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ABSTRACT

The paper presents values of the a and b
geometrical parameters, necessary to apply the well known
Kozicki, Chou and Tiu (1966) [1] approximate procedure
for calculating the relation between the flowrate and
frictional pressure drop in laminar, axial flow of power-law
fluids in ducts with a cross section formed by an eccentric
annulus. Values of the parameters were calculated from the
simplest exact expressions for the velocity profile and
flowrate given by Piercy et al (1933) [8]. Theoretical
predictions of the approximate method were compared with
experimental data obtained in flow of pseudoplastic, n=0.5-
0.6, aqueous solutions of polyacrylamide. Since Šesták et
al (2000) [7] have shown that geometric parameters used in
most of the later published approximate methods are
related to the a and b values by simple expressions, the
present data may also be utilized while applying these
methods for the cross-section of an eccentric annulus as
well.
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INTRODUCTION

For rapid engineering estimates of the relation
between the frictional pressure drop and flowrate with axial
flow of purely viscous non-Newtonian fluids in straight,
constant cross section noncircular ducts, several
approximate procedures had been developed in the past, the
most frequently used being those, published by Kozicki et
al [1] , Miller [2], Delplace and Leuliet [3] and Liu and
Masliyah [4]. Practical use of any of the above methods in
a particular cross-sectional geometry requires the
knowledge of one or more geometrical parameters,
obtainable mostly from the corresponding solution for flow
of a Newtonian fluid. Kozicki et al, [1] developed their
generalized Reynolds number Re* as
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In Eq.(1), u and ρ denote the volumetric mean velocity and
fluid density, De stands for the equivalent diameter De´=
4S/O, where S and O denote the cross sectional area and
wetted perimeter and K and n denote the consistency and
flow behavior index in the constitutive equation of the
power/law fluid,

τ γ= k n& ,        (2)
relating the shear stress τ with the shear rate &γ . Using the
Fanning friction factor f,
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where ∆p is the pressure drop measured on a tube length L;
the relation

f Re* = 16 (4)
serves for the determination of the pressure drop – flowrate
relation regardless of the geometry of the duct cross
section. The influence of the cross-sectional geometry is
reflected in the values of the geometrical parameters a and
b. Šesták, [5] demonstrated that for the geometrical
parameters the following relations hold:
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where the dimensionless group on the r.h.s. of Eq.(5) is
usually called as the Poiseuille group Po. For flow in a
circular tube, for which a=1/4, b=3/4 and n=1; k=µ and Re*

reduces to the conventional Re /= uDeρ µ . Although the
Re* concept was originally developed by Kozicky et al to
predict the hydraulic characteristic in the laminar flow
region, in subsequent papers, see e.g. Irvine [6], it has been
proved that it is applicable in the turbulent region as well. 

VALUES OF a AND b FOR THE ECCENTRIC
ANNULUS

The geometry of the eccentric annulus is
completely defined by the radii R1, R2 and dimensional
eccentricity e, see Figure 1. 

Figure.1:  Geometry of the eccentric annulus.

The values of the hydraulic characteristic fRe(κ,e*) and of
the velocity ratio u u emax

*/ ( , )κ were determined using the
exact expression for the velocity distribution and flowrate
in bipolar coordinates published by Pierey et al [8] and
checked with the most reliable numerical data of Tiedt [9]
and Filip [11]. Values fRe(κ,e*=1) were calculated from
Stevenson's [10] exact formula as adapted by Tiedt [9],
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e*=e/(R2-R1)

κ=R1/R2



Values of the u u emax
*/ ( , )κ ratio were calculated

by Filip [11]. Partial results in terms of numerical values of
fRe, u umax / , a and b are given in Table 1, a graphical
representation is shown in Figure 2.

Table 1. Numerical values of fRe, u umax / , a and b as a
function of κ=R1/R2 and dimensionless eccentricity e*

f.Re
e*=0.1 0.3 0.5 0.7 0.9 0.999

κ=0.1 22.141 20.680 18.423 16.129 14.280 13.606
0.3 23.168 21.086 17.975 14.887 12.325 11.286
0.5 23.481 21.139 17.671 14.256 11.422 10.265
0.7 23.601 21.146 17.518 13.955 11.005 9.800
0.9 23.641 21.145 17.460 13.844 10.851 9.629

0.999 23.645 21.145 17.455 13.833 10.835 9.612
u umax /

e*=0.1 0.3 0.5 0.7 0.9 0.999
κ=0.1 1.768 2.045 2.149 2.134 2.066 2.030

0.3 1.774 2.136 2.283 2.276 2.194 2.144
0.5 1.782 2.190 2.373 2.384 2.307 2.255
0.7 1.786 2.220 2.428 2.459 2.394 2.345
0.9 1.788 2.232 2.452 2.495 2.439 2.395

0.999 1.788 2.234 2.455 2.499 2.445 2.401
a

e*=0.1 0.3 0.5 0.7 0.9 0.999
κ=0.1 0.391 0.316 0.268 0.236 0.216 0.209

0.3 0.408 0.309 0.246 0.204 0.176 0.165
0.5 0.412 0.302 0.233 0.187 0.155 0.142
0.7 0.413 0.298 0.225 0.177 0.144 0.131
0.9 0.413 0.296 0.223 0.173 0.139 0.126

0.999 0.413 0.296 0.222 0.173 0.139 0.125
b

e*=0.1 0.3 0.5 0.7 0.9 0.999
κ=0.1 0.992 0.976 0.884 0.772 0.677 0.641

0.3 1.040 1.009 0.877 0.726 0.595 0.541
0.5 1.056 1.020 0.872 0.704 0.559 0.499
0.7 1.062 1.024 0.869 0.695 0.544 0.482
0.9 1.064 1.026 0.869 0.692 0.539 0.476

0.999 1.065 1.026 0.869 0.692 0.539 0.476

EXPERIMENTAL

Experiments were made on an apparatus with
κ=0.538 permitting continuous change of the eccentricity
e*. As a test fluid, aqueous solutions of polyacrylamide,
n=0.5÷0.6, were used. Experimental data were obtained
making test runs for eight values of the dimensionless
eccentricity in the range 0.02 < Re* <10, 0.0242 ≤ e* ≤ 1.
More details about experimental apparatus and about
results may be found in Ondrušova's thesis, [12]. On
comparing experimental data with Kozicki's et al
prediction, good agreement was found, see Figure 3.
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Figure 3: Hydraulic characteristic λ=4f=64/Re* and
experimental data for polyacrylamide (n=0.5÷0.6), κ=0.538.
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Figure 2: Graphical representation of fRe, u umax / , a and b
as a function of κ=R1/R2 and dimensionless eccentricity e*



CONCLUSION

Reliable numerical values of the Kozicki et al [1]
geometrical parameters a and b enabling approximate
prediction of the frictional pressure drop – flowrate relation
with flow of power-law fluids in straight ducts are reported
for the cross-sectional geometry of the eccentric annulus.
Experimental data for flow of power-law polyacrylamide
obtained in [12], together with results published in [7]
seem to justify the conclusion that, predictions error of the
Kozicki et al approximate procedure for eccentric annuli
does not exceed 10% for flow behavior index n>0.5. Since
it has been proved in [7] that later developed approximate
methods [2,3,4] are closely related to [1], the range of
applicability of the present numerical values of a and b is
extended. 
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