Matlab for Simulations

Stanislav Vrána

Springs

Spring

Spring

Spring equation

The inner damping force can be very small, so it is possible to consider $\beta=0$. If necessary, the inner damping can be modelled as external damping. Then, if the spring is loaded by external force $F(t)$

$$
\begin{aligned}
\mathrm{k} x(t) & =F(t) \\
k(x(t) \mid x(t) & =F(t)
\end{aligned}
$$

© 2000 DOUG WRIGHT, UWA

Spring and mass

Spring - mass system

$$
m \ddot{x}(t)+\mathrm{k} x(t)=F(t)
$$

$$
\ddot{x}(t)=\frac{F(t)-\mathrm{k} x(t)}{m}
$$

m

Spring and mass

Spring and mass

Spring and mass

Spring and mass

Spring and mass

Till now, only the difference between the length of spring when unloaded and loaded by force is shown. But it is necessary to verify if current spring length does not exceed the limits.

Spring and mass

Spring and mass with damping

Spring - mass - damping system

$$
m \ddot{x}(t)+\mathrm{b} \dot{x}(t)+\mathrm{k} x(t)=F(t)
$$

$$
\ddot{x}(t)=\frac{F(t)-\mathrm{b} \dot{x}(t)-\mathrm{k} x(t)}{m}
$$

Spring and mass with damping

Conversion of differential equation system

First step is separation of the highest derivations in all equations.

$$
\begin{gathered}
\dddot{y}+\begin{array}{c}
3 \ddot{y}+2 \dot{y}+y+\dot{z}=u \\
\ddot{z}+2 \dot{z}+z+y=v
\end{array} \\
\dddot{y}=u-3 \ddot{y}-2 \dot{y}-y-\dot{z} \\
\ddot{z}=v-2 \dot{z}-z-y
\end{gathered}
$$

Conversion of differential equation system

Then it is suitable to prepare all variables into scheme.

$$
\begin{gathered}
\ddot{y}=u-3 \dot{y}-2 \dot{y}-y-\dot{z} \\
\ddot{z}=-v-2 \dot{z}-z-y
\end{gathered}
$$

The equation systém is suitable convert as a set of independent equations and connect them in final step. The possible mistakes can be found more easily.

Conversion of differential equation system

Then it is suitable to prepare all variable into scheme.

$$
\begin{gathered}
\ddot{y}=u-3 \dot{y}-2 \dot{y}-y-\dot{z} \\
z=v-2 \dot{z}-z-y
\end{gathered}
$$

