STABILITY OF FLOW IN PARALLEL CHANNELS-EFFECTS OF BUOYANCY 
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Abstract. The effect of flow asymmetry was observed experimentally in lateral parallel channels of continuous direct ohmic heater. While the flow is uniform at isothermal conditions, flowrate in parallel channels differs in case of heating. The effect can be explained by buoyancy and theoretical analysis predicts existence of two solutions, symmetric and asymmetric distribution of flowrates, which can be stable within a certain range of temperatures and flowrates. Experimental verification was based upon a) flow visualisation (injection of a coloured tracer and monitoring the tracer by Canon MV-100 camera), b) measurement of temperature profiles (11 thermometers Pt100), and on c) stimulus response experiments using KCl as a tracer for conductivity methods (2 Pt conductivity probes) and Tc99 as a radioisotope tracer (collimated scintillation detectors). Results confirm predicted influence of operational parameters and geometry (diameter of channels) on the stability of flow.

INTRODUCTION
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Parallel flows are typical for many important apparatuses of process industries, e.g. flows in shell&tube or plate heat exchangers, heaters, reactors. Sometimes flow irregularities, instabilities or just only non-uniform distribution of flow in parallel channels occur. These undesirable phenomena can be caused by natural convection if the apparatus operates at non-isothermal conditions, which is typical for heat exchangers or heaters.

Figure 1. Continuous ohmic heater (scheme and photograph showing asymmetry of flows). 1-lateral channels;2-central channel,3-electrodes.

The effect of flow asymmetry was observed experimentally in lateral parallel channels of continuous direct ohmic heater, with two planar electrodes (electrical current flows directly through the heated liquid), see Fig.1. Liquid enters the top of heater and flows downwards through two rectangular channels where liquid is preheated only by warm electrodes. At the bottom of heater the two parallel streams join and liquid flows upward in a nearly uniform electrical field between electrodes (distance 0.036 m, voltage 220 V, 50 Hz). In order to suppress the electrode fouling, a perforation of electrodes was suggested, assuming that the cold cross-flow could displace overheated substance moving slowly along the electrode surface.

While the flow in parallel channels is uniform at isothermal conditions, a nonuniform distribution of flowrate and different temperature profiles are developed in parallel channels at heating and also the cross flow is changed. These phenomena can be explained by the effect of buoyancy and can be detected by measuring of RTD.

STABILITY OF PARALLEL FLOWS-CONSTANT WALL TEMPERATURE

Parallel laminar flows in lateral channels of continuous ohmic heater lose symmetry in case of heating: one stream is delayed and even stopped or reversed if the temperature increase is too high. A similar situation occurs in a simpler and probably more frequent case when two vertical parallel streams are separated by wall having a constant temperature Te, see Fig.2. It is assumed that 

· the liquid having temperature T0 enters two identical rectangular channels (cross section H x B, length L) where is heated from the wall; it does not matter whether all four or just only one side of channel are hold at temperature Te – the only difference is heat transfer surface. Heat transfer coefficient ( [W.m-2.K-1] is constant.

· Flow in parallel channels is laminar and internal recirculation due to nonuniform transversal temperature profile is negligible.

· Heat exchanger is perfectly insulated.

[image: image57.wmf]
Figure 2. Parallel flows heated by wall at constant temperature Te.


Distribution of flow-rate will be expressed in terms of relative flowrate in the left channel (
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The value (=0.5 corresponds to the symmetric distribution, while (=0, (=1 corresponds to the completely stopped flow in the left or in the right channel.

The following analysis is based upon the fact that the pressure difference p(L)-p(0) must be the same in the left and in the right channel at a steady state. We shall consider only two contributions to the pressure difference: the first represents viscous forces (written for flowrate Ql =(Q [m3.s-1] in the left channel) 
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where B, H [m] are dimensions of rectangular cross-section (depth and width of channel respectively), and the coefficient f equals 1 for fully developed laminar flow between infinite plates or
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(3)

for laminar flow in a rectangular channel B x H. The first term in Eq.(3) represents correction to the finite ratio of B/H (rectangular channel) and the second term is a correction for dynamic pressure ((p ( 0.5 (u2).


While the component of pressure pf(x) accordant with friction forces decreases in the direction of flow, the hydrostatic pressure pb(x) increases depending upon the axial temperature profile. For a constant value of the heat transfer coefficient ( [W.m-2.K-1] and constant heat capacity cp [J.kg-1.K-1] the axial temperature profiles are given by 
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where
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Assuming linear temperature dependence of density (coefficient proportionality ( [K-1]) and the exponential temperature profiles Eq.(4), the contribution of hydrostatic pressure can be expressed as
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Summing pressure differences corresponding to the friction forces (2) and buoayant forces (6) we can express equilibrium of forces in the left (lower index l) and right (index r) channel by equation
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Eq.(7) can be rearranged to a dimensionless form by introducing Grashoff and Reynolds numbers
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giving

[image: image14.wmf]2

1

1

1

1

1

1

1

y

y

y

y

y

-

=

-

-

-

-

-

-

-

ZW

e

e

W

W

[

(

)

(

)(

)]

(

)






(9)

The balance of forces Eq.(9) is satisfied by the symmetric solution (=0.5 for any combination of parameters Z, and W, however an asymmetric solution can also exist for sufficiently high values of Z, see Fig.3

[image: image58.bmp]Figure 3. Z(W) for asymmetric distributions of flow-rate (=0,0.001,0.005,0.01,  Eq.(9) .
The curve corresponding to (=1 or 0 (all liquid flows in the one channel only) is described by equation following immediately from Eq.(9)
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For the values of Z bellow this curve (for example for any Z<1) the symmetric solution must be stable because it the only solution satisfying the balance Eq.(7). Nevertheless, the symmetric solution could be possibly stable even for higher value of Z. To analyse this, let us assume a small disturbance of flowrate Ql+(Q, Qr-(Q, i.e. slightly increased flowrate in the left channel and properly decreased flowrate in the right channel. Then the pressure difference in the left channel will be changed by increment (see Eq.(7)),
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(11a)

and similarly in the right channel 
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In the case that (pl>(pr the pressure at the inlet to the left channel will be slightly higher than the pressure in the right channel and this difference induces transversal flow towards the right channel. This redistribution of flow acts against the disturbance (Q, which means that the flowrates Ql,Qr will be stable. The stability condition (pl-(pr>0 for (Q>0 can be rewritten using Eqs. (11a) and (11b) into dimensionless form
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(12)

This general inequality (12) can be applied to the symmetric solution when Wr=Wl=W/2, giving:
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This inequality, together with Eq.(10) is presented in Fig.4

Figure 4. Regions of unconditionally and conditionally stable symmetric solution
This Figure demonstrates that there exists a rather wide range of Z where a symmetric flow distribution could, but need not exist 
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(14)

 For W>5 this region can be characterised by simple inequality
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A similar stability analysis can be performed also for the case of asymmetric solution, e.g. for the case of very small (<<0.1. In this case the Eq.(9), balance of forces, reduces to


[image: image22.wmf]1

1

1

1

2

1

1

=

-

-

-

-

-

ZW

e

W

[

]

(

)

y

y

y





(16)

and the inequality (12) to
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Combining (16) and (17) 
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(18)

we arrive to the conclusion that the asymmetric solution cannot be stable for any positive (. This conclusion casts a new light to the physical meaning of the asymmetric solution: It represents a magnitude of the flow-rate disturbance which is necessary to make the symmetric solution unstable in the range of Z given by inequalities (14). 

STABILITY OF PARALLEL FLOWS-VOLUMETRIC HEAT SOURCE IN CENTRAL CHANNEL


A similar procedure can be applied for the case of ohmic heater shown in Fig.1, not considering cross flow through perforated wall. The only principal difference is in temperature profiles in parallel channels, because the wall temperature Te is no longer a constant. The axial temperature profiles follow from the following assumptions:

· Temperature depends only on axial coordinate x (or dimensionless coordinate (=x/L).

· Heat transfer coefficient ( [W.m2.K-1] comprises thermal resistances of liquid layers in the lateral and central channels and also thermal resistance of wall (of electrode separating lateral and central channel). This coefficient is the same in the both lateral channels. 

· The heater is perfectly insulated.

· Two streams flowing out of the lateral channels are ideally mixed at the bottom of heater and flow upwards between electrodes, see Fig.5. There is a uniform volumetric source of heat in the central channel characterised by intensity of heat generation G [W/m3]. 
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Fig. 5 Parallel flows in a heater with volumetric heat source


Temperature profiles in lateral channels (cross-section H x B) are described by equations
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while the temperature in the central channel (cross-section Hc x B) is governed by equation
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This system of equations can be solved analytically giving temperature profiles in lateral channels in the form
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where
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and the meaning of Wl, Wr is the same as previously, see Eq.(5).


These temperature profiles enable to express pressure differences corresponding to buoyancy (using similar procedure and assumptions as in Eq.(6))


[image: image34.wmf]p

p

L

gL

T

F

W

M

M

W

M

e

M

W

b

b

G

r

r

M

r

(

)

(

)

{

[(

(

))(

(

))

]}

0

1

1

1

1

1

2

1

6

0

1

-

=

-

-

-

+

-

-

-

+

+

-

-

-

r

b

(25)

Friction forces are the same as previously so that we can immediately write balance of forces in the left and right lateral channel (we need not take into account the central channel)
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This equation can be rewritten into dimensionless form
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where M is a function of W and (
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and the dimensionless number ZG
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reminds Z/W in Eq.(15), the only difference is that the temperature TG substitutes the temperature difference Te-T0. For practical calculations it is possible to use specific power G [W.m-3], total power P [W] or corresponding adiabatic temperature increase Tmax-T0 in the definition of ZG
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The Eq.(27) and the region of W, TG where the asymmetric solution can exist is represented in graphical form in Fig.6
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Figure 6. ZG(W) for asymmetric distributions of flow-rate (=0,0.02,0.05,0.1,0.2,0.49  Eq.(27) 
The solutions of Eq.(27) for (=0, and (=0.5 give limits of conditional stability of symmetric solution
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This statement, inequality (31), can be proved rigorously repeating the stability analysis applied for derivation Eq.(12). Thus we arrive to the general stability constraint


[image: image41.wmf]2

1

2

1

1

1

1

1

2

1

1

2

2

2

1

2

1

1

1

1

2

2

1

2

2

2

2

1

2

1

>

+

-

+

-

-

-

-

-

+

-

+

+

-

-

+

+

-

-

-

-

-

-

Z

m

M

e

M

M

e

M

M

M

e

G

M

M

M

y

y

y

y

y

y

y

(

)

{

(

)[

(

)]

(

)

(

)

[

(

)

(

)

(

)[

(

)]

]}

          

       


(32)

which reduces to (31) for (=0.5, i.e. for the case of stability of the symmetric flow.

STABILITY OF PARALLEL FLOWS - OTHER CONFIGURATIONS OF FLOW


There are several other possibilities of the parallel flows arrangement – volumetric heating in parallel channels (with and without heat transfer between parallel streams), co-current flow in the central channel and so on. We confine oneself to the summary of the two previous cases and the case of volumetric heating in parallel channels in the following table

Case
Criterion
Stability limits of symmetric flow
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NATURAL CONVECTION IN LATERAL CHANNELS


The analysis of parallel flows was based on assumption, that the effect of internal recirculation in lateral channels can be neglected, however, this restriction is to be quantified. The following estimates are rather speculative and crude, because they are based upon assumption of only one dimensional velocity profile, characterising internal recirculation in a slim vertical channel with one side held at a constant temperature Te and other sides insulated, see Fig.7: 
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Fig.7
Transversal temperature and velocity profiles 

Assuming linear temperature profile near the heat transfer surface we can solve the Navier Stokes equation
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giving the cubic velocity profile, shown in Fig.7. Pressure gradient dp/dx in Eq.(35) is adjusted so that the net flow-rate is zero, because the velocity profile should characterise only internal recirculation flow in the lateral channel. Now we want to compare this velocity profile with the velocity profile corresponding to forced axial flow Q/2. As a measure of comparison the velocity gradients at wall can be used. For the gradient of recirculating flow follows from the cubic velocity profile 
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(36)

assuming sufficiently thin thermal boundary layer
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The gradient (36) can be related to the velocity gradient of fully developed axial flow (parabolic velocity profile in laminar flow between infinite plates)
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(38)

and this is the criterion (R<<1) ensuring validity of simplified analysis of parallel flows. Let us assume that the stability criterion (15) predicts the upper bound of stability of parallel flows for the case with constant wall temperature,
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Substituting Eq.(39) to the inequality (38) follows
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and this inequality can be satisfied only for thermally developing flows when Nu is sufficiently large. 

RTD EXPERIMENTS AND RESULTS


Experiments were performed with different thickness of lateral channels (Hl=Hr= 18, 11 and 7.8 mm). Temperature at lateral channels was recorded by two Pt100 probes and optical fibre probes Nortech TP-21-M02 which prove to be a sensitive indicator of flow instabilities, however results have not completely evaluated yet. Visualisation using KMnO4 as a colour tracer indicates that the asymmetric flow could exist within a certain range of operational parameters, see the following table:

H [mm]
Q [ml/s]
(Texper. [K]
Te-T0 Eq.(11)
Flow pattern 
Evaluation

8
76
20
58
symmetric, stable
agree

8
65
22
42
asymmetric
acceptable

8
39
31
15.3
unstable
agree

18
83
14
14
symmetric, stable
acceptable

18
72
17
10.3
asymmetric ?
Eq.(11) unstable

18
68
18
9.2
unstable
agree

Experiments were carried out with water, with well known thermophysical properties. Based upon data Kast (1974) we have evaluated temperature dependence of (
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and temperature dependence of Gr/Re as
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see Figs.8,9
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Fig.8 Coefficient of volumetric expansion







Fig.9 Temperature dependence Gr

Residence time distribution was identified by using KCl and Tc-99 as a tracer [4]. Results obtained with these tracers are very similar, however the radioisotope is a better tracer at heating because solution of Tc99 has no effect upon direct ohmic heating (this is not true for solution of KCl which increases power and temperature when passing between electrodes). 


Selected results of RTD measured in the system with narrow and wide lateral channels with and without heating and simulation by presented model for different width of perforation h are shown in Figs. 4a, b, c and d.


CONCLUSION

Buoyancy has undesirable effects in heaters with downwards oriented parallel flows (non-uniform distribution and instability of flow), which can be suppressed by

· Decreasing width of channels (this is the most efficient way) 

· Increasing viscosity 

· Cross-flow (perforation of walls) has also positive effect improving stability.

This research has been subsidized by the Research Project of Ministry of Education of the Czech Republic J04/98:21220008
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