Matlab for Simulations
 Stanislav Vrána

Systems of differential equations Transfer function

Conversion of differential equation system

First step is separation of the highest derivations in all equations.

$$
\begin{gathered}
\dddot{y}+\begin{array}{c}
3 \ddot{y}+2 \dot{y}+y+\dot{z}=u \\
\ddot{z}+2 \dot{z}+z+y=v
\end{array} \\
\dddot{y}=u-3 \ddot{y}-2 \dot{y}-y-\dot{z} \\
\ddot{z}=v-2 \dot{z}-z-y
\end{gathered}
$$

Conversion of differential equation system

Then it is suitable to prepare all variables into scheme.

$$
\begin{gathered}
\ddot{y}=u-3 \dot{y}-2 \dot{y}-y-\dot{z} \\
\ddot{z}=-v-2 \dot{z}-z-y
\end{gathered}
$$

The equation systém is suitable convert as a set of independent equations and connect them in final step. The possible mistakes can be found more easily.

Conversion of differential equation system

Then it is suitable to prepare all variable into scheme.

$$
\begin{gathered}
\ddot{y}=u-3 \dot{y}-2 \dot{y}-y-\dot{z} \\
z=v-2 \dot{z}-z-y
\end{gathered}
$$

Conversion of differential equation system

Then the variables can be multiplied by respective constants.

$$
\begin{gathered}
\ddot{y}=u-3 \dot{y}-2 \dot{y}-y-\dot{z} \\
\ddot{z}=v-2 \dot{z}-z-y
\end{gathered}
$$

Conversion of differential equation system

Then the right side of equation can be finished.

Conversion of differential equation system

... and the left sides can be connected to the right sides.

$$
\begin{gathered}
\ddot{y}=u-3 \ddot{y}-2 \dot{y}-v-\dot{z} \\
\ddot{z}=v-2 \dot{z}-z-y
\end{gathered}
$$

Conversion of differential equation system

\ldots and the left sides can be connected to the right sides.

$$
\begin{gathered}
\ddot{y}=u-3 \ddot{y}-2 \dot{y}-v-\dot{z} \\
\ddot{z}=v-2 \dot{z}-z-y
\end{gathered}
$$

Now, the simulink model contains two individual differential equations. It is suitable to verify tha the Simulink model is built correctly.

Conversion of differential equation system

Conversion of differential equation system

If there are no errors, the equations can be connected.

$$
\begin{gathered}
\ddot{y}=u-3 \ddot{y}-2 \dot{y}-y-\dot{z} \\
z=v-2 \dot{z}-z-y
\end{gathered}
$$

Převod diferenciální rovnice do Simulinkového modelu

Transfer function

The bockof Transfer function can be used for conversion of differential equatioin into the Simulink model. The Simulink model is then simplier, however more calculations are needed.

The block of Transfer function can be used only for linear equation conversion. If any non-linearity appears, the bloc of Transfer function cannot be used.

Transfer function

First step is separation of all derivatives of the variable with highest derivative.

$$
\begin{gathered}
\dddot{y}+3 \ddot{y}+2 \dot{y}+y+\dot{z}=u \\
\ddot{z}+2 \dot{z}+z+y=v \\
\ddot{y}+3 \ddot{y}+2 \dot{y}+y=u-\dot{z} \\
\ddot{z}+2 \dot{z}+z=v-y
\end{gathered}
$$

Transfer function

Then the Laplace transform is applied (typically, the simplest rules are necessary to use)

$$
\begin{gathered}
\Rightarrow s \\
\cdot \Rightarrow s^{2} \\
\cdots \\
\Rightarrow s^{3} \\
\int
\end{gathered}=s^{-1}
$$

Transfer function

Then the Laplace transform is applied

$$
\begin{gathered}
\dddot{y}+3 \ddot{y}+2 \dot{y}+y=u-\dot{z} \\
\ddot{z}+2 \dot{z}+z=v-y \\
s^{3} Y+3 s^{2} Y+2 s Y+Y=U-s Z \\
s^{2} Z+2 s Z+Z=V-Y
\end{gathered}
$$

Transfer function

Then the variables at the left side should be separated.

$$
\begin{gathered}
s^{3} Y+3 s^{2} Y+2 s Y+Y=U-s Z \\
s^{2} Z+2 s Z+Z=V-Y
\end{gathered}
$$

$$
\begin{gathered}
Y=\frac{U-s Z}{s^{3}+3 s^{2}+2 s+1} \\
Z=\frac{V-Y}{s^{2}+2 s+1}
\end{gathered}
$$

Blok přenosu

... and modified in a way that every fraction describes the relatioin between only two variables.

$$
\begin{gathered}
Y=\frac{U}{s^{3}+3 s^{2}+2 s+1}-\frac{s Z}{s^{3}+3 s^{2}+2 s+1} \\
Z=\frac{V}{s^{2}+2 s+1}-\frac{Y}{s^{2}+2 s+1}
\end{gathered}
$$

Transfer function block parameter setting

$$
\begin{gathered}
s^{3}+3 s^{2}+2 s+1 \Rightarrow[1321] \\
s^{2}+2 s+1 \Rightarrow[121] \\
1 \Rightarrow[1] \\
s \Rightarrow[10]
\end{gathered}
$$

Transfer Fcn
The numerator coefficient can be a vector or matrix expression. The denominator coefficient must be a vector. The output width equals the number of rows in the numerator coefficient. You should specify the coefficients in descending order of powers of s.

Parameters
Numerator coefficients:

Denominator coefficients:

Absolute tolerance:

auto

State Name: (e.g., 'position')
"

Transfer function

Similarly as in previous case,first, the invidiual equation Simulink modl is build

Transfer function

```
A Scope 1
白
```



```
Time offset: 0
```


Transfer function

... and after the verification, both equations are connected.

Transfer function

```
A Scope 1
- [回区
```



```
Time offset: 0
```


Differences between both models

It is clear, that both models provide equal results. However, if we subtract corresponding variables of both models, their difference is not zero, but a small number.

That is caused by:

- Solution is conducted numerically,
- The results are obtained by a different calculatib process.

The differences between both models

