 

commands as in FEM)  
TID   identify a time curve and a point of the curve using mouse (Left-Click picks, 

Right-Click ends the inspection routine); information on a picked curve and point is 
immediately displayed (coordinates of point, number of points, mean residence time, variance 
and even the third moment of the picked curve). This is a similar operation like NID,EID,PID, 
CID, SID,… in FEM. 

 

                                                           
20 This is option TC of the command READ. Quadratic interpolation (in fact quadratic regression splines) is used if there is 
only a few data points, while in the opposite case, if there is a huge amount of data, much greater than the number of 
available rows in the matrix MOP, the data are integrated and only average values are placed into MOP. 
21 Any command in FEMINA has several synonyms and for example the keywords TCEDIT, TCE and TED have the same 
meaning. 
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TCF assignment in this way it is possible to define the whole column as an algebraic expression. 
Columns are variables C1,C2,…,C10 and the variable I is the row index. For example the 
command TCF C1=0.1*I defines equidistant times (the first column will be 0.1, 0.2, 0.3,…), 
and the command TCF C3=C2*EXP(-0.05*C1) represents in fact a half life decay correction of  
a response in the second column. In the case that only selected range of rows should be 
calculated use the TCFR command instead of TCF. 

 
SMOOTH isource,ismoothed,method  smoothing a part of the time curve isource using regression 

splines or medians (smoothing method is selected by the parameter method). The smoothed 
part is localised by mouse. 

TAIL isource,ismoothed,method   tail approximation either by the exponential functions 
A+B exp(-Ct) (method=1), A+B t exp(-Ct) (method=2), or by the convective model A+B/t3 
(method=3). The coefficients A,B,C are evaluated by nonlinear regression method. The 
parameter A is an asymptotic value of curve for a very long times, interpreted as a value of 
background, which is automatically subtracted. It is possible to suppress the background 
calculation and subtraction by specifying negative values of parameter method=-1,-2,-3. 

TCREG isource,icorrected,model,i1,i2  regression of time curve using specified range of points i1,i2. 
TCBGR isource,icorrected  background raise correction is performed automatically (see chapter 4). 
NORM isource,inormalised,type normalise a time curve either to unit area or even to a unit mean time 
TCINTG isource,iF  time curve integration (calculation of integral distributions, e.g. F(t)) 
 
TCRND isource,icorrected,absolute_relative,sigma Noise superposition. 
 
CS isource,icorrected,shift22 vertical shift of a selected curve (for example background subtraction) 
TS isource,icorrected,shift  time shift of a selected curve (new time origin) 
TCS isource,icorrected,st,sc horizontal and vertical shift of a selected curve 
TCZ isource,icorrected  fill zeroes into a part, usually an initial part, of a selected curve (the part 

is specified by mouse). 
TCLIP i suppress negative values of a selected curve (replacement by zeroes) 
TCEND tmin,tmax  set new common time range for all curves (by mouse) 
TCDT nsteps,∆t  recalculate all time curves to a constant time step. It is assumed, that the 

first data point corresponds to the time zero, it means that the original 
time curve is shifted and only then transformed to the new time basis 0, 
∆t, 2∆t,…(nstep-1) ∆t by linear interpolation. 

 
CTO isource,icopy  copy a time curve 
MOMENT i   calculates moments (area, mean time and variance of the time curve i) 
 
 There are several operations for the time curve processing making use FFT (Fast Fourier 
Transform), summarised in a single command FFT. Because the implemented FFT method expects 
that the number of transformed points is a power of two, the processed curves are automatically 
extended by zero points to the nearest higher power of two (if you want to reduce the number of the 
processed points just change the number of observation points in MOP using assignment NT=…). 
Power spectral densities of resulting functions (PSD) as well as integrals of PSD are always calculated 
and represented in graphs as a function of frequency. Then it is possible to select a threshold frequency 
using mouse and Fourier coefficients corresponding to higher frequencies will be suppressed. 
 
� FFT 1,stimulus function, response, calculated impulse response, freq. cuttoff, reference model, weight of model 

Deconvolution (given response and stimulus function the impulse response is calculated) 
� FFT 2,stimulus function, impulse response, calculated  response, freq. cuttoff 

                                                           
22 If a zero shift is specied (default value of the parameter) new zero level is located by mouse. The same holds for TS,TCS. 
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Convolution (response is calculated as a convolution of a stimulus function and impulse response) 
� FFT 3, function X, function Y, calculated correlation of X,Y, freq. cuttoff 

Cross-correlation of two time courses (auto correlation is a special case) 
� FFT 4, noised function, filtered function, method  

Time course filtering (Wiener filter or simply a higher frequencies cutoff). 
 
 Theoretical impulse responses for simple systems can be generated using commands 
SERIE iresponse,nmixers,tmean generalised model of an ideal mixer series; the word generalised means 

that the number of mixers need not be an integer number, because gamma functions are used 
instead of factorials in the model definition. 

PASERI iresponse,nmix1,nmix2,f,α,tmean generalised Bishoff’s model of nmix1 and nmix2 units in two 
parallel series, where f is the relative flowrate in the first stream and α is the relative volume of 
the vessels in this stream. 

 
The main tool for the RTD modelling are of course lumped parameter models, described by a 

system of ordinary differential equations of the first order: 
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dc

= ,  i=1,2,…,N       

where ci(t) are concentrations in basic flow units, ideally mixed tanks, t is time and x(t) represents one 
or more stimulus functions. This system of equations is described by the same simple language, that is 
used in FEMINA’s command interpreter. For example the series of N ideal mixers  
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is described by the following commands 
 
 dcm(1)=(xv(1)-cm(1))/t1 
 for i=2,n do dcm(i)=(cm(i-1)-cm(i))/t1 
 yv(1)=cm(n) yv(2)=yvt(1,time-delay) 
 
where dcm(i),cm(i) are first derivative and concentration in the i-th unit, while xv(1) is the first 
stimulus function, and yv(1) is the first response, concentration in the last mixed tank. The last 
command defines the second output response yv(2), calculated as a time delay of the first response, it 
means that yv(2) is a response of the series plus a piston flow unit. While the vectors cm(i) and dcm(i) 
are internal, the time courses xv(i), yv(i) are represented by selected columns of MOP, therefore a 
model can have maximum 9 stimulus functions and responses. 
 The description of differential equations is not sufficient – it is also necessary to define initial 
conditions (important if we want to calculate impulse responses) and first of all relationships between 
model parameters and auxiliary variables, for example t1, n, delay. Let us assume that our model has 3 
parameters: mean residence time, ratio of piston flow volume and total volume, and of course number 
of units n. The first two parameters are real, while the third is an integer. You can use any predefined 
system variable as a parameter, however for simplicity we shall use two vectors RP(i) and IP(i) for real 
and integer parameters of RTD models. Now we can write the initialisation section as 
 
 real t1,delay    integer i,n 
 delay=rp(2)*rp(1)  n=ip(3) t1=(rp(1)-delay)/n 
 cm(1)=1/t1 
 
where the last command describes initial concentration in the first unit, corresponding to the impulse 
injection of tracer (this command is ignored if the response to a general stimulus function is required). 
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 The text of several typical models is prepared in files with postfix MDT (the same convention 
as in the previous versions of RTD programs) and these models can be activated by command 
RMODEL, which enables selection, import and modification of prepared models. 

A part of model definition file is also information about model parameters (names, default 
values, lower and upper bounds, …), specification of solution method (either Euler or Runge Kutta 
with fixed or variable integration steps) and also directing stimulus and response functions to columns 
of MOP. All these parameters can be updated either during operation RMODEL in a dialog panel, or 
later, using commands 

 
INPUT  Number of stimulus functions x, column of x1, column of x2,… 
  Number of stimulus functions and their position in MOP  
OUTPUT Number of response functions y, column of y1, column of y2,… 
  Number of response functions and their position in MOP  
PARDEF No.of parameters,p1-name,p2-name,…definition of model parameters. You can use any 

system variable, for example simple variables (A,B,…), however in predefined models 
vectors RP(i) and IP(i) are used for real and integer parameters exclusively.  

PARSET p1, p2,…. set actual values of parameters 
METHOD M: 0-Euler,>0-RK fixed ∆t,<0-variable step, No.of equations, No. of basic steps, Basic 

time step 
  Method of integration: Euler method of the first kind (M=0) is recommended only for 

algebraic models, while for differential equations the 4-point Runge Kutta (M≠0) is 
always better. You can select either a fixed time step of integration (M>0) which is M-
times less than the basic time step (the time step in MOP), or variable integration time 
step (M<0), adjusted so that the relative accuracy 10**M will be achieved.  
 

The model calculates impulse response (stimulus functions suppressed, initial cond. respected) 
IMPULS method, no of equations, no of basic steps, basic time step  
 or calculates responses to specified stimulus functions (with zero initial conditions) 
CONVOL method, no of equations, no of basic steps, basic time step 
 or integrates the model without zeroing initial condition and with stimulus functions 
INTEGR method, no of equations, no of basic steps, basic time step. 
 
 System variables and functions important for RTD analysis and lumped parameter models: 
 
A,B,…,Z  user variables (I,J,K,L,M,N are integers) 
C1(i),…,C10(i) columns of MOP (C1(i) is always interpreted as time) 
NT,DT   number of points (rows of MOP) and time step 
METH   method of integration (=0 Euler, >0 RK fixed step, <0 RK variable integ.step) 
RP(i),IP(i),NP  model parameters (real/integer) and number of parameters 

Remark: Vectors RP(i), IP(i) are duplicated by equivalence, therefore you cannot define for 
example a model with two parameters, the first real and the second integer, as RP(1) and 
IP(1), but RP(1) and IP(2). 

PMIN(i),PMAX(i) prescribed minimum and maximum values of model parameters 
REGR(i)  zero values suppresses identification (see later) of i-th model parameter 
 
CM(i),DCM(i)  values of concentrations and their derivatives in the i-th flow unit at current time 
XV(i),YV(i)  actual values of stimulus functions and responses. 
 
NINP,VINP(i)  number of stimulus functions and corresponding columns in MOP 
NOUT,VOUT(i) number of responses and corresponding columns of MOP. 
 
CVT(i,time)  is an interpolating function, passing value of a function in the i-th MOP column. 
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2.4.1. Response processing  
 

Let us assume, that 512 time points of four measured responses are in the following file 
RTDROM.TXT (the format can be more or less arbitrary, with or without header rows): 

 
 row       time      data1     data2     data3     data4 
    1      .000      .039      .076      .039      .076 
    2      .010      .039      .076      .039      .076 
… 
  511     5.100      .011      .024      .304      .254 
  512     5.110      .026      .074      .122      .135 
 
This file can be transferred to the matrix of observation points using command REOMAT (ROM is a 
synonym which can be used as well) 
 
REOMAT rtdrom.txt,1,2,3,2,1,5,2,6,3; 

 
The data can be visualised either in form of graphs (command GTC) or as a table (command TCL). 
 

We have extracted only the last two measured responses, and it is obvious, see figure, that both 
these curves are characterised by a rising background which is to be eliminated. This can be achieved 
by the following commands TCBGR, processing columns 2 and 3, and results, iteratively corrected 
responses, will be placed into columns 4 and 5, respectively.  
 
TCBGR 2,4; 
TCBGR 3,5; 
 
The corrected response in the column 5 is shown in the following figure (use TCP 5 for plotting):  

Select the columns in data file which are to be 
transferred. The first column (row index) is not 
important and therefore is skipped. Only the last two 
responses will be transferred into columns 2 and 3. 

You should check if the row index of header 
and row index of the first data point are 
selected correctly. 
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 Using command SMOOTH a local smoothing can be performed either by local regression or by 
median method. The smoothing is controlled by one parameter M. For M=0 a linear and for M>0 a 
quadratic approximation is identified by regression of 2M+1 points, taking into account M points 
before and M points behind the processed point (the case M=0 is an exception, the linear smoothing is 
always identified from 4 points). A negative M would activate the median smoothing, again with 
2|M|+1 points.  
 
SMOOTH 5,6,0,1,511; 
SMOOTH 5,10,10,1,511; 
 

 
The last example demonstrates the 
exponential tail approximation of the 
response 5. Result will be in the 
column 6, points 138 up to 511 are 
used for nonlinear regression and tail 
approximation starts from the point 
200. The identified background level 
is very low (-0.00419) which 
confirms, that the background raise 
correction was quite good. 
 
TAIL 5,6,1,138,511,200; 

Background correction 
Response in column 3 
Corrected response in col. 5

M=0 M=10 

Tail extrapolation by function 
C(t)= -0.00419 + 0.623 exp(-0.646 t)

Points located by mouse, which 
are used in regression analysis 

Starting point of 
tail substitution 

Smoothing response 5, results are in columns 6 (linear smoothing 
M=0) and 10 (quadratic smoothing M=10) respectively. The range of 
smoothed points 1 to 511 has been identified by mouse. 
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 Using command SMOOTH a local smoothing can be performed either by local regression or by 
median method. The smoothing is controlled by one parameter M. For M=0 a linear and for M>0 a 
quadratic approximation is identified by regression of 2M+1 points, taking into account M points 
before and M points behind the processed point (the case M=0 is an exception, the linear smoothing is 
always identified from 4 points). A negative M would activate the median smoothing, again with 
2|M|+1 points.  
 
SMOOTH 5,6,0,1,511; 
SMOOTH 5,10,10,1,511; 
 

 
The last example demonstrates the 
exponential tail approximation of the 
response 5. Result will be in the 
column 6, points 138 up to 511 are 
used for nonlinear regression and tail 
approximation starts from the point 
200. The identified background level 
is very low (-0.00419) which 
confirms, that the background raise 
correction was quite good. 
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2.4.2. Lumped parameter models of RTD – series of CSTR with backmixing  
 

RMODEL B0A; 

  
 
IMPULS -2,5,1000,.100E-01; 
COPYTO 3,4; 
PARSET 0,1,5,1; 
… 
IDMSER 2,2,1; 
TCRND 2,2,1,.3; 
TCRND 2,2,0,.100E+00; 
PARSET .5,1,5,1; 
CONVOL -2,5,1000,.100E-01; 
MOMENT 2; 
MOMENT 3; 

 
 

Command RMODEL selects and read model B0A (series of mixed 
units with backmixing and detector gain correction). The selected 
model can be immediately modified and changes confirmed by the 
button Save model. The button Modify params facilitates editing lines, 
describing the model parameters.

Impulse responses for 
N=5 and 
f=0,0.5,1,2,10,100 

Calculation of impulse response with default parameters. Result is in 
the 3rd column (could have been redirected using OUTPUT command). 
Instead of OUTPUT we simply copy the result to the 4,5,…th column 
for different values of backmixing parameter f, specified by PARSET.
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Stimulus function in the 2nd column is generated by command
IDMSER (series of 2 tanks) and noised. Response is 
calculated for f=0.5 and accuracy of computations is checked 
using moments: You see that the first moments agree well 
(tx+t=ty) but the sum of variances is not so good  
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2.4.3. FFT convolution, deconvolution, correlations 
 
FFT will be used for identification of a system formed by two parallel series of mixed tanks (3+9), 

having the mean residence time 1. As a stimulus function the impulse response of 3-tanks having mean 
time 3 will be used (it should be noted that it is a rather difficult problem, because the stimulus 
function is 3-times longer than the identified impulse response resulting to a bad conditionality of the 
solution). The „theoretical“ response will be calculated by convolution using FFT, and a noise will be 
superposed to stimulus and also to the response function. Using these noised signals the impulse 
response will be identified using FFT with regularization.  
 
C* Opening TEST date:12.11.02 at 11:43 
TSTEP  500,0.02; 
PASERI 3,3,9,.500E+00,3,1; 
 
 
 
IDMSER 2,3,3; 
 
 
 
TCFFT  2,2,3,4,1; 
 
 
 
 
 
 
 
 
 
TCRND  2,2,1,.05; 
TCRND  4,4,1,0.05; 
 
 
TCFFT  1,2,4,5,1,4,.100E-03; 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
IDMSER 2,3,1; 
TCFFT  2,2,3,4,1; 
TCRND  2,2,1,0.05; 
TCRND  4,4,1,0.05; 
TCFFT  1,2,4,5,1,4,.100E-03; 

 
 

Impulse reponse of paralel 
series (3rd column) N1=3, 
N2=9, f=0.5, α=3 

Stimulus function in the 
2nd column. Serie N1=3 
with mean time 3. 

Convolution (2) of stimulus 
function (2nd column) and impulse 
response (3rd column). Resulting 
response will be in 4th column. The 
last parameter (0 - 1) sets the 
filtration level: if it is 1 the PSD 
graph will be shown and the 
treshold frequency can be selected 
by mouse.  

Power spectral 
density of the 
impulse response 

Noise added to the 
stimulus and 
response functions

Impulse response (5th column) calculated 
from stimulus (2nd column) and response 
(4th column). Filtration of noise using 
PSD graph (filtration level 1). 
Regularization is applied using a 
regularisation model of 4 tanks in serie, 
with regularisation weight w=10-4.  

The whole procedure is repeated, 
this time for a shorter stimulus 
function (mean time 1). Accuracy 
is increased substantially.  

theory

identification (long stimulus) 

theory

identification (short stimulus)
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2.5. Detectors 
 
 FEM models created by FEMINA can be always considered as 3D models describing spatial 
distribution of tracer c(t,x,y,z) even if only 1D elements (for example pipes) or 2D elements 
(FLOW2D) are used. For example the model of continuous ohmic heater formed from 1D elements 
PIPE2D (elements are abscissas) has its 3D extensions, depending upon the specified cross section of 
pipes (parameters D and AREA in RCONST) and upon the parameter AXIS of EGROUP.  

Geometry of spatial extension is defined by nodal coordinates (2 nodes of element PIPE2D) and by 
two RCONST parameters, D (hydraulic diameter) and AREA (of cross section). If the element is a 
circular pipe the EGROUP parameter AXIS=1 and diameter is D. In the case that the cross section of 
pipe is rectangular AXIS>1, and the parameters D, AREA define dimensions of sides according to 

 
)11(

2

AREA
D

D
AREAb −+=  and  

b
AREAa =  

as follows from the definition of hydraulic diameter 
perimeter

AREAD 4
= . 

Therefore the element PIPE2D looks in the local coordinate system ξ,η,ζ like a prismatic bar as soon 
as AXIS>1 

AXIS=0   only line (no spatial representation)
AXIS=1   circular cross section 
AXIS=2   rectangular cross section (XY) 
AXIS=3   rectangular cross section (YZ) 
AXIS=4   rectangular cross section (XZ) 

b 

a 

ξ η 

ζ 
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Remark: In fact there are two roots a1,b1, a2,b2 satisfying the area and the 
hydraulic diameter constraints. To avoid the ambiguity, the sign of 
parameter AREA is used. If  AREA>0 then the dimension a is the 
smallest of the roots a1,a2 and reversely, if AREA<0 the side a is the 
greatest of a1,a2.Seems to be complicated? You need not worry about 
this, because dimension are specified by the command RCROSS and the 
sign encoding and decoding is carried out automatically. Therefore you 
can specify dimensions a,b always according to the fig.left.  

Remark: In fact there are two roots a1,b1, a2,b2 satisfying the area and the 
hydraulic diameter constraints. To avoid the ambiguity, the sign of 
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Remark: In fact there are two roots a1,b1, a2,b2 satisfying the area and the 
hydraulic diameter constraints. To avoid the ambiguity, the sign of 
parameter AREA is used. If  AREA>0 then the dimension a is the 
smallest of the roots a1,a2 and reversely, if AREA<0 the side a is the 
greatest of a1,a2.Seems to be complicated? You need not worry about 
this, because dimension are specified by the command RCROSS and the 
sign encoding and decoding is carried out automatically. Therefore you 
can specify dimensions a,b always according to the fig.left.  
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The axis ξ is always the element axis fully determined by Cartesian coordinates of nodal points X,Y,Z, 
and axis η and ζ are located in the plane which is perpendicular to the element axis. FEMINA 
considers only three possible rotations of cross section around the axis ξ: AXIS=2 – axis η lies in the 
plane XY, AXIS=3 – axis η lies in the plane YZ, and AXIS=4 – axis η lies in the plane XZ. 
 3D extension of 2D finite elements (e.g. PLANE2D or FLOW2D) is straightforward. For 
AXIS=1 (cylindrical coordinate system) elements defined in XY plane are represented by rings with 
axis X, while for AXIS=0 the region in the XY plane is extruded in the Z direction by a value given by 
RCONST parameter (height). 
 The 3D extension is a region, where a distribution of concentration (for example 
DOF(CN,3,XX,YY,ZZ)) or generally any function can be defined. In the same way, that is as a user 
function, the media attenuation is defined (more specifically attenuation is prescribed as a constant 
multiplied by a function of X,Y,Z). 
 This concentration field can be observed by one or more 
collimated detectors of radiation, characterised by position, dimensions and 
attenuation of a cylindrical collimator (see command DETDEF). 
 
 
Responses of detectors can be evaluated by several different algorithms 
(view factor, single and triple ray methods, see theoretical manual of 
FEMINA) in the following steps: 
 
1. Results of finite element analysis 

corresponding to time t=0, ∆t, 2∆t,… are 
read from the file OUT into the zone of initial 
conditions (this transfer corresponds to the 
command LTC). It is also possible to skip 
reading from the OUT-file and process only 
the tracer distribution in the current time step 
– this option is useful for processing 
imported data for example from FLUENT. 

2. Loop across all elements. Contribution of 
element to the detector response is calculated 
by numerical integration of selected DOF, 
usually concentration CN,CD, or CA 
(response to a unit concentration in 
integration points is evaluated by selected 
algorithm). 

3. Evaluated responses of selected detectors are placed into specified columns of MOP (matrix of 
observation points). 

 
This run time consuming operation is carried out in the independent program RUNDET.EXE, called 
by the command DETDOF.  
 There exists also a different way of processing, where it is not a DOF, but a user defined 
function which describes the tracer distribution. Processing differs first of all by the integration 
method. Instead of integration over elements, the integration proceeds in regions defined by view 
angles and view ranges of specified detectors, and integrands can be any spatial functions. In the case 
that the functions require evaluation of concentrations, the Cartesian boxing has to be performed (see 
operation BOX). This second approach activated by the command DETFUN is more effective than the 
previous one as soon as the view range of detectors is relatively small.  
 Attenuation of media is also defined by a function, however this approach is not so 
straightforward, first of all because it would not be very effective to integrate attenuation of a radiation 
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ray numerically along the whole ray (from a general point x,y,z to the detector), especially if there are 
thin but strongly absorbing metallic plates, walls of vessels, baffles and so on. It is in principle 
necessary to integrate 

 Ladxxa m

L

=∫
0

)(          (1) 

where am is the mean attenuation which depends on the mutual position of detector and the source of 
radiation at x,y,z, therefore am is not generally a constant but a function of x,y,z. And this is just this 
function which must be defined by user. Let us consider as an example a single metallic sheet between 
detector and the source of radiation 
 

 
Therefore the function describing media attenuation should be written as 
 if x<H then am=aw else am=((x-d)*aw+d*as)/x 
 
How to define this function in FEMINA? User defined functions are denoted by numbers (indices), 
and indices in the range –10 to 60 are reserved for simple functions defined either by a table 
(CURDEF) or by a single arithmetic expression (FUNDEF). Both these ways are not suitable for more 
complicated algorithms of attenuation and specific functions (with indices 101,102,…,105) must be 
defined using the script language in the same way as RTD models described in previous chapter 3. 
Besides standard RTD models there exists also a model F1 (use command RM and select F1 from list 
of models). Script, calculating mean attenuation as a function of coordinates XX,YY,ZZ, must be 
written into the \\INI section, section \\MOD and \\PAR can be omitted, see the following figure. 
 
 
 
 
 
 
 
 
 
 
 

System variable yv(1) is used as the result returned by function 101 (variable yv(2) is function 102 …), 
H, D,W, S are user variables: distance, thickness, attenuation of water and steel. Use e.g. commands 
H=0.2 D=0.002 W=5.7 S=100 to assign proper values. 
 From now on the user function 101 is defined and can be referred in the commands DETDOF 
or DETFUN as an attenuation function. 
 This example was simple, however programming of more complicated arrangements is a more 
difficult task. To make the programming of attenuation easier the user function 
 

aw as 

∆ 

H x
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 ALEN(detector,x,y,z, xc,yc,zc, a,b,h, ityp) 
 
returning thickness of a layer of material through which a ray is passing has been designed. Geometry 
of obstacle is selected by the parameter ityp: ityp 1-3 is a rectangular plate (centre xc,yc,zc, dimension 
a x b and thickness h), ityp=4-6 is a cylindrical shell (centre xc,yc,zc, radius a, length b and thickness 
h) and ityp=7-9 is a full cylinder.  
 

 
 
 

 
 
The function ALEN enables to calculate for any ray (and for any collimated detector) the distance 
corresponding to the passage through metal, through water, air etc. and to calculate mean value of 
attenuation coefficient as a weighted average of attenuation coefficients (taken from tables) with 
weights given by calculated distances. Thickness of material is related to the length of ray calculated 
as a distance from the front face of detector to the point x,y,z, returned by function 
 

RLEN(detector,x,y,z). 
 

We shall try to demonstrate the whole procedure on example of mixer – cylindrical vessel 
filled by water with baffles, shaft and impeller, made from steel. We design the RTD model F1 in such 
a way that it can be used not only for one detector, but for multiple detectors in arbitrary positions (this 
is easy, because FEMINA sets the value of variable I to the index of currently processed detector23).  
 
First step is to prepare a list of obstacles 
having significant influence upon 
attenuation of radiation. 
 
1. water (cylinder height H, radius R1-h1) 
2. cylindrical shell (height R, radius R1, wall h1) 
3. bottom (cylinder height h3, radius R1) 
4. impeller (cylinder height h3, radius R3) 
                                                           
23 One letter system variables (A,B,…,Z) are reserved for user as auxiliary variables and FEMINA never changes their 
values. Variable I is an exception, we have seen that for example in the command TCF value I is row index, and now 
during processing DETDOF or DETFUN the value I denotes processed detector. 
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5. shaft (cylinder height h4, radius R2) 
6. baffle (plate Hxb, thickness h2) 
7. baffle (plate Hxb, thickness h2) 
8. baffle (plate Hxb, thickness h2) 
9. baffle (plate Hxb, thickness h2) 
 
It is assumed that the remaining length 
of rays (with the exception of items 1-9) 
is air and its attenuation can be neglected. 
 
 
 
 
 
 
 
Using the list of obstacles it is possible  
to prepare a new RTD model, for example a model with the name F2  

 
Again, reading this model (RM F2) the function number 101 describing attenuation will be defined. 
Remark: The functions ALEN and RLEN are useful not only for evaluation of CFD results, but also 
for calculation spatial distribution of density using methods of transmission tomography, see chapter 5. 
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 Coefficient of attenuation a [1/m] is usually calculated from the mass attenuation coefficient 
a/ρ [m2/kg] which is independent of material density. The mass attenuation is derived from the total 
cross section for an interaction by the photon taking into account atomic photoeffect, Rayleigh and 
Compton scattering and electron-positron production. Data which are freely available for most 
elements as well as for mixtures are available at Webb page of NIST 

http://physics.nist.gov/PhysRefData/XrayMassCoef/ComTab/pmma.html 
The relationship between energy of radiation and the mass attenuation coefficient (symbol µ is used 
instead of a) and mass energy absorption coefficients (µen) are summarised in tables and graphs. 
Examples for attenuation coefficients of water and iron are shown in the following figure: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Important commands 
 
DETDEF (DD) Detector number, x-front,x-back, y-front,y-back, z-front,z-back, aperture, view angle, 

range, attenuation  
definition of detector position using x,y,z coordinates of centreline points at the front and back 
of collimator hole. View angle and the range define a conical region, where integration is 
performed if the method DETFUN is chosen. Attenuation concerns material of collimator and 
this parameter is used only if the 1-ray or 3-rays algorithms of collimation are selected. 

 
DETPLOT Number of detectors plots detectors 
 
DETDOF (DETD) dof (CN,CD,CA), method (1-view factor, 2-view factor with near distance correction, 

3,4-single ray without and with correction, 5,6-triple ray without and with correction, 7-
spherical detector), media attenuation, attenuation function, no.of detectors, detector 1, column 
of response 1, detector 2, column of response 2,… 
Responses of selected detectors for previously defined time steps (command T) calculated by 
RUNDET.EXE by integration of specified DOF at all elements. Parameter media attenuation is 
a constant multiplied by a attenuation function as soon as this function is defined. 

 
DETFUN (DETF) index of function, method (1-view factor, 2-view factor with near distance correction, 

3,4-single ray without and with correction, 5,6-triple ray without and with correction, 7-
spherical detector), media attenuation, attenuation function, no.of detectors, detector 1, column 
of response 1, detector 2, column of response 2,… 
Responses of selected detectors are calculated by integration of specified function within the 
detector view angles.  
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2.6. Optimisation and identification of a mathematical model 
 

Previous examples have dealt with the solution of mathematical models. All these models are 
parameterised in the sense that the model predictions depend upon system variables and in the case 
that the model prediction can be compared with experimental data it is possible to optimise selected 
model parameters using operations OPTIMA or SOMA.  

 
Examples of flow models:  

 
� Identification of a RTD model described as a regression function with a set of unknown 

coefficients. These regression functions could represent impulse responses which can be 
identified by comparing with reference data in MOP (matrix of observation points). In this case 
the standard Levenberg Marquardt method is used and the range of available models is fixed.  

� Identification of a lumped parameter model described by a system of ordinary differential 
equations. Model parameters are in this case flowrates, volumes of tanks, numbers of flow 
units and coefficients describing characteristics of detectors. Model predictions are responses to 
a simulated tracer injection, and these responses are automatically stored in MOP (matrix of 
observation points). 

� Optimisation of 1D finite element models of pipelines or 2D models of simple flow systems, 
where optimised parameters are usually diameters of pipes and volumes of tanks (parameters 
RCONST) in 1D models, or geometry, for example diameters of nozzles, in 2D models. The 
model responses are in these cases time courses of tracer concentrations evaluated either at a 
nodal point or as an integral across a region. These time courses must be transferred into the 
MOP using operations LOADT or GTIME.  

 
 As a reference data the experimentally obtained responses are usually used, however, a 
numerical experiment can be used as well. So, the possible sources of reference data for a model 
identification are:  
� Experiments – time responses of detectors, read by the command ROM into the matrix of 

observation points.  
� Responses calculated by FEMINA using a 1D or 2D finite element model. The model 

simulates stimulus response experiment, starting from a steady solution of velocities, followed 
by a transient solution of mass transfer (concentration of tracer). 

� Responses calculated by a CFD program, e.g. by Fluent or Cosmos. Time courses of 
concentrations must be transformed to a file which can be read to the matrix of observation 
points by the command ROM. 

� CFD programs can be used only for calculation of a steady state flow field, i.e. velocities. 
These results can be imported into FEMINA, that simulates only the stimulus response 
experiment (FEMINA solves the transient concentration field and performs postprocessing 
using e.g. algorithms of collimated detectors). 

 
 The optimisation routines can be used also for the computerised tomography. The simplest 
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model activated by the command RMODEL, or models defined as batch files, which are activated by 
the command 
 
OPEN unit,file  the batch file will be opened on a unit. The unit cannot be 1, 2, 9,10,11,20 because 

these numbers are used for working files or opened windows. It is for example quite safe to use 
unit=7.  

 
The batch file can describe for example a finite element model whose results are transferred to the 
matrix of observation points, or it can be only a function, e.g. quadratic polynomial with 3 unknown 
parameters, system variables A,B,C 
 
 TCF C2=A+B*C1+C*C1**2 
 
 The model parameters (e.g. A,B,C in the previous example) have to be defined in the same way 
as it was done at the lumped parameter models 
 
PARDEF No.of parameters,p1-name,p2-name,…definition of model parameters, identified by names of 

arbitrary system variables or even by a vector element (e.g. RP(10), XPT(NPT-1),…). The 
parameters can be real or integer and their type will be identified automatically. 

PARSET p1, p2,….   set actual values of parameters. 
PARLIM p1min, p1max, p2min, p2max,… defines allowed range of parameters. This range is important first 

of all for efficiency of the SOMA method. 
PARFIT p1, '0-supressed,1-linear,2-nonlin,3-search', ωp1,   p2, '0-supressed, …', ωp2,… 

For each model parameter the three values are specified: initial value, then an integer value 
determining optimisation (0-parameter is not optimised, 1-model is linear or nearly linear with 
respect to this parameter, 2-highly nonlinear parameter, 3-golden section search) and the last 
value ωp is an underrelaxation factor (0,1) with the default value 1. The values ωp<1 should be 
used only when problems with convergence are encountered. 

 
 Both the model prediction and the reference data must be in some columns of the observation 
point matrix MOP. It is necessary to specify L columns which are to be compared and used for 
calculation of a target function (for example the weighted sum of squares of differences): 
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CRITER criterion 

It is possible to select another criterion for comparison than the sum of squares (it is only 
default). Criterion=0 sum of absolute values of differences, =1 sum of absolute values of 
relative differences, =2 sum of squares of differences (default), =3 sum of squares of relative 
differences, =4 integral of absolute values, =5 integral of absolute values of relative differences, 
=6 integral of squares, =7 integral of squares of relative differences. 

COMPAR Number of pairs, first row, last row, prediction1, data1, weight1, prediction2, … 
Number of pairs equals the number of responses L which are used for optimisation (maximum 
is usually 4, because then you need 8 columns of MOP for measured data and model 
predictions and one column for weights), first row i1 and last row i2 define the range of MOP 
rows and therefore the number of points used for optimisation (the same for all responses). For 
each pair of responses the three parameters define columns of prediction, reference data and 
weighting coefficients, respectively. When weight1=0, unit weights are assumed. 

TCDEV calculates and displays deviation for actual settings (COMPAR and CRITER); result is 
in system variable SCOMP. 
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 If the model is prepared and parameters are specified it is possible to start optimisation 
 
OPTIMA 'MODEL 0,1 dif.eq., >1 file',Number of iterations, scaling, λ-increase, λ-decrease 

Deterministic algorithm of Levenberg Marquardt type modified also for integer parameters. 
The first parameter selects the optimised model: MODEL=0 is the active lumped parameter 
model calculating impulse responses (stimulus functions, inlets, are suppressed), MODEL=1 is 
also the lumped parameter model, calculating responses to inlet functions with zero initial 
conditions, MODEL=2 preserves initial condition as well as inlets. MODEL>2 is the unit, 
where a session file (model definition file) is prepared and opened by the command OPEN. The 
last three parameters concern the Levenberg Marquardt method and default values are optimal 
in most cases: scaling=1 (default) activates the so called scaling of normal equations system 
performed in each iteration, λ-increase (default 10) defines how many times the λ factor is 
increased in case that results of iteration worsens and on the other hand λ-decrease (default 0.5) 
determines speed of λ factor diminishing in case of success (λ =0 is an ideal case when the 
algorithm reduces to the fast Gauss method, while very large value of λ pushes the solution 
towards the steepest descent method, which is slower but more straightforward).  

 
SOMA  'MODEL 0,1 dif.eq., >1 file',Number of iteration,Specimen,PRT,step,mass 

This method belongs to the group of stochastic algorithms (similar to genetic or evolutionary 
algorithms, random walk, Monte Carlo, simulated annealing and so on). The first two 
parameters are the same as in the command OPTIMA. The parameter Specimen defines number 
of randomly distributed trials (specimen) which are moving towards the best solution in each 
iteration, PRT is the perturbation of the search direction (PRT=1 no perturbation, in fact 
deterministic approach), Step and mass determine the length of specimen paths. For more 
details look at the chapter 4, but from practical point of view it is usually sufficient to accept 
default values of parameters. 
 

 
 The OPTIMA and SOMA are main tools for optimisation, while the regression algorithms (fit 
of parameters of several predefined models LINREG, NELREG, NLR2) are of only limited use. In fact 
any task which can be solved by regression can be also solved by OPTIMA or SOMA, but not so 
quickly, and so easily. On the other hand OPTIMA/SOMA cannot be processed as a batch only as a 
part of a macro. This procedure will be demonstrated in the following paragraphs. 
 
 
 System variables frequently used in optimisation procedures are: 
 
KCOMP criterion of optimisation, see command CRITER 
SCOMP calculated norm of deviations 
NCOMP number of compared pairs of MOP columns (experiment-prediction) 
ICOMP(i) compared pairs of columns and weights in MOP, see 
 

ICOMP(1) column of 1st prediction 
ICOMP(2) column of 1st experiment 
ICOMP(3) column of weights for 1st pair 
ICOMP(4) column of 2nd prediction 
ICOMP(5) column of 2nd experiment 
ICOMP(6) column of weights for 2nd pair 
… … 
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2.6.1. Model identification by regression analysis  
 

We shall assume, that the impulse response of a system is known and represented by a table of 
points stored in the observation matrix. These data can be read from a data file (command ROM), or 
created artificially, for example by the following sequence of commands 

 
TSTEP 200,0.03 
PASERI 3,1.5,6,.500E+00,.5,1 
TCRND 3,3,1,.100E+00 
TCRND 3,3,0,.05 
TCFUN C4=1 
 
 
Regression analysis is activated by command 
 
NELREG 0,1,3,2,4; 
 
 
 
 

 
The regression can be repeated for specified models, e.g. for model 6 (series) and 8 (axial dispersion). 
 
NELREG 6,1,3,2,4; 
NELREG 8,1,3,2,4; 
 
Important statistics are summarised in the following table 
 
Model χ2 R s identified parameters 
13 - Parallel series 0.7468 0.9754 0.06204 N1=2.48   N2=5.78 
  8 – Axial dispersion 1.071 0.9646 0.07373  
  6 - Series 1.106 0.9634 0.07492 N=2.56 
 

200 points (rows of the observation matrix) with equidistant time step 
0.03. The first column is time, the second column will be later used for 
model prediction, the third column represents measured concentration 
(formed as an impulse response of Bishoff ‘s model of two parallel series 
with noise superposed) and the fourth column is set to 1 (estimated 
standard deviation of measured points). 

The first parameter (0) is an index of selected model (today 13 models are implemented). 
We usually do not know which model is the best, and in this case we specify 0, which 
means that all models will be tested and the best one selected automatically. The following 
parameters identify columns in MOP, independent variable (time) in the 1st column, 
experimental data in 3rd column, model prediction in the 2nd and weights in the 4th column.

The best model (no.13) is the function with 6 parameters 
)exp()exp( 5

1
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1
1

64 xaxaxaxay aa −+−= −−  
This model corresponds to the model of parallel series with 
N1=2.48 and N2=5.78 units.  
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2.6.2. RTD model identification  
 

In this example we shall demonstrate several methods, how to identify parameters of a general 
RTD model using the same data as previously  
TSTEP 200,0.03 
PASERI 3,1.5,6,.500E+00,.5,1 
TCRND 3,3,1,.100E+00 
TCRND 3,3,0,.05 
TCFUN C4=1 

 
RTD model could be defined as a sequence of commands in a session file, calculating in this 

example values of model response in the second column of the observation matrix. We can use the 
Bishoff’s model, because its impulse response can be directly calculated by the command PASERI. 
Therefore the model file can be formed from the single command and saved under name e.g. PASERI 

 
RECORD PASERI 
PASERI 2,a,b,c,d,e;  
ENDREC 
 
This model has 5 parameters, A,B,C,D,E which must be described by the following commands 
 
PARDEF 5,A,B,C,D,E 
PARLIM .1,3,3,10,.1,.9,.1,.9,.1,5 
PARFIT 1,2,1,5,2,1,.7,2,1,.7,2,1,1.3,1,1  
COMPAR 1,1,200,2,3,4 
OPEN 7,Paseri 
OPTIMA 7,10 

We could also try the SOMA method and test results obtained with different values of operating 
parameters (specimen, PRT, step and mass). To make the testing easier it is suitable to prepare a macro 
for initial assignment of model parameters, with the name for example ASSGN 

 
RECORD ASSGN 
A=0.5 
B=4 
C=0.8 
D=0.8 
E=1.5 
ENDREC 

Standard deviation 
s=0.05868
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Now it is possible to repeat the sequence 
ASSGN 
SOMA 7,100,5,0.5,0.3,1.6 

and check resulting standard deviations at different choices of operating parameters. You will probably 
confirm our experience, that the stochastic method SOMA is much less effective than the deterministic 
algorithm OPTIMA, and even one hundred of iterations with different values of operating parameters 
was not sufficient to achieve comparable accuracy as OPTIMA in only ten iterations. However SOMA 
should be fail-proof because it is non-derivative and very simple method. 
 
 The previous example is not a typical one and such a straightforward approach can be used 
only with two standard models: series and parallel series of ideally mixed tanks. Generally it is 
necessary to use RTD lumped parameter models defined in text files *.MDT activated by the 
command RMODEL. This procedure is even simpler, because the sequence of commands ROM, 
RMODEL, COMPAR and OPTIMA is usually enough. We shall illustrate this procedure using the 
same data (in the 3rd column of MOP) and the model SS0.mdt – two parallel series, however the 
number of flow units cannot be real, but an integer parameter. In this case it is necessary to use the 
command PARFIT to select type of parameters (all 5 parameters are marked by 2 as strongly non-
linear) and rather small under-relaxation parameters ωp=0.1 had to be set for integer parameters, 
number of flow units. The command OUTPUT is used for redirecting model prediction to the 2nd 
column of MOP (the default value 3 would rewrite the experimental data). 
 
RMODEL SS00; 
PARFIT .500E+00,2,1,.500E+00,2,1,1,2,1,3,2,.1,7,2,.1; 
OUTPUT 1,2; 
COMPAR 1,1,200,2,3,4; 
OPTIMA 0,10; 

 
Comment: Comparing results obtained by using different methods with the same data reveals that the 
regression model seems to be less accurate than the model PASERI and even than the model SS00. 
Maybe an error in the regression analysis? 

standard deviation 
s=0.0615 
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2.6.3. ODE model identification 
 
 It is possible to define and optimise an arbitrary system of ordinary differential equations, and 
it need not be RTD models. However, the procedure is similar as will be demonstrated on the problem 
of fouling described by the rate equation 

BAe
dt
dC RTE −= − )/(          (2.6.3-1) 

where C represents the rate of fouling [kg/(m2.s)] on a wall, A,B,E are model parameters and T is 
known temperature, which might be a function of time. Let us assume that the experimental data are 
represented by two sets of measurements at two different temperatures T1(t) and T2(t). The both 
experiments were carried out in such a way that the temperature of material rose linearly until the time 
t1 and t2, and afterwards temperature remained constant, T1, T2, respectively. Two experimentally 
determined time courses C1(t) and C2(t) (deposited mass of fouled material) are in the 2nd and 3rd 
columns of data file FOUL.DAT. Model can be created for example as the following file FOUL.MDT  
 
Regression of fouling model 
1-A, 2-B, 3-E, 4-R initial rate, 
RP(5)-T0, RP(6)-T1, RP(7)-T2, 
RP(8)-time1, RP(9)-time2 
\\ini 
real t0,t1,t2,time1,time2,b1,b2,te1
t0=rp(5)+273 t1=rp(6)+273 t2=rp(7)+
b1=(t1-t0)/time1  b2=(t2-t0)/time2 
cm(1)=r  cm(2)=r 
\\mod 
te1=min(t1,t0+b1*time) te2=min(t2,t
dcm(1)=a*exp(-e/te1)-b dcm(2)=a*exp
yv(1)=cm(1) yv(2)=cm(2) 
\\par 
IDENUM=0 METHOD=-2 NEQ=2 NPAR=9 INP
Y1=4  Y2=5 
A:A DEFAULT=2e4 MIN=1E-4 MAX=1e6 RE
B:B DEFAULT=2e-7 MIN=1E-10 MAX=1 RE
E activ.energy/R:E DEFAULT=5000 MIN
Initial resistance:R DEFAULT=0 MIN=
Initial temperature:RP(5) DEFAULT=5
Final temperature T1:RP(6) DEFAULT=
Final temperature T2:RP(7) DEFAULT=
Heating time 1:RP(8) DEFAULT=800  
Heating time 2:RP(9) DEFAULT=1000  
 
Next it is necessary to add the name of ou
model FOUL.MDT into the list of ex
models $FEMINA.CMD and even then
possible to solve the problem 
 
R 6,FOUL.DAT 
RM FOUL 
COMPARE 2,1,200,4,2,0,5,3,0; 
OPTIMA 0,20 
GTC; 
 
Data and prediction are shown in the figure
Evaluation of experiments with ar
temperature courses T(t) is nearly the sam
this case these courses will be defined as sti
functions (using system variables x(t)). 
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Next it is necessary to add the name of ou
model FOUL.MDT into the list of ex
models $FEMINA.CMD and even then
possible to solve the problem 
 
R 6,FOUL.DAT 
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OPTIMA 0,20 
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Data and prediction are shown in the figure
Evaluation of experiments with ar
temperature courses T(t) is nearly the sam
this case these courses will be defined as sti
functions (using system variables x(t)). 
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 The following example is a case study, experimental determination of heat transfer coefficient 
at a surface of warm packed food inserted into a cooling box (cooling cabinet). Heat transfer 
coefficient at natural convection is usually assumed in the form of a general correlation, written in 
terms of Nusselt number and Rayleigh number 

       mkRaNu = , 
λ

αHNu = , 
νλ

ρ )(3
ep TTHcg

Ra
−

= ,   (2.6.3-2,3,4) 

where α [W.m-2.K-1] is heat transfer coefficient, H is height of sample, λ [W.m-1.K-1] is thermal 
conductivity, g=9.81 acceleration, cp [J.kg-1.K-1] heat capacity, ν [m2.s-1] kinematic viscosity. T(t)- is 
surface temperature and Te(t) is ambient temperature of air. However, it is not possible to describe 
changes of Nu by this single (and simple) relationship in the whole range of Rayleigh number Ra and 
therefore a more general model is to be used 

1
1

mRakNu =     for Ra<Racrit, and 2
2

mRakNu = .     (2.6.3-5) 
Experimental determination of parameters k1, k2, exponents m1, m2 and Racrit is based upon recording 
time course of temperature T(t) of a metallic model and the temperature of air Te(t) inside the cooling 
box. The model predicting temperature of metallic sample is based upon single ordinary differential 
equation 

)( ep TTS
dt
dTMc −−= α    or using Nusselt number )( e

p

TT
HMc

NuS
dt
dT

−−=
λ , (2.6.3-6) 

where M [kg] is mass, and S [m2] surface of sample. Solution of this equation cannot be obtained in an 
analytical form first because Te(t) is not a constant and also because λ, Nu, cp are temperature 
dependent parameters. This is why the equation is defined in FEMINA as the following model (F4) 
 
COOLING CABINET 
Determination of heat transfer coefficient 
from measured temperature of environment (xv(1)) 
assuming metalic sample. Model parameters 
RP(1) - k1  (from Nu=k1.Ra^m1) 
RP(2) - m1 
RP(3) - m2  (from Nu=k2.Ra^m2)  
RP(4) - Rac  critical Rayleigh number. 
\\ini 
real ra,lambda,ro,gama,ny,smcp,t1,t2,t3,nu 
real k1,k2,m1,m2,rcrit 
h=0.03 smcp=0.000063234 
k1=rp(1) m1=rm(2) m2=rp(3) rcrit=rp(4) 
k2=k1*rcrit**(m1-m2) 
cm(1)=c2(1) 
\\mod 
t1=xv(1) 
lambda=.0241+0.000075*t1 
c=1005 
ro=1.276-0.004365*t1 
gama=1/(t1+273) 
ny=1.3e-5+9e-8*t1 
ra=9.81*gama*h**3*abs(cm(1)-t1)*ro*c/(ny*lambda) 
if ra<rcrit then nu=k1*ra**m1 else nu=k2*ra**m2 
dcm(1)=lambda*nu/h*smcp*(t1-cm(1)) 
yv(1)=cm(1) 
\\par 
IDENUM=       0 METHOD=-2 NEQ=  1 NPAR= 4 INP=1 OUT=1 
X1=3  Y1=4 
k1:RP(1) DEFAULT=1 MIN=0 MAX=50 RELFAKT=1 REGRES=2 
m1:RP(2) DEFAULT=.2 MIN=.1 MAX=1 RELFAKT=1 REGRES=2 
m2:RP(3) DEFAULT=1 MIN=.1 MAX=3 RELFAKT=1 REGRES=2 
Ra crit:RP(4) DEFAULT=1e4 MIN=100 MAX=1E8 RELFAKT=1 REGRES=3 
 
 

T(t) 
Te(t) 

H 
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Data are in the file mer01.txt – first column is time, second column temperature Te, third column 
measured temperature of sample. Use the command ROM to read the data, then activate model F4 
(using command RM) and calculate theoretical prediction by command INTEGR. Optimised values of 
k1, k2, exponents m1, m2 and Racrit can be found by OPTIMA. Comparison of column 3-experimental 
data and column 4-calculated temperature, is specified by the command COMPAR. 

The following figure demonstrates, that majority of important values can be specified in a 
dialog panel after issuing the command OPTIMA, for example: criterion of optimisation (least sum of 
absolute values, least sum of squares, least integral deviation,…), range of MOP rows (matrix of 
observation points) and columns of MOP which are used for comparison between model prediction 
and measured temperature of sample. Further on an optimisation method can be selected for each 
parameter separately (0-fixed value, 1-linear parameter, 2-nonlinear regression, 3-golden section 
method), underrelaxation parameter and prescribed minima and maxima of searched parameters. 
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2.6.4. FEM model optimisation 
 

We have found in previous chapters that the 1D model of axial dispersion is not suitable for 
description of responses in laminar flows if the diffusion coefficient is very small. In this case an 
empirical formula for the coefficient of axial dispersion 

π
τ2uDDe +=  

has been suggested, where τ is an unknown model parameter. This parameter can be identified by 
comparison with a correct response obtained either from experiment or numerically. As a theoretical 
response we are going to use results of 2D model of fully developed laminar flow in a straight pipe 
analysed in chapter 2.2.2. – the following figure (contours of tracer concentration in five time steps up 
to the mean residence time) illustrates significant influence of diffusion coefficient. 
 

 
 
 Let us assume that the responses calculated by the 2D program is saved in the last (10th) 
column of MOP and the matrix is in file PIPEOPT.DAT. Then we can write program calculating 
response from a 1D model of axial dispersion with parameter τ (TAUD) and this value will be 
optimised. 
 
READ 6,PIPEOPT.DAT 
H=1 
R=0.01 
U=0.1 
W=3*H/U 
L=200 
PT 1,0,0; 
PT 2,H,0; 
CR2PT 1,1,2; 
CURDEF -1,0,4,0,0,W/L,1,2*W/L,1,3*W/L,0,W,0; 
EGROUP 1,PIPE2D,1,0,0; 
RCONST 1,PIPE2D,2*R,.100E-03,0,1E-3; 
MCR 1,30,1,2,1,0,1; 
NFPT 2,PRES,-1,0; 
NFPT 1,PRES,-2,8; 
SOLVE 0,1,.750E-01,0,0,4; 
NFPT 1,CN,-1,1; 
DN(1)=1E-7 
PARDEF 1,TAUD; 
PARLIM 0.1,20; 
PARFIT 10,3,1; 
COMPAR 1,1,60,3,10,0; 
OPEN 7,PIPEOPT2.GEO; 

Mesh 60 x 40, ∆t=1 s, upwind, D=10-6  (upper row), 10-7 (bottom row) m2/s 

2s 4s 6s 8s 10s

Geometry is defined using H-length, R-radius, U-mean velocity, W-
maximum time, L-number of time steps.  
Duration of stimulus function (function number -1 define by table) is 3W/L.

30 elements PIPE2D are used, and pressure at inlet is 
specified to 8 Pa and zero at outlet. This pressure 
difference ensures mean velocity 0.1 m/s as it should be.
SOLVE is directed to solve only pressures and 
velocities, therefore only 1 time step is sufficient. 

Optimised parameter TAUD definition, allowed limits τmin=0.1 s and τmax=20 
s. PARFIT specifies the optimisation option 3 – this is simple method of one 
dimensional search based upon Golden Section method. COMPAR defines 
columns for comparison: 60 points, prediction of 1D model in 3rd column and 
reference response in 10th column. OPEN model definition file on unit 7. 
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30 elements PIPE2D are used, and pressure at inlet is 
specified to 8 Pa and zero at outlet. This pressure 
difference ensures mean velocity 0.1 m/s as it should be.
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velocities, therefore only 1 time step is sufficient. 

Optimised parameter TAUD definition, allowed limits τmin=0.1 s and τmax=20 
s. PARFIT specifies the optimisation option 3 – this is simple method of one 
dimensional search based upon Golden Section method. COMPAR defines 
columns for comparison: 60 points, prediction of 1D model in 3rd column and 
reference response in 10th column. OPEN model definition file on unit 7. 
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2.6.4. FEM model optimisation 
 

We have found in previous chapters that the 1D model of axial dispersion is not suitable for 
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π
τ2uDDe +=  
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s. PARFIT specifies the optimisation option 3 – this is simple method of one 
dimensional search based upon Golden Section method. COMPAR defines 
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reference response in 10th column. OPEN model definition file on unit 7. 
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The model definition file PIPEOPT2.GEO should solve transient concentration field in L time steps, 
evaluate results in such a way, that the response, concentrations in the last node of pipe, will be placed 
into the 3rd column and afterward normalised to unit area. 
 
RECORD PIPEOPT2.GEO 
 INI CN,0 
 SOLVE 0,l,w/l,1,0,0,0,1,0 
 I=0 
 T=0 
 NT=60 
 #LOOP LAB,NT; 
 I=I+1 
 LOADT T; 
 C1(I)=T 
 C3(I)=V3(LPU(CN)+ND) 
 T=T+0.5 
 #LABEL LAB; 
 NORM 3,3,0 
ENDREC 
 
 
OPTIMA 7,10 
 
 
 

 
 
 
 
 
 

π
τ2uDDe +=  

axial dispersion 

2D model 

D=10-7   τ=3.99 sD=10-6   τ=3.57 s

Optimisation of TAUD. Because the direct search option (3) has been 
selected 10 iterations means in fact 10 initial trials inside the specified 
range of TAUD, followed by several steps of golden section method. 
This is sufficient for 1% accuracy of calculated optimal value TAUD. 

Initial condition for concentration is zero. 

Finite element solution in L-time steps. 

This parameter 1 ensures preservation of element parameters 
(flowrates calculated previously). Therefore it is not necessary 
to repeat calculation of flow, and only one iteration for 
concentration is sufficient in each time step. 

Value of concentration in node ND in time T. 
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2.6.5. Transmission tomography  
 

 Optimisation methods can be applied also for the transmission tomography, aiming to identify 
distribution of density in a cross-section of an apparatus. The simplest arrangement consists in using 
several shielded γ-emitters and collimated detectors, monitoring attenuation of rays due to absorption 
in material. Such a situation is shown in the following figure (circular cross-section, surrounded by 7 
emitters and 5 detectors).  
 

 
Let us assume, that the measured signal of an arbitrary pair emitter-detector can be expressed as a 
mean value of unknown density ρ(x,y) along the ray (e.g. along the abscissa 1-2 in the figure), 

∫=
2

112

),(1 dlyx
Lm ρρ        (2.6.5-1) 

Experimental data are therefore represented by M values ρm1, ρm2, …, ρmM , which enable to identify a 
model of density distribution ρ(x,y), for example in the form of a quadratic polynomial  
 

)4.0)(4.0())5.0()5.0((),( 22 −−+−+−+= yxCyxBAyxρ    (2.6.5-2) 
 
The function (2) has been selected accidentally and has only 3 parameters which are to be identified.  
 
 Solution proceeds in the following steps: 
 

First the measured abscissas are generated: We start with definition of outline (a circle in this 
case) and then we locate emitters and detectors as points PT using mouse (or by using the command 
READ 5, if you have prepared the coordinates in an ASCII file with the postfix PCS). The connecting 
lines emitter-detector are defined using CR2PT, and points of intersection with the cross-section 
perimeter are calculated using PTCR2. These new points define abscissas (use the command CR2PT 
again), along which integrals of function ρ(x,y) will be calculated.  
 
PT 1,.428E+00,.489E+00; 
PT 2,.690E+00,.502E+00; 
PT 3,.170E+00,.287E+00; 
PT 4,.446E+00,.949E+00; 
PT 5,.618E+00,.879E+00; 
PT 6,.716E+00,.764E+00; 

PT 7,.813E+00,.598E+00; 
PT 8,.824E+00,.381E+00; 
PT 9,.772E+00,.181E+00; 
PT 10,.686E+00,.360E-01; 
CIRCLE 1,1,2,4; 
PT 18,.271E+00,.133E+00; 

PT 19,.471E+00,.572E-01; 
PT 20,.137E+00,.713E+00; 
PT 21,.273E+00,.897E+00; 
CR2PT 5,3,21; 
CR2PT 6,3,4; 
CR2PT 7,3,5; 

1 

2
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CR2PT 8,3,6; 
CR2PT 9,3,7; 
CR2PT 10,3,8; 
CR2PT 11,10,20; 
CR2PT 12,10,21; 
CR2PT 13,10,4; 
CR2PT 14,10,5; 
CR2PT 15,18,20; 
CR2PT 16,18,4; 
CR2PT 17,18,7; 
CR2PT 18,19,20; 
CR2PT 19,19,21; 
CR2PT 20,19,5; 
CR2PT 21,9,20; 
CR2PT 22,9,21; 
PTCR2 1,22; 
PTCR2 1,20; 
PTCR2 1,21; 
PTCR2 1,19; 
PTCR2 1,13; 
PTCR2 1,7; 
PTCR2 1,8; 
PTCR2 1,9; 
PTCR2 1,14; 

PTCR2 2,6; 
PTCR2 2,16; 
PTCR2 2,19; 
PTCR2 2,21; 
PTCR2 2,15; 
PTCR2 2,12; 
PTCR2 3,8; 
PTCR2 3,9; 
PTCR2 3,10; 
PTCR2 3,16; 
PTCR2 3,18; 
PTCR2 3,19; 
PTCR2 4,20; 
PTCR2 4,11; 
PTCR2 4,12; 
PTCR2 4,13; 
PTCR2 4,21; 
PTCR2 4,22; 
PTCR2 4,10; 
PTCR2 4,17; 
PTCR2 3,5; 
PTCR2 2,18; 
PTCR2 2,11; 
PTCR2 2,22; 

PTCR2 3,6; 
PTCR2 3,7; 
PTCR2 4,14; 
PTCR2 34,3; 
CR2PT 23,32,35; 
CR2PT 24,49,38; 
CR2PT 25,31,44; 
CR2PT 26,50,41; 
CR2PT 27,13,48; 
CR2PT 28,30,39; 
CR2PT 29,33,42; 
CR2PT 30,51,28; 
CR2PT 31,52,45; 
CR2PT 32,29,37; 
CR2PT 33,23,43; 
CR2PT 34,22,40; 
CR2PT 35,27,53; 
CR2PT 36,54,24; 
CR2PT 37,36,46; 
CR2PT 38,35,26; 
CR2PT 39,24,53; 
CR2PT 40,51,46; 
CR2PT 41,28,52; 
CR2PT 42,27,54; 

 

Next step is the definition of function ρ(x,y) with parameters A,B,C, according to Eq. (2) 
FUNDEF 1,A+B*((XX-.5)**2+(YY-.5)**2)+C*(XX-.4)*(YY-.4); 
 
The length of abscissa, which is used for normalisation of integral (1), can be calculated from 
coordinates of end-points, or (and this is only a self-indulgence) as a line integral of a function which 
is identically equal one 
FUNDEF 2,1; 
 
The “measured” abscissas are curves CR starting from the index 23 in this specific case. As a 
mathematical model we suggest procedure, calculating integrals (1) along eighteen curves 23,24,…40 
and storing these 18 values into the 2nd column of MOP (in the 3rd column will be measured values). A 
line integrals can be calculated using command INTGCR and so that we would not have to 
mechanically retype this command 18-times, we make use the command #LOOP. The sequence of 
commands will be recorded into the file tomof.geo  
 
RECORD TOMOF.GEO 

I=22 
#LOOP Lab1,18; 
I=I+1 
INTGCR I,1; 
R=INTEGRAL 
INTGCR I,2 
C2(I-22)=R/INTEGRAL 
#LABEL Lab1; 

ENDREC 
 
 Simulated experimental data will be prepared just by using this model for selected values of 
parameters A,B,C and results will be transferred to the 3rd column of MOP. In a real case the 
experimentaly obtained values (mean densities  
 
A=0.01 
B=.5 
C=.5 
TSTEP 18,1; 
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F tomof.geo 
TCFUN C3=C2; 
 
 Further on it is necessary to describe optimised parameters (PARDEF, PARFIT, PARLIM), to 
identify compared columns of MOP (COMPAR) and activate the mathematical model tomof.geo 
(opening the file on unit 7)  
 
PARDEF 3,A,B,C; 
PARFIT .02,1,1,.45,1,1,.6,1,1; 
PARLIM 0,1,0,1,0,1; 
COMPAR 1,1,20,2,3,0; 
OPEN 7,Tomof.geo; 
 
From now on it is possible to start up OPTIMA or SOMA optimisation. When using OPTIMA it is 
sufficient to specify model number (this is number of unit 7) and number of iterations (e.g. 3) 
 
OPTIMA 7,3; 
 
Graphical presentation of results, for example contours of density ρ(x,y) (this is function number 1 
with evaluated parameters A,B,C) is not so easy. It is necessary to mesh the cross section by finite 
elements – the cross-section must be defined as a surface (using SFCR) and meshed by the command 
MSF. The actual values of the function number 1 are transferred to the zone of initial conditions as an 
arbitrary nodal parameter (for example temperature) using command INI, and even then the contours 
can be plotted using GD2. 
 
SFCR 1,1,2; 
EGROUP 1,PLANE2D,0,0,0,0,0; 
MSF 1,30,30,1,1,4; 
INITIA TEMP,1; 
GD2 TEMP,3 
 
 
 
 
 
 
 
 
 This example describes only a principle of the method, however, real applications differ only in 
details. First of all processing of experimental data and evaluation of measured mean density ρmi along 
a specific ray must be performed: Assuming linear relationship between density and linear attenuation 
coefficient the detected intensity of radiation along the i-th ray can be expressed by 
 

imLa
iim eILI ρρ −= 0),(          (2.6.5-3) 

 
where the coefficient a is determined from independent experiments or theoreticaly from tabulated 
absorption coefficients and densities of individual components of e.g. solid-liquid mixtures24. The 
incident intensity Ii0 is a parameter, which is to be calculated for each ray independently using results 
of calibration measurement when material density ρref is uniform and constant (for example 
measurement with empty apparatus or with apparatus completely filled by a liquid) – this calibration 
experiment yields values Irefi. Using these values the mean density along the i-th ray can be evaluated 
from the detected signal Ii as follows 
                                                           
24 This is the simplest formula, but in exactly the same way general functions of the type ))(exp( ii LfI ρ− , with more 
independently determined parameters, can be used. 
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experiment yields values Irefi. Using these values the mean density along the i-th ray can be evaluated 
from the detected signal Ii as follows 
                                                           
24 This is the simplest formula, but in exactly the same way general functions of the type ))(exp( ii LfI ρ− , with more 
independently determined parameters, can be used. 
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Now the whole procedure is easy; it is convenient to prepare experimental data in form of a text file 
(free format can be used) 

Iref1 I1 
Iref2 I2 
… 

  
IrefN IN 

and import them into (for example) the 4th (Irefi) and 5th (Ii) columns of MOP by using the command 
ROM. Let us assume, that the rays are curves CR starting from 1. The mean densities are then 
calculated from the values recorded by detectors Ii and Irefi according to Eq.(4) as follows (assuming 
for example ρref=1000 kg/m3 and a=0.01 m2/kg) 
 

TCF C3=1000-LOG(C5/C4)/(0.01*CLEN(I)) 
 
Another difference concerns the model, describing distribution of density (function number 1 in the 
previous example). Only very simple functions can be defined by single expression, usually it is 
necessary to use the more general functions 101,102,.. defined by scripts (see previous examples). In 
this case it is possible to define even discontinuous functions, for example 6-parametric model 
(optimised parameters a,b,c,d,e,f) suitable for evaluation of radial density distribution in a draft tube 
mixer. Remark: number of parameters can be reduced, if the radius of draft tube is known. 
 
 
     Asymmetry inside the annular region 
                               q=xx**2+yy**2 t=sqr(q) if t>0 then [s=xx/t  p=yy/t] 
                              if Q<a then yv(1)=b+c*q else yv(1)=d+e*s+f*p yv(2)=1 
 
  
 
 
 
                                                                 Asymmetry of distribution 
                              q=xx**2+yy**2 
                              f=max(sqr(q),1e-6) h=xx/f g=yy/f 
                              yv(1)=a+q*(b+c*q)+d*h+e*g yv(2)=1 
    
         Model based upon Bessel’s functions 
                              q=xx**2+yy**2 

      if Q<a then yv(1)=b+c*q else yv(1)=d+e*jn(0,f*q) 
yv(2)=1 

 
In the case of multiphase flows in a rectangular cross section it possible to use for example models (6 
parameters a,b,c,d,e,f) 
 
      if yy<a then yv(1)=b+c*yy+d*exp(-e*yy) else yv(1)=f 
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 While this approach can be applied for quite arbitrary shape of cross section or even for an 3D 
case, the most frequently encountered geometries, i.e. circular and rectangular cross sections can be 
processed more easily using the dialog panel accessed from the menu bar Tomography -> Circular 
cross section, shown in the following figure. In this panel we fill the X,Y positions of emitters and 
detectors (assuming that the origin of the cartesian coordinate system is in the center of cross section), 
radius of circle or lengths of sides. At the same time measured values Ii and Iiref are specified for each 
ray (the dialog panel is restricted to 18 rays) together with the reference density ρref and parameter a in 
Eq.(2.6.5-4). This operation calculates intersections of rays with perimeter of cross-section, effective 
lengths Li of rays and mean densities ρmi calculated from Eq.(2.6.5-4) are placed into the 3rd column of 
MOP. 
 

 
 
From now on the solution proceeds as previously, it means by the model selection and optimisation of 
its parameters. 
 
Remark: The dialog box defines new keypoints (PT 1,2,…) and new curves (CR 1,2,…,N), beams, 
restricted to the interior of cross-section. Besides this the circle or the rectangular boundary is defined 
using several subsequent points and curves. Be aware of the fact that the old points and curves are 
deleted! Matrix of observation points is also created with N-row (N-beams) and the old content is 
rewritten. To save the data for a following session, use for example the command WB (Write 
dataBase). 
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2.6.6. Electrotomography  
 
 Much more complicated is electro-tomography, based upon measurement of effective electrical 
conductivity of a volume of material which is in a contact with measuring electrodes. Results are 
information about spatial distribution of electrical conductivity and inferred density distribution. There 
exist many different arrangements of electrodes, but in this example we shall analyse configuration 
with only one submerged moving electrode and the second electrode fixed at the bottom of vessel.  
 

Solution is based upon computation of electric potential distribution for a specific geometry (position 
of the moving probe) and calculating electrical current flowing through electrodes. For each 
observation point it is therefore necessary to use finite element method with different mesh, afterwards 
integrate electrical current and save it to MOP. Instead the integration the current density it is more 
suitable (and more accurate) to calculate the total electric power dissipated in the measured volume  
 

∫
Ω

Ω∇=⋅= dUIUP 2)(κ         (2.6.6-1) 

where κ is specific electric conductivity in a point x,y,z.  
 We shall approximate the distribution of electrical conductivity as a bilinear polynomial of 
coordinates x,y  

DxyCyBxAyx +++=),(κ .       (2.6.6-2) 
Let us assume that for identification of four unknown coefficients A,B,C,D it will be sufficient to 
measure electric current at 9 different positions of the moving cylindrical probe 
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0.0469 

0.0650 

0.106 

0.0445 

0.103

0.0596

0.0379
These graphs illustrate asymmetric 
distribution of electric potential due to 
asymmetry of electric conductivity. The 
numbers are calculated electric currents –
proportional to measured signals. 
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Mathematical model will be represented by a command-file (named for example 
TOMODEL.GEO), describing geometrical model, mesh generation, boundary conditions (zero 
potential at bottom and unit potential at cylindrical probe) and solution of electric potential by finite 
element method for variable material parameter κ(x,y) defined by Eq.(2). The operation SOLVE 
ensures not only solution but also post-processing, whose result, total dissipated power (1) is 
transferred from the system variable POWERE into appropriate row of MOP. The session file must 
include solutions for all nine positions of measuring probe and this repetition will be again ensured 
using command #LOOP: 
 
 
G=0.05 
E=.1 
I=0 
#LOOP E,3 
E=E+.2 
F=.1 
#LOOP F,3 
F=F+.2 
NPT=0 
NCR=0 
NSF=0 
PT 1,.000E+00,.000E+00; 
PT 2,.100E+01,.000E+00; 
PT 3,.100E+01,.100E+01; 
PT 4,.000E+00,.100E+01; 
PT 5,E,F; 
PT 6,E+G,F+G; 
CIRCLE 5,5,6,4; 
PT 14,.5,0; 
PT 15,E/2,F/2; 
PT 16,(E+1)/2,F/2; 
PT 17,0,0.5; 
PT 18,E/2,(F+1)/2; 
PT 19,.5,1; 
PT 20,(E+1)/2,(F+1)/2; 
PT 21,1,.5; 
SF8PT 1,1,2,12,10,14,16,11,15; 
SF8PT 2,2,3,6,12,21,20,13,16; 
SF8PT 3,3,4,8,6,19,18,7,20; 
SF8PT 4,4,1,10,8,17,15,9,18; 
NE=0 
ND=0 
MSF 1,10,10,1,.5,3; 
MSF 2,10,10,1,.500E+00,3; 
MSF 3,10,10,1,.500E+00,3; 
MSF 4,10,10,1,.500E+00,3; 
NMERGE ; 
NFCR 5,VOLT,-1,0,0,0; 
NFCR 1,VOLT,-1,1,1,1; 
NFCR 2,VOLT,-1,1,1,1; 
NFCR 3,VOLT,-1,1,1,1; 
NFCR 4,VOLT,-1,1,1,1; 
SOLVE 1,1,1,0,1,0,0,0,0; 
I=I+1 
C2(I)=POWERE 
#LABEL F 
#LABEL E 

E 

F 

G
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This model definition file can be used for identification of optimal parameters A,B,C,D. As a 
reference data we shall use results of simulation for A=1, B=0.5, C=0.3, D=-1.5, transferred to the 
3rd column of MOP and optimisation will be performed with different initial values of A,B,C,D.  
 
ANALYS 2; 
EGROUP 1,PLANE2D,0,1,0,0,0; 
MPROP 1,PLANE2D,.600E+00,0,4200,0,998,0,.400E-01,1,.210E+12,0,.280E+00,0,.120E-
04,0; 
FUNDEF 1,A+B*XX+C*YY+D*XX*YY; 
A=1 
B=.5 
C=.3 
D=-1.5 
F TOMODEL.GEO 
TSTEP 9,1; 
TCFUN C3=c2; 
PARDEF 4,A,B,C,D; 
PARFIT .7,2,1,.7,2,1,.5,2,1,-1.3,2,1; 
PARLIM 0,2,0,1,0,1,-2,2; 
COMPAR 1,1,9,2,3,0; 
OPEN 7,Tomodel.geo; 
OPTIMA 7,3 
INITIA CN,1; 
GD2 CN,3; 
 
 

This is calculated distribution 
of electric conductivity 
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reference data we shall use results of simulation for A=1, B=0.5, C=0.3, D=-1.5, transferred to the 
3rd column of MOP and optimisation will be performed with different initial values of A,B,C,D.  
 
ANALYS 2; 
EGROUP 1,PLANE2D,0,1,0,0,0; 
MPROP 1,PLANE2D,.600E+00,0,4200,0,998,0,.400E-01,1,.210E+12,0,.280E+00,0,.120E-
04,0; 
FUNDEF 1,A+B*XX+C*YY+D*XX*YY; 
A=1 
B=.5 
C=.3 
D=-1.5 
F TOMODEL.GEO 
TSTEP 9,1; 
TCFUN C3=c2; 
PARDEF 4,A,B,C,D; 
PARFIT .7,2,1,.7,2,1,.5,2,1,-1.3,2,1; 
PARLIM 0,2,0,1,0,1,-2,2; 
COMPAR 1,1,9,2,3,0; 
OPEN 7,Tomodel.geo; 
OPTIMA 7,3 
INITIA CN,1; 
GD2 CN,3; 
 
 

This is calculated distribution 
of electric conductivity 
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2.6.7. Heat transfer identification 
  

This example represents a different kind of applications: Identification of unknown heat 
transfer coefficients on basis of measured time courses of temperature in points inside a body. 
Procedure will be demonstrated upon a model of a „two dimensional“ chicken which is heated or 
cooled. So that the model would be as realistic as possible, also its inner structure, bones with 
different thermophysical properties will be considered. The model of chicken is shown in the 
following figure 
 

Geometrical and finite element model of chicken will be created by the following sequence of 
commands (file tkure.geo). Notice some specific features not used previously: combination of 
different kinds of elements, two dimensional „PLANE2D“ and one-dimensional „TRUSS2D“ (for 
modelling the chicken’s claws). Further on it is a surface SF having triangular topology (chicken’s 
beak) and associated meshing, and finally the way haw intestines of chicken are modelled 
(operation ERMSF). 
 
EGROUP 1,PLANE2D,1,1,0,0,0; 
PT 1,.876E-01,.384E+00; 
PT 2,.143E+00,.438E+00; 
PT 3,.191E+00,.486E+00; 
PT 4,.152E+00,.541E+00; 
PT 5,.112E+00,.598E+00; 
PT 6,.876E-01,.505E+00; 
PT 7,.979E-01,.725E+00; 
PT 8,.114E+00,.867E+00; 
PT 9,.261E+00,.704E+00; 
PT 10,.354E+00,.535E+00; 
PT 11,.265E+00,.502E+00; 
PT 12,.188E+00,.103E+01; 
PT 13,.313E+00,.113E+01; 
PT 14,.470E+00,.106E+01; 
PT 15,.504E+00,.761E+00; 
PT 16,.444E+00,.638E+00; 
PT 17,.209E+00,.136E+00; 
PT 18,.335E+00,-.728E-01; 
PT 19,.540E+00,-.909E-01; 
PT 20,.726E+00,-.547E-01; 
PT 21,.527E+00,.296E+00; 
PT 22,.679E+00,.922E+00; 

PT 23,.936E+00,.103E+01; 
PT 24,.104E+01,.734E+00; 
PT 25,.109E+01,.242E+00; 
PT 26,.943E+00,.904E-01; 
PT 27,.819E+00,.574E+00; 
PT 28,.520E+00,-.359E+00; 
PT 29,.450E+00,-.399E+00; 
PT 30,.488E+00,-.450E+00; 
PT 31,.531E+00,-.475E+00; 
SF6PT 1,1,3,5,2,4,6; 
SF8PT 2,3,10,8,5,11,9,7,4; 
SF8PT 3,10,15,13,8,16,14,12,9; 
SF8PT 4,3,18,20,10,17,19,21,11; 
SF8PT 5,10,20,25,15,21,26,27,16; 
PT 32,.168E+00,.801E+00; 
PT 33,.261E+00,.619E+00; 
PT 34,.422E+00,.831E+00; 
PT 35,.316E+00,.104E+01; 
PT 36,.185E+00,.689E+00; 
PT 37,.362E+00,.692E+00; 
PT 38,.395E+00,.970E+00; 
PT 39,.236E+00,.943E+00; 
PT 40,.789E+00,.211E+00; 

α1=?

α2=?
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PT 41,.840E+00,.293E+00; 
PT 42,.613E+00,.378E+00; 
PT 43,.370E+00,.641E+00; 
PT 44,.921E+00,.263E+00; 
MSF 1,20,1,3; 
MSF 2,20,20,1,1,3; 
MSF 3,20,20,1,1,3; 
MSF 4,20,20,1,1,3; 
MSF 5,20,20,1,1,3; 
EGROUP 2,TRUSS2D,1,0; 
RCONST 2,TRUSS2D,0,0,.1,.1; 
MPROP 2,TRUSS2D, 
2,0,2000,0,1500,0,0,0,0,0,0,0; 
CR2PT 15,19,28; 

CR2PT 16,28,29; 
CR2PT 17,28,30; 
CR2PT 18,28,31; 
MCR 15,3,1,2; 
MCR 16,1,1,2; 
MCR 17,1,1,2; 
MCR 18,1,1,2; 
MPROP 3,PLANE2D, 
10,0,2000,0,800,0,0,0,0,0,0,0,0,0; 
SF8PT 6,33,34,35,32,37,38,39,36; 
SF8PT 7,10,40,41,16,21,44,42,43; 
ERMSF 6,1,1,3; 
ERMSF 7,1,1,3; 
NMERGE ; 

 
 Mathematical model consists in solution of transient heating of chicken from an initial 
constant temperature, while the ambient temperature is maintained constant (but different). Let us 
assume that there are different values of heat transfer coefficients α on the chicken surface - in our 
example only two different and unknown values α1=A, α2=B will be considered on curves 10 and 
8, respectively. Results of solution, temperatures at all nodes and in all times are saved in the OUT-
file and can be later on retrieved to the zone of initial conditions (zone 3), processed, and finally 
transferred to the matrix of observation points as a model prediction. The sequence of commands, 
defining the mathematical model for the case when two thermocouples located at coordinates 
(0.4,0.9) and (0.4,0.5) record 20 time steps with ∆t=10000 s, and for values of heat transfer 
coefficients in variables A,B, can be written into the file kurmodel.geo  
 
RECORD KURMODEL.GEO 

NFCR 10,TEMP,21,A,A,A; 
NFCR 8,TEMP,21,B,B,B; 
INITIA TEMP,0; 
SOLVE 0,20,.100E+05,0,0,0,1,0,0; 
T=0 
I=0 
#LOOP T,20; 
I=I+1 
T=T+10000 
LOADT T 
C1(I)=T 
C2(I)=DOF(TEMP,3,.4,.9,0.) 
C3(I)=DOF(TEMP,3,.4,.5,0.) 
#LABEL T; 

ENDREC 
 
It is necessary to issue the command BOX so that the function DOF could be used for evaluation of 
predicted temperatures in a general point x,y (which is not coincident with any node generally). 
Simulated experimental data will be located in columns 4 and 5, while the model prediction will be 
in columns 2 and 3 (column 1 is time).  
 
TE(1)=200 
BOX .5 
TSTEP 20,.100E+05; 
PARDEF 2,A,B; 
PARLIM 100,3000,100,3000; 
PARFIT 1000,2,1,1500,2,1; 
COMPAR 2,1,20,2,4,0,3,5,0; 
OPEN 7,KURMODEL.GEO 
OPTIMA 7,3 
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2.6.8. Wall permeability identification 
 

We shall consider a pipeline network with a section, consisting of several parallel capillaries 
with permeable walls. Permeability of wall µ and the local loss coefficient ζ are unknown 
parameters that are to be identified from experiment, where the flowrate before and behind the 
section of parallel capillaries is measured.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Model corresponding to the previous scheme is defined by the following batch (session file) 
 
A=1E-12 
Z=1 
PT 1,.000E+00,.500E+00; 
PT 2,.500E+00,.500E+00; 
CR2PT 1,1,2; 
PT 3,.600E+00,.800E+00; 
CR2PT 2,2,3; 
PT 4,.900E+00,.800E+00; 
CR2PT 3,3,4; 
PT 5,.100E+01,.800E+00; 
CR2PT 4,4,5; 
PT 6,.500E+00,.500E+00; 
PT 7,.100E+01,.000E+00; 
CR2PT 5,6,7; 
RCONST 1,PIPE2D,.03; 
MCR 1,3,1,2,0,0,1; 
MCR 2,3,1,2,0,0,1; 
MCR 4,2,1,2,0,0,1; 
RCONST 2,PIPE2D,.03; 
MCR 5,5,1,2,0,0,1; 
EGROUP 2,PIPE2D,0,0,0,0,0,0,0,
RCONST 3,PIPE2D,.100E-02,0,0,.
MCR 3,5,1,2,0,0,1; 
NMERGE ; 
ERMEL 9,1,4,1; 
RCONST 4,PIPE2D,.03,0,Z; 
NFPT 1,PRES,-1,17E3; 
NFPT 7,PRES,-1,0; 
NFPT 5,PRES,-1,0; 
SOLVE 0,1,1,1,0,20; 
 

Q Q 

Q0.5 m 

0.3 m
D=0.03 m 

D=0.001 m 
n=10000  

p=17 kPa 

p=0 kPa 

p=0 kPa 

D=0.03 m 

ζ=?

µ=?

Variable A will be permeability µ, while Z is ζ 
 
The commands PT, CR2PT can be substituted by the single 
command CRS (simultaneous generation of points and curves 
using mouse – record of this operation is transformed to the 
following sequence PT,PT,CR2PT,PT….) 
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EGROUP number 2 will be associated with parallel pipes (the last 
parameter defines number of pipes in the bundle, n=10000). 
 
RCONST number 3 concerns also the parallel pipes – the last 
parameter A is permeability of wall (thickness of wall h=0.01 must
be specified, because overall permeability is proportional to µ/h)

EGROUP number 2 will be associated with parallel pipes (the last 
parameter defines number of pipes in the bundle, n=10000). 
 
RCONST number 3 concerns also the parallel pipes – the last 
parameter A is permeability of wall (thickness of wall h=0.01 must
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EGROUP number 2 will be associated with parallel pipes (the last 
parameter defines number of pipes in the bundle, n=10000). 
 
RCONST number 3 concerns also the parallel pipes – the last 
parameter A is permeability of wall (thickness of wall h=0.01 must
be specified, because overall permeability is proportional to µ/h)
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0,0,0,0,10000; 
01,0,0,0,0,0,0,A; 

ERMEL command (Egroup, Rconst, Material for an ELement) changes 
Rconst group number 4 of the element where ζ is to be specified. 
 
NFPT – prescribed pressures at endpoints. 
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This batch performs computation for specified parameters A and Z. Calculated flowrates 
corresponding to experimental data from flowmeters are parameters of elements 14 and 19 (first and 
last element in the parallel pipes section) and in the element 9 (flowrate in the second branch). 
These predicted flowrates should be compared with the experimental data in the matrix of 
observation points (MOP), where the model prediction is in the second and experiment is in the 
third column (for example). So that the model parameters A and Z could be optimised automatically 
by OPTIMA, it is necessary to prepare the following model (file name is for example perm0.geo) 
 
RECORD PERM0.GEO 
PERM(3)=A 
ZETA(4)=Z 
NT=2 
SOLVE 1,1,1,1,0,20; 
C2(1)=(E1(IEP(EQ,14))-E1(IEP(EQ,19)))*10000 
C2(2)=E1(IEP(EQ,9)) 
ENDREC 
 
This model sets the parameters PERM and ZETA of the RCONST group number 3 (bundle of 
pipes) and 4 (pipe behind branching) and performs solution (20 iterations of flow). Difference of 
flowrates along the bundle is placed into 1st row, and flowrate in the element 9 to the second row of 
second column.  
 
You can check the model by F PERM0.GEO and TCL (look at MOP – there should be two rows 
(NT=2) and two calculated flowrates in the second column. Experimental data can be typed into the 
3-rd column by TCI. Even than the optimisation can be carried out by 4 commands in a similar way 
as previously (remark: MOP is simplified version of OPEN) 
 
MOP perm0.geo 
PARDEF 2,A,Z; 
COMPAR 1,1,2,2,3,0; 
OPTIMA 
 
 
 
 


