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Abstract — An anisotropic strain energy density function 
based on limiting fiber extensibility assumption was suggested. 
The function was deduced directly from isotropic Gent model.  
A material was modeled as a composite reinforced with two 
families of helical fibers. The anisotropy of the strain energy 
function was incorporated via pseudo-invariants I4 and I6. 
Mathematical expression includes three material parameters. 
Suitability of the model for a description of arterial mechanical 
response was verified by regression analysis of experimental 
data. Computational model based on a cylindrical thick–
walled tube with residual strains was used to estimate material 
parameters.  Identified material model fits pressure–radius 
data of an aortic inflation test successfully. Further upgrades 
of the model are discussed.  
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I. INTRODUCTION  

Arterial walls exhibit anisotropic, nonlinear and inelastic 
response to external loads. This response does not only 
occur as passive deformation but active contraction and 
dilation of smooth muscle cells can cause changes in their 
mechanical behavior. Moreover arterial wall is non–
homogenous material with complicated internal structure. 
All these facts make the question about the best material 
model for arterial wall still unanswered.   There are two 
basic approaches to material modeling. First of them is 
phenomenological where mechanical qualities are modeled 
with no information about internal structure and its 
interactions. Second approach is characterized by 
incorporating structural information when considering e.g. 
layers, fibers, fiber orientation or waviness. Typical 
representative of phenomenological approach is exponential 
strain energy density function suggested by Fung et al. [1]. 
This function or its modifications have been successfully 
used by many authors. In two–dimensional formulation 
(thin tube) it can be written in the form below 
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Here � means strain energy density function. Ett and Ezz 
denote Green strains in circumferential and axial direction, 

respectively. Material parameters c, b1, b2 and b3 enable 
description of the anisotropic behavior of wall. Isotropic 
form of the function (1) was suggested by Fung in 1967. 
   Structural approach asserts at present. The most frequent 
method how to incorporate structural information is to 
regard arterial wall as a fiber reinforced composite. 
Probably the first who presented this idea was Lanir [2] in 
1983. Nowadays models can be divided into two groups 
according to number of reinforcement directions. One can 
considered reinforcement in a finite number of directions; 
e.g. two like in the case of Holzapfel et al. [3]; or infinite 
number where a probability density of fiber orientation must 
be considered.  

These considerations about preferred directions are 
subsequently implemented into the framework of continuum 
mechanics. The leading approach to building constitutive 
models is the theory of hyperelastic materials. Thus 
mechanical response of an arterial wall is supposed to be 
governed by a strain energy (or free energy) density 
function like in (1). The theory of hyperelastic materials is 
widely applied and studied in details in polymer science. 
Due to some phenomenological and structural similarities 
between rubber–like materials and biological tissues, 
methods of polymer physics are frequently applied in 
biomechanics, see Holzapfel [4]. Gent [5] suggested the 
new isotropic model for strain energy density function 
which was based on an assumption of limiting chain 
extensibility in polymer materials. This model has become 
quickly popular and now is implemented in usual FEA 
packages like e.g. ANSYS or ABAQUS. The Gent model 
expresses strain energy as a function of first invariant I1 of 
the right Cauchy-Green strain tensor 
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In equation (2) � denotes infinitesimal shear modulus and Jm 
denotes limiting value of I1 - 3. The domain of logarithm 
requires I1 - 3 < Jm and Jm can be interpreted as limiting 
value for macromolecular chains stretch.  

The main goal of our study is to show anisotropic 
upgrade of the model (2) and verifying its suitability for 
arterial walls based on experimental data. 
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II. CONSTITUTIVE MODEL  

It was proved many times that arteries exhibit anisotropic 
behavior. The model proposed by Gent (2) is isotropic. 
Horgan and Saccomandi in [6] suggested its anisotropic 
extension. They recently published its modification based 
on usual concept of anisotropic materials where anisotropy 
arises from fiber reinforcement, see paper [7]. Horgan and 
Saccomandi consider transversely isotropic material where 
anisotropy is induced by reinforcement with one family of 
fibers (one preferred direction).  They use rational 
approximations to relate a strain energy expression to 
Cauchy stress representation formula. Final form of the 
strain energy density function for transversely isotropic 
material with limiting fibers extensibility follows 
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The first term (Neo–Hook) in equation (3) is related to 
energy stored in isotropic matrix as usual. Second part of 
(3) is related to energy stored in fibers. In (3) �m and �f 
denote shear modulus for matrix and fibers, respectively. Jm 
is the material parameter related to limiting extensibility of 
fibers. The similar definitional inequality like in (2) must be 
hold for logarithm in (3). Thus I4 must satisfy (I4 - 1)2 < Jm. 
I4 denotes so called fourth pseudo–invariant of the strain 
tensor which arises from the existence of one preferred 
direction in continuum. It is worth to note that total number 
of invariants of the strain tensor is five in the case of 
transversely isotropic material and nine in the case of 
orthotropy. Details can be found in e.g. Holzapfel [8]. 
Introducing of I4 lies in its clear physical interpretation. The 
value of I4 is equal to square of the stretch in the fiber 
direction. Thus it can be written in the following form 

 2 2 2 2 2
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In equation (4) �1, �2 denotes stretches in (x1,x2) plane. 
Parameter � is related to the internal structure of a material 
and characterizes the direction of fibers in (x1,x2).  

The model (3) can be modified to a form suitable for 
locally orthotropic material in a similar way like e.g. 
Holzapfel, Gasser and Ogden in [9]. Assuming that an 
artery is a composite material reinforced by two families of 
mechanically equivalent fibers, the corresponding general 
form of the anisotropic strain energy density function is:   
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The first term in (5) is the same as in (3). Remaining terms 
reflect the energy stored in two families of fibers (two 
preferred directions). Due to symmetry of fiber coils and  
mechanical equivalence of fibers �f1 = �f2 = �f,  

Jm1 = Jm2, I4 = I6 (� �1 = -�2),  the model (5) reduces to the 
form seemingly similar to Eq.(3), 
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 It is necessary to note the difference in the argument of 
logarithm in (6), where Jm

2 is used instead of simple Jm in 
(3). This modification allows splitting the logarithm 
according to logarithmic rules 
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This is the form, which is advantageous for solutions of 
several boundary value problems.  
 In the following section the model (7) will be used for 
regression analysis of data collected during an inflation test  
of an artery. The model is reduced only the logarithmic term  
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neglecting the effect of isotropic matrix and taking into 
account only the energy stored in the clockwise and 
anticlockwise coils of collagen fibers in the arterial wall.  

 

Fig. 1 Fiber reinforced vessel in the reference (open) configuration: 
blue and yellow – two equivalent families of fibers; 

red – local coordinate system (cylindrical); gray – matrix. 
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III. EXPERIMENT AND REGRESSION ANALYSIS  

In order to verify capability of (8) to govern multi–axial 
mechanical response of an artery, previously published 
experimental data will be adopted, see Horny et al. [9] and 
[10].  

Male 54–year–old sample of thoracic aorta underwent 
inflation test in order to find suitable material model and 
estimate its material parameters. The sample was obtained 
during autopsy at the Institute of Forensic Medicine of the 
University Hospital Na Kralovskych Vinohradech  
in Prague. No significant atherosclerotic changes were 
found. The time between the presumptive death and the 
inflation test was approximately 66 hours. Before 
experiments the specimen was stored at temperature 
approximately of 4°C; inflation test was performed under 
room temperature. The inflation experiments were 
performed under the following conditions. A tubular sample 
was 6 times pressurized in the range 0 kPa – 18 kPa – 0 kPa 
under axial pre–stretch  �z = 1.3 and 3 times in the pressure 
range 0 kPa – 20 kPa – 0 kPa under �z = 1.42, respectively. 
The opening angle was measured after a radial cut of 
specially prepared ring of the artery before pressurization to 
account residual strains and to find a reference 
configuration. Geometrical characteristic of sample were as 
follows: thickness in reference state H = 2.04 mm; opening 
angle � = 83°, reference outer radius Ro = 19.33 mm; 
reference inner radius Ri = 17.29 mm, outer radius of the 
closed but not pressurized artery ro = 10.88 mm; inner 
radius of the closed but not pressurized artery ri = 8.84 mm. 

 

Fig. 2 Inflation test and model prediction: red/square – �z=1.3;  
blue/circle – �z=1.42. 

Measured values of the internal pressure and the outer 
radius with predictions by the model (8) are shown at  
Fig. 1. Boxes (red color) and circles (blue color) at Fig. 1 
display observation points for axial pre–stretch �z = 1.3 and 
�z = 1.42, respectively. Predictions of internal pressure 
based on the model (8) at the given axial pre–stretch �z = 
1.3 and �z = 1.42 are displayed by solid (red color) and 
doted (blue color) curves, respectively. 

Regression analysis based on least square method gave 
the estimations for material parameters �, Jm and � in the 
model (8). A system of nonlinear equations was solved by 
Levenberg – Marquardt algorithm using in-house software 
package FEMINA.  

Least square optimization was based on a comparison of 
measured and predicted values of internal pressure during 
inflation of cylindrical vessel. Computational model was 
based on radial equilibrium in axially pre–stretched thick–
walled tube with residual strains, assuming incompressible 
material. Shear strains were not included into the model. 

All assumptions mentioned above lead to the solution of 
boundary value problem for thick–walled tube with internal 
pressure given by following equation 
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In the equation (9) p denotes internal pressure. �t means 
stretch in the circumferential direction and r denotes radius. 
The derivative in (9) for (8) has the form as below  
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If one wants to integrate (9), circumferential stretch �t must 
be expressed as a function of the radius r. If residual strains 
are included it can be done in the form 
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The denotation used in (11) is following: � – opening angle; 
r – variable radius; Ro – outer radius in the reference 
configuration (opened up circular sector of the artery); �z – 
axial stretch. It is obvious that inserting (10) and (11) into 
(9) causes (9) to be rather complicated. However,  
in contrast to Fung–type material models now the 
antiderivative for (9) in a closed form of elementary 
function exists. The antiderivative was found and all 
algebraic manipulations were performed using MAPLE 11 
(Maplesoft, Waterloo, Canada).       
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IV. RESULTS AND CONCLUSIONS  

Nonlinear regression analysis described in the above section 
gives estimations for material parameters of the model (8) 
summarized in the Table 1. Results are also displayed 
graphically in the Fig. 1. We can conclude that proposed 
material model fits experimental data successfully. Thus 
strain energy density function given in (8) is suitable to 
govern arterial response during its inflation and extension.  
We can expect that incorporating Neo– Hookean term, like 
in (7), will improve model predictions under low pressures. 
However, fitting of data from the inflation test is only one 
task which must good material model carry out. Final 
decision about the appropriateness of the model should be 
made after successful application in all types of mechanical 
test usual in arterial mechanics. Especially biaxial extension 
tests are necessary and this analysis must be performed in 
future.   

Table 1  Material parameters (8) 

Material parameter � Jm � 

[dimension] [kPa] [1] [°] 

value 26 1.044 37.2 
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