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ABSTRACT
The paper presents a comparison of exact and

approximate methods for calculating the frictional
pressure drop with flow of purely viscous non-
Newtonian fluids in passages with non-circular
cross-sectional geometry. While comparing existing
approximate methods for calculating the fully
developed friction factor for power-law fluids,
special emphasis is given to the widely used
methods of Kozicki, Chou and Tiu (1966), Miller
(1972) and the recent procedure by Delplace and
Leuliet (1995).

For some cross-sections consisting of doubly
connected regions, values of geometrical
parameters necessary to apply the methods cited
above, are reported.

For narrow passages, similar to those,
encountered e.g. in CHE, analytical approximations
of fully developed friction factors, and Nusselt
number are reported.

INTRODUCTION

For stabilised laminar flow of Newtonian
fluids, the exact solution for the frictional pressure
drop and heat transfer coefficients with a non-
circular geometry of the cross-section consists
essentially in solving the momentum and energy
equations in the corresponding  cross-sectional
geometry. Most complete source of results in this
respect is available e.g. in Shah and London (1978).

For laminar flow of purely viscous fluids, the
momentum equation becomes non-linear and,
therefore, integration is generally possible using
numerical procedure only. Consequently, for most
engineering purposes, rapid and reliable
approximate procedures become important.

For laminar flow of a Newtonian fluid in a
circular tube the frictional pressure drop is related
to the Reynolds number with the familiar hydraulic
characteristic relation

f =
16
Re

, (1)

where the Fanning friction factor and Reynolds
number are given as
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As far as purely viscous non-Newtonian fluids
are concerned, the power-law rheological model

nKγτ &= (4)

is very useful for most engineering applications.
Three most frequently used approximate methods
for calculating the frictional pressure drop for flow
of power-law fluids in non-circular ducts are listed
below.

APPROXIMATE METHODS FOR THE
FRICTIONAL PRESSURE DROP

Kozicki et al (1966) proposed a method for
predicting the hydraulic characteristic
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16
Re* (5)

where the generalised Reynolds number Re* was
defined as
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In Eq.(6), a and b are geometrical parameters
related to the corresponding solution of the laminar
Newtonian flow problem in the same cross-
sectional geometry. Values of a and b for some
cross-sectional geometries are given in the original
paper cited above. Furthermore, it can be shown
that,
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and

b
a

u
u

= −2 1max , (8)

where the dimensionless group on the r.h.s. of
Eq.(7) is sometimes denoted as the Poiseuille
number Po. For flow in a circular tube, for which
a=1/4, b=3/4, the Kozicki Re* in Eq.(6) reduces to
the Re' introduced by Metzner and Reed (1955).
Although the Re* concept was originally developed
by Kozicki at al. to correlate data in the laminar
flow region, in subsequent papers, see e.g. Irvine
(1988), it has been proved that it is also applicable
in the turbulent flow region. A comparison of the
Kozicki at al. approximation with experimental data
obtained in four non-circular geometries were
published by Šesták and Žitný (1998).

Miller (1972) published an extremely simple
method for calculating the hydraulic characteristic
for power-law fluids in non-circular ducts. This
author assumes that it is reasonable to write for any
geometry,
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where τ w  is the average value of the wall shear
stress along the periphery of the cross section,
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and γ&  denotes the apparent mean wall shear rate
corrected with the value of the Poiseuille number
corresponding to the geometry of the particular
duct under consideration,
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Delplace and Leuliet (1995), after a thorough
analysis of Kozicki et al (1966) method, postulated
that Kozicki's a and b parameters may be related by
the expression

b
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where 
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Thereafter, these authors defined a new, generalised
Reynolds number,
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Making use of this definition, their friction factors
were expected to follow from the relation,

1
2

f gRe = ξ . (15)

Delplace et al. (1977) compared friction factor
values in Eq.(15) with experimental data obtained
with flow of power-law fluids in four conduits with
different non-circular cross sections. Agreement
between theory and experiment was found to be
very good. However, it is worth to note that, all
conduits used in their experiments had cross-
sectional geometries formed by singly connected
regions only.

A COMPARISON OF THE APPROXIMATE
METHODS

In order to compare the results of all three
approximate methods outlined above, the following
Reynolds number introduced by Bukovský (1981)
has been chosen as a reference,
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Making use of this dimensionless group, all three
friction factor - Reynolds number correlations are
transformed into the following expressions,

Kozicki et al. (1966),

f a bn
nB

nRe [ ]=
+16 , (17)

Miller (1972)
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and Delplace and Leuliet (1995)
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Cross section formed by a simply connected
region

As an example of a cross-section formed by a
singly connected region, flow of power-law fluids
in ducts of symmetrical L-shaped cross-sections
was investigated. Results of this investigation are
shown in Fig.1, where values of fReB are plotted
against the aspect ratio B/A. Results of a numerical
solution of the momentum equation for n=1 and
n=0.5 were taken from Bukovský (1981).
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Fig.1 Comparison of approximate methods for
L-shaped cross-section 

All values which were needed to calculate fReB
from Eqs.(17), (18) and (19) are listed in Table 1.

Table 1.Values for Newtonian and power-law flow
in ducts of L-shaped cross sections. Bukovský
(1981).

fReB Kozicki et al. parameters

B/A n=1 n=0.5 a b

0.1 22.10 - 0.3713 1.0101

0.2 20.38 20.05 0.3299 0.9434

0.3 18.75 18.84 0.2941 0.8765

0.4 17.14 17.81 0.2628 0.8110

0.5 15.81 17.00 0.2359 0.7516

0.6 14.72 16.30 0.2168 0.7024

0.7 14.02 15.90 0.2067 0.6696

0.8 13.79 15.80 0.2049 0.6576

0.9 13.99 15.99 0.2086 0.6653

1 14.26 16.20 0.2130 0.6800

From Fig.1 one can see that Kozicki's method
matches the numerical solution for n=0.5 very

closely for values of B/A up to about 0.2. For
higher values of the B/A aspect ratio, all the three
methods yield essentially the same results with a
maximum relative deviation from the numerical
solution about +4% for B/A=1 (square). Thus, for
this particular cross-sectional geometry, all three
approximate methods yield fairly good engineering
estimates.

Cross section formed by a doubly connected
region

Ratkowsky and Epstein (1968) investigated
flow of Newtonian fluids in regular polygonal
shaped ducts with circular centered cores. In this
work, the particular case of flow in a square duct
with a centered cylindrical core was studied.
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Fig.2 Friction factor for flow in a square duct
with a centered cylindrical core - Newtonian fluid.

In Fig.2, analytically obtained values of
Ratkowsky and Epstein for flow of Newtonian
fluids are compared with results of a numerical
analysis. The agreement was found to be very good.

Results of a numerical solution for n=0.5 are
compared with the predictions of approximate
methods in Fig.3

Fig.3 Comparison of approximate methods for a
square duct with a cylindrical core.

All values necessary to calculate fReB values are
listed in Table 2. 

Table 2. Value of Newtonian and power-law flow
in a gap between a square duct and cylindrical
centered core. Bukovský (1981).

fReB Kozicki et al. parameters

B/A n=1 n=0.5 a b

0 14.23 15.58 0.2121 0.6766

 0.02 18.05 0.3313 0.8056

 0.05 19.06 27.77 0.3574 0.8413

 0.1 19.90 27.19 0.3780 0.8701

 0.2 20.93 0.3987 0.9107

 0.3 21.59 25.63 0.4050 0.9441

 0.4 21.85 25.08 0.3996 0.9743

0.5 22.00 0.3817 0.9970

 0.6 21.80 24.53 0.3524 1.0163

0.7 20.96 0.3091 1.0115

0.8 19.15 22.84 0.2511 0.9482
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0.9 14.85 18.81 0.1763 0.7587

0.95 11.70 15.40 0.1392 0.5846

 1 7.06 10.89 0.0870 0.3599

From Fig.3 it is clear that all three approximate
procedures yield values which are far below the
predictions of the numerical analysis, Delplace's
method yielding relatively best results. According
to our belief, use of any of the previously
mentioned approximate methods for calculation of
the friction factor - Reynolds number relation for
flow of power law fluids in ducts with cross
sections formed by multiply connected regions
remains therefore questionable.

APPROXIMATION FOR NARROW
PASSAGES

For narrow passages, similar to those,
encountered e.g. in compact heat exchangers, see
Fig.4, Maclaine-Cross (1969) published an
interesting method for rapid estimates of the
frictional pressure drop, entrance region pressure
drop and heat transfer coefficient. The Maclaine-
Cross (1969) method for estimating the value of the
heat transfer ceofficient is valid for the constant
heat flux boundary condition. A similar method for
the isothermal boundary condition was published
by James (1970). Šesták and Žitný (1998)
published recently a generalisation of these results
for power-law fluids. 

Fig.4 Cross-section of a narrow duct

The friction factor may be calculated from the
expression 
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where the relation for parallel plates,
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For a constant heat flux w at the boundaries of
the duct, the fully developed heat transfer coefficient
α is

α =
−
q

T Tw b

(23)

The Nusselt number is
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Nusselt number in narrow passages may then be
obtained from the approximate expression,
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where, for constant and equal heat fluxes at each wall,

(Nu ) = 12(n +1 ) (3n +1)(4n +1)(5n + 2)
96 n + 275 n + 285 n +131n + 27n + 2

.p.p

2

5 4 3 2

(26)

For flow of a Newtonian fluid, n=1, Eq.(26) yields,

( ) /.Nu p p = 140 17 , (27)

as expected, see Shah and London(1978).

CONCLUSIONS

While comparing existing approximate
methods for calculating the fully developed friction
factor for flow of power - law fluids in non-circular
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ducts  with values obtained by numerical
integration of the corresponding momentum
equation, the following results are reported:  in  the
cross- sectional geometry of the symmetric L-
profile,as a representative of simply connected
regions, all three approximate methods yield
essentially the same results, predicting values about
4% higher than the numerical solution for a power-
law fluid with the flow behaviour index value of n=
0.5. Since Kozicki´s method employs two
independent  parameters, it seems that the use of
either Delplace´s, or Miller´s method, both
employing  a single parameter only, yields
engineering estimates of essentially the same
accuracy and less effort. As far as cross sections
formed by multiply connected regions are
concerned, for the particular case of flow of power
law fluids, n=0.5, in a square duct with a centered
cylindrical core, all three approximate methods
yield values of questionable reliability and more
accurate procedures must be developed.For
calculating the heat transfer coefficient with flow of
power-law fluids in narrow passages with the
constant heat flux boundary condition, a
generalization of the Maclaine-Cross(1969)
approximate procedure, given in Eq.(25), may be
used.

NOMENCLATURE

Latin symbols

a  Kozicki geometric parameter eqs. (7), and  (8),
dimensionless
A  dimension of the duct cross section, Fig.1, m
b  Kozicki geometric parameter eqs. (7),and  (8), -
B  dimension of the duct cross section, Fig.1, m
D  tube or cylinder diameter, m
De=4S/O equivalent diameter, m
f  Fanning friction factor, Eq.(2), dimensionless
h  distance between parallel plates, m
H  duct dimension, m
K  power-law model consistency, Pa.sn

L  duct length in the flow direction, m
n  flow behaviour index, dimensionless
O  wetted perimeter, m
∆p pressure difference, Pa
S  cross sectional area, m2

q  wall heat flux, W.m-2

T  temperature, K
Tb=∫uzT dA / ∫uz dA  fluid bulk temperature, K
Tw  wall temperature, K
uz  velocity component in the z-direction, m.s-1

umax  maximum velocity in the cross-section, m.s-1

u   volumetric mean velocity, m.s-1

x,y,z  cartesian coordinates, m

x1  width of the narrow duct, m

Greek symbols

α  heat transfer coefficient, W.m-2.K-1

γ&   shear rate, s-1

γ&   corrected mean value of the shear rate, s-1

λ  fluid thermal conductivity, W.m-1.K-1

µ  dynamic viscosity, Pa.s
ξ  defined in Eq.(15), -
ρ  fluid density, kg.m-3

τ  shear stress component, Pa
τ w wall shear stress mean value,  Pa

Dimensionless groups

Nu Nusselt number, defined in Eq. (24)
Po Poiseuille number, defined in Eq.(7)
Re Reynolds number for Newtonian fluids, Eq.(3)
Re* Kozicki et al Reynolds number, Eq.(6)
Re' Metzner and Reed's Reynolds number, defined
in Eq.(6) for a=1/4; b=3/4 
Reg Delplace and Leuliet's group defined in Eq.(14)
ReB Reynolds number for power-law fluids, Eq.(16)
Re** Reynolds number for the parallel plate
approximation, Eq. (22)
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