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CHAPTER 1

Anisotropic elasticity in curvilinear coordinates

1. Introduction

Elasticity is a branch of physics which studies the behaviour of materials that are deformed under
stress (or, say, external forces), but then return to their original shape when the stress is removed. The
amount of deformation is specified by strain.1

The strain is a measure that characterizes change of shape and dimensions (Fig. 1).2 There is a fable3

Figure 1. Change of shape

that features an oak as motionlessly standing under blasts of wind and a willow as vigorously swaying.
At the end of a storm the oak lies fallen on ground but the willow still stays upright.

There are two questions and one suggestion. The questions first: What is strong? When do we speak
about strength and when about elasticity? Then the suggestion: We are strongly used to connect defor-
mation with force. The search for a relationship of stress (force) and strain (deformation) is the scope
of a science called rheology and the model of elastic material is one of the most elementary models of
rheology. The concept of elasticity is built on the classical works of Petty and Hooke.4

If we accept the thought that

deformation = f(force)

than we must look at the forces (Figs. 2, 3). Let us assume that

F =
∫
A

ttt dA,

1http://en.wikipedia.org/wiki/Elasticity (physics), 2007-01-10.
2[Cau27b]
3The genre invented with Ezop (Aesop, Aίσωπoς) 6th century BC. Cf. http://www.mythfolklore.net/aesopica/.
4Sir William Petty (London, 1674), . . . a new Hypothesis of Springing or Elastique Motions, and Robert Hooke

(London, 1678/1660), De Potentiâ Restitutiva.
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Figure 2. Force cause deformation

where the traction, ttt was defined by A. L. Cauchy in 1823 as5

ttt = lim
A→0

F

A

Inasmuch as (see Fig. 3)
F 6= F1 ⇒ F = f(A),

A being the area of cross-section, and

F 6= P ⇒ F = g(nnn),

where nnn is a normal to the cross-section, we can define, for A→ 0, a stress, σ, via

F = tttA = σ(AAA), AAA = Annn.

Let us look at the properties of σ. We isolate an infinitesimal but long element from the body (Fig. 4)
and sum the acting forces (the forces on the smallest faces are neglected)6

FFF = σ(AAA) + σ(BBB) + σ(CCC),

where AAA = Annn,BBB,CCC are normals with lengths equal to the magnitudes of the respective areas. As

lim
x→0

area(x2)
volume(x3)

=∞

and
area

volume
∝ FFF

mass
= acceleration

holds true, the implication

FFF 6= 000⇒ acceleration→∞ (which is not true)

leads to
FFF = 000,

i.e.,
σ(AAA) + σ(BBB) + σ(CCC) = 0.

By definition,

(1) σ(kAAA) = kσ(AAA)

5See [Cau27a].
6[Wan05]
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semper esse æuales et in partes contrarias dirigi.

P

P13

F1

P12

P

F2

Figure 3. Internal force

and consequently
σ(−CCC) = −σ(CCC) = σ(AAA) + σ(BBB).

Using geometry, i.e.
AAA+BBB +CCC = 0,

the last relation takes the form

(2) σ(AAA+BBB) = σ(AAA) + σ(BBB).

The relations (1) and (2) mean that σ is a linear vector operator, that is a tensor,7 mapping a set of
normals onto a set of forces. Thus we can write

F a = taA = Aσabnb

7[Lov27]
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Figure 4. Internal force

and thus
ta = σabnb.

2. A brief account of the tensor calculus

As the stress is a tensor we must take a look at tensor calculus.8 Nothing is more natural than
to measure distances. What happens if a surface is distorted like at Fig. 5? For a metric, dso, in the
undeformed body (with Cartesian coordinate system) we can write

ds2
o =

(
dξ1
)2 +

(
dξ2
)2
,

i.e.,

ds2
o =

(
dξ1 dξ2

)( 1 0
0 1

)(
dξ1

dξ2

)
or, using Einstein summation convention,

ds2
o = δabdξadξb,

where δab is the well known Kronecker symbol.9

By analogy, in the case of deformed surface, we may write

ds2 = gabdξadξb,

meaning that we replace dso with the metric ds and Kronecker symbol δab with a metric tensor gab.
Now, we must determine the metric tensor via expressing the length ds on a surface embedded in a

three dimensional Euclidean space with a Cartesian coordinate system, xa (see Fig. 6)
Consider a surface determined by mapping10

θ : R2 3 ω → R3

and let us look at two points on the surface defined by

xxxo = θ(ξa)

and
xxx = θ(ξa + dξa).

From vector algebra it follows that

(3) drrr = ggg1dξ1 + ggg2dξ2,

drrr = xxx− xxxo,
drrr = θ(ξa + dξa)− θ(ξa).

8[SS78], [LR89].
9Leopold Kronecker (1823—1891)
10Cf. [CGM06], [CL03] and [Cia05].
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Plane surface with a cartesian c.s.

ω
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ξ2

dξ2
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θ
: ω
→
R
3

Distorted surface Material coordinates ξa
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ξ1
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ξ2 = 1

dξ2

dξ1

ds

Figure 5. Distortion of a surface

From vector analysis we have (for dξa → 0)

(4) drrr =
∂θ

∂ξ1
dξ1 +

∂θ

∂ξ2
dξ2,

ds2 = drrr · drrr =
(
∂θ

∂ξ1
dξ1

)2

+ 2
∂θ

∂ξ1

∂θ

∂ξ2
dξ1dξ2 +

(
∂θ

∂ξ2
dξ2

)2

and using Einstein summation convention

(5) ds2 =
∂θ

∂ξa
∂θ

∂ξb
dξadξb.

From above stated definition we may write

(6) ds2 = gabdξadξb.
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Cartesian coordinate system

xxxo

xxx ξ1

ξ1 = 1

ξ2

ξ2 = 1

ggg2dξ2

ggg1dξ1

drrr

Figure 6. A surface embedded in a three dimensional Euclidean space

Now, (3) and (4) imply

ggga =
∂θ

∂ξa

and (5) and (6) imply

gab =
∂θ

∂ξa
∂θ

∂ξb
.

As a conclusion we can state that metric tensor is symmetric,

gab = gba,

but the base vectors are not generally orthonormal, i.e.,

ggga · gggb = gab 6= δab.

Any vector can be represented as a linear combination of a set of vectors, eeea, selected in an appropriate
manner, i.e.

aaa = a1eee1 + a2eee2 = aaeeea.

Such a set is called a base and the vectors of the set base vectors.
In the case of a Cartesian coordinate system (Fig. 7) we are used to base vectors that are unitary and

perpendicular to each other,

(7) eeea · eeeb = δab.

In the case of a curvilinear coordinate system (or, generally, in the case of non-euclidean space, Fig. 8)
the base vectors are not, always, unitary and perpendicular11

ggga · gggb = gab 6= δab.

As we would like to hold on to some properties following the relation (7) we need to introduce a new
base, ggga, signified with superscript, such that

gggb · ggga = δab .

11[GZ54] and [Tab04]
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Figure 7. Euclidean space with a Cartesian coordinate system

ξ1

ξ2

ggg2

ggg1

ggg2

ggg1

Figure 8. A curvilinear coordinate system (in a non-euclidean space)

Now we may, for vector
aaa = aaggg

a = aaggga,

write, e.g., the scalar product

aaa · aaa = (aaggga) · (abgggb) = (aaggga) · (abgggb) = aaa
bggga · gggb = aaa

a

or vector addition
aaa+ bbb = aaggg

a + baggg
a = (aa + ba)ggga,

in a form we are used to. These relations, together with, for example, the tensor equation

TTT = aaa⊗ bbb ⇔ T abggga ⊗ gggb = (aaggga)⊗ (bbgggb) = aabbggga ⊗ gggb,

lead us to a thought to leave out the base vectors and write only the left-hand sides of the following
relations:

aaa
a = aaa · aaa, aa + ba ⇔ aaa+ bbb, aabb ⇔ aaa⊗ bbb.

In this way we have passed up the information about the coordinate system we are using. This means we
have abstracted the notation, and thus this very effective form of writing tensors is called the abstract
index notation.
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Let us define a contravariant metric tensor12 (in effect this tensor is not a metric tensor and thus
more rigorously it is called the inverse to metric tensor)

(8) gab = (gab)−1

and multiply both sides of the equation
aaggg

a = aaggga

with gggb, giving
aaggg

a · gggb = aaggga · gggb
and

ab = aaδ
a
b = aagab,

which is the rule of lowering of indices. Now, multiply both sides with gbd, and using the definition (8),
we get the rule of raising of indices

gbdab = ad.

Let us express the derivative of a vector

∂aaa

∂xa
=

∂

∂xa
(abgggb) = (∂aab)gggb + ab

∂gbgbgb
∂xa

,

introducing the notation

∂a =
∂

∂xa
.

Naturally, we would like the derivative to be a linear combination of base vectors, i.e., something like

∂aaa

∂xa
= ∇aabgggb.

It turns out that such a ∇a exists and it holds

∇aab = ∂aa
b + Γbaca

c

and is called the covariant derivative. The Christoffel symbols of the second kind are

Γdab = gdc
1
2

(gac,b + gcb,a − gab,c)

with the partial derivative

gab,c = ∂cgab =
∂gab
∂xc

.

The well known differential operators are expressed as

gradϕ = ∇aϕggga = ∂aϕggg
a,

divvvv = ∇vvv = ∇ava,

rotAAA = ∇×AAA = εabc∇aAb gggc

and
∇2ϕ = div gradϕ.

Let us very briefly mention the transformation rules for vectors (contravariant tensors)13

dxa =
∂xa

∂ξb
dξb

and covectors (covariant tensors)

∂φ

∂xa
=
∂ξb

∂xa
∂φ

∂ξb
,

where dxa,dξb stand for contravariant tensors and
∂φ

∂xa
,
∂φ

∂ξb
for covariant tensors.

12



Θ + uuu : Ω→ R
3

Cartesian reference domain

Ω

x1 =ξ1

x2 =ξ2
x3 =ξ3

dξ1 x1 =ξ1 =1

x2 =ξ2 =1

dsref

The body after deformation

ξ1

ξ2

dξ2

dξ1 ξ1 =1

ξ2 =1
ξ3

ds

Θ : Ω→ R
3

The body before deformation

ξ1 = o1

ξ1 =1

o2 = ξ2

ξ2 =1

dξ2

dξ1=do1

o3 =ξ3

dso

uuu
displacement

vector

10 ∈ 91

Figure 9. Deformed body and coordinate systems

3. Deformation tensor

Let us see (Fig. 9) how a body described with coordinates ranging in a fictitious rectangular domain,
Ω, behaves under imposed deformation. A point has before deformation the same coordinates, oa=ξa, in

12[SS78], [LR89]
13For more thorough discussion see, e.g., [LR89], [GZ54], [Ham55], [SS78], [Tab04], [Tot05], [Wal84], [Wan05],

[Was75].
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both the space coordinate system, o, the system frozen in space, and the material coordinate system, ξ,
the system frozen in a material, i.e., coordinate system that deforms with the deformed body.14

x1

x2
x3

dx1=dξ1

dsref

ds2
ref = δabdx

adxb

ds2
ref = δabdξ

adξb

Figure 10. Cartesian reference domain

ξ1

ξ2

dξ2

dξ1 ξ1 =1

ξ2 =1
ξ3

ds

ds2 =
ξ
gab dξadξb

o1

o2

do1=dξ1

o3

dso

ds2
o =

o
gab doadob

ds2
o =

o
gab dξadξb

uuu

The body is moved

and the shape and
dimensions are changed

Figure 11. Space coordinate system, o, and material coordinate system, ξ

14[GZ54], [Ant05], [Cia05].
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The deformation is a measure of a change of dimensions and shape.15 The dimensions and shape are
described by coordinate systems. Let us look once more at these, this time at Figs. 10 and 11 and the
square of the distance between two points. Before deformation it is

ds2
o =

o
gab doadob

and after deformation the distance squared is

ds2 =
ξ
gab dξadξb.

o
gab denotes a metric of the space coordinate system o and

ξ
gab is a metric of the material coordinate

system ξ. The metric
ξ
gab is a function of time; it changes during the process of loading and at the end it

is stabilized in the state of static equilibrium. At the beginning it is supposed that the space and material
coordinate systems coincide, i.e.

ξ
gab

∣∣∣∣
t=0

=
o
gab .

The coordinates oa at the undeformed state and ξa both at the deformed and undeformed state are both
from the same interval Ωr (oa ∈ Ωr, ξa ∈ Ωr). The element of the volume before deformation is

dΩo =
∣∣∣ogab∣∣∣ 1

2 dΩr

and after deformation

dΩ =
∣∣∣∣ξgab∣∣∣∣ 1

2

dΩr,

with
dΩr = d3ξ = d3o.

Now, the last expression for the square of deformed body distance can be written as

ds2 =
ξ
gab doadob.

The deformation is characterized by a change of the distance, that is by the change of the element
length. Let us express this as

ds2 − ds2
o = (

ξ
gab −

o
gab)doadob.

Now, the relation

ds2 − ds2
o = 2

o
Eab doadob

defines the Green-Lagrange-St. Venant strain,
o
Eab, and thus

o
Eab=

1
2

(
ξ
gab −

o
gab).

If o, and consequently also
o
ξ are Cartesian coordinate systems, i.e.

o
gab= δab, then we may write

oa = ξa+
o
ua and

ξ
gab=

∂oc

∂ξa
∂od

∂ξb
o
gcd= (δca + ∂a

o

uc)(δdb + ∂b

o

ud)δcd = δab + ∂a
o
ub +∂b

o
ua +∂a

o

uc ∂b
o
uc

and
o
Eab=

1
2

(
ξ
gab −δab) =

1
2

(∂a
o
ub +∂b

o
ua +∂a

o

uc ∂b
o
uc)

becomes the well known finite strain tensor in Lagrangian description. In this case (
o
gab= δab) the metric

ξ
gab is called Cauchy-Green strain.

Let us also mention the Almansi-Euler strain tensor
ξ

Eab=
∂ξc

∂oa
∂ξd

∂ob

o

Ecd .

15[Ant05], [GZ54], [Cia05]
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4. Small strain tensor

By linearizing the Green-Lagrange-St. Venant strain (expressed in Cartesian coordinates)
o
Eab=

1
2

(∂aub + ∂bua + ∂au
c∂buc),

i.e., by ignoring the quadratic term, ∂auc∂buc, we arrive at the small strain tensor16

εab=
1
2

(∂aub + ∂bua).

If we would like to return to the curvilinear coordinates then we must replace the partial derivative, ∂a,
with the covariant derivative, ∇a:17

εab=
1
2

(
ξ
gab −

o
gab)

∣∣∣∣
lin.

=
1
2

(∇aub +∇bua).

5. Stress tensor

One way as to introduce the stress tensor is to define it as a tensor conjugate to a strain tensor. To
this end let us express the following statements. For the elastic energy density in the reference state it
holds that

dw = %odu

and for the elastic energy density in the deformed state

dw̃ = %du

holds, where u is the specific internal energy. The specific internal energy may be regarded either as a

function of the Green-Lagrange-St Venant strain,
o
Eab, or as a function of the Euler-Almansi strain,

ξ

Eab.
Then

(9) du =
dw
%o

=
∂w

%o∂
o
Eab

d
o
Eab

and also

(10) du =
dw̃
%

=
∂w̃

%∂
ξ

Eab

d
ξ

Eab .

As

d
ξ

Eab=
∂oc

∂ξa
∂od

∂ξb
d

o
Ecd

holds we have, from the equality (9) to (10),

(11)
∂w̃

%∂
ξ

Eab

∂oc

∂ξa
∂od

∂ξb
=

∂w

%o∂
o
Ecd

.

Now,

m =
∫
Ωr

%

∣∣∣∣ ξgab∣∣∣∣ 1
2

d3ξ =
∫
Ωr

%o

∣∣∣ ogab∣∣∣ 1
2 d3ξ

and thus

(12)
%o
%

=

∣∣∣∣ ξgab∣∣∣∣ 1
2

∣∣∣ ogab∣∣∣ 1
2

.

16See [Lov27], [Was75] and [Cia05]. The origin of this tensor is connected with Kelvin, Tait, Kirchhoff, Saint-
Venant, Pearson and von Kármán.

17[Wal84]
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Using (12) in (11) yields

(13)
ξ

σab
∂oc

∂ξa
∂od

∂ξb

∣∣∣∣ ξgab∣∣∣∣ 1
2

∣∣∣ ogab∣∣∣ 1
2

=
o

Scd,

where18

o

Sab=
∂w

∂
o
Eab

is the well known 2nd Piola-Kirchhoff stress tensor and

ξ

σab=
∂w̃

∂
ξ

Eab

is the Cauchy stress tensor.
Multiplying the transformation rule (13) with

o
gak

o
gbl we arrive at the transformation rule for covariant

components of the stress tensors

ξ
σab

∣∣∣∣ ξgab∣∣∣∣ 1
2

∣∣∣ ogab∣∣∣ 1
2

=
∂ok

∂ξa
∂ol

∂ξb
o
Skl,

which is the well known transformation rule for the case of a cartesian space coordinate system

FFFSSSFFF T = Jσσσ.

6. The minimum principles

Let us state the well known minimum principles used in elasticity.19

6.1. The minimum principle of total potential energy. It became commonly known and used20

that the real state of a deformed body, ûa, minimizes the total potential energy

Π(ua) = a(ua)− l(ua)

on a set of admissible states, U, where the elastic strain energy

a(ua) =
1
2

∫
Ω

Eabcdεab(ua)εcd(ua)dΩ

and the potential energy of the applied forces

−l(ua) = −
∫
Ω

pauadΩ−
∫
∂tΩ

tauadΓ.

In essence

ûa = arg min
ub∈U

Π(uc).

18[Cia88]
19The origin of these principles is joined with such names as Maupertuis, 1746, Euler, 1744, and Lagrange, 1788.
20[Mik64], [Was75], [LR89], [Dac89], [Ped00], [Che00]
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6.2. The minimum principle of complementary energy. The minimum principle of total po-
tential energy leads straightforwardly to the minimum principle of complementary energy

σ̂ab = arg min
σab∈S

Πc(σab)

that says that equilibrium stress state, σ̂ab, minimizes the complementary energy

Πc(σab) = c(σab)− lu(σab)

on a set of admissible stress states

S =
{
σab | ∇aσab + pb = 0 in Ω, σab`b = ta on ∂tΩ

}
.

Now the elastic stress energy21

c(σab) =
1
2

∫
Ω

Cabcdσ
abσcddΩ

and work of reactions (i.e., work done through kinematic boundary conditions)

lu(σab) =
∫
∂uΩ

σabũa`bdΓ.

7. Elasticity tensor and compliance tensor

In the case of an isotropic material we may write the Hooke’s law

σab = Eabcdεcd

with elasticity tensor given by expression valid in any coordinate system

Eabcd = λgabgcd + µgacgbd + µgadgbc,

where λ and µ are Lamé parameters.

ν1

ν2

before deformation

ν3

after deformation

∝ ε1
1

∝
ε
1
3

2

∝
ε1 2 2

loaded with

σ11

in the direction of
axis

Figure 12. Orthotropic block

21[Sal01] p. 487.
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In the case of an orthotropic material, for example the orthotropic elementary block (designated as
νth block, Figure 12) we may choose the coordinate system, νa, called the principal material coordinate
system. The principal stands for aligned with the principal material axes of the orthotropic material.

Let us perform the following experiment: Stretch the block in the direction of ν1 axis (i.e., in the
direction of fibres) in such a manner that the prescribed strain ε1

1 does not violate the linear elasticity
conditions. Now measure the stress σ11 with which you have pulled the block, and strains in transverse
directions (i.e. the directions ν2 and ν3). These strains are designated ε1

2 (i.e., the strain in the ν2 direction
caused by the strain ε1

1 in the ν1 direction) and ε1
3, with a similar meaning of the indices.

We can define the so-called principal Poisson ratios

ν12 = −ε
1
2

ε1
1

, ν13 = −ε
1
3

ε1
1

,

and the ratio
E11 =

σ11

ε1
1

called the Hooke’s law for uniaxial stress state.
In a similar way, we may arrive at the relations

E22 =
σ22

ε2
2

, ν21 = −ε
2
1

ε2
2

, ν23 = −ε
2
3

ε2
2

and

E33 =
σ33

ε3
3

, ν31 = −ε
3
1

ε3
3

, ν32 = −ε
3
2

ε3
3

,

where the meaning of the indices is analogous to those first mentioned.
It is acceptable to think about superposition, i.e., to presume the total strain is a sum of the strain

in direction ν1 due to stress σ11 (i.e., ε1
1), the strain in direction ν1 due to stress σ22 (ε2

1), and the strain
in direction ν1 due to stress σ33 (ε3

1), namely

ε11 = ε1
1 + ε2

1 + ε3
1,

or
ε11 = ε1

1 − ν21ε
2
2 − ν31ε

3
3,

and, finally
ε11 =

σ11

E11
− ν21

σ22

E22
− ν31

σ33

E33
.

ν1

ν2

ν3
⊗

σ12

σ21

�

∝
ε 2

1

∝ε12

Figure 13. Pure shear stress

In the case of pure shear strain (Fig. 13) we have, from the above mentioned definition,

εab = εba

and, from equilibrium equation, we have
σab = σba.

The commonly accepted relation between shear stress and strain is

σ12 = σ12 = G12(ε12 + ε21)

19



or
σ12 = 2ε12G12, σ

23 = 2ε23G23, σ
31 = 2ε31G31.

Now, we may write the compliance relation
ε11

ε22

ε33

ε12

ε23

ε31

 =



1
E11

− ν21
E22

− ν31
E33

0 0 0
− ν12
E11

1
E22

− ν32
E33

0 0 0
− ν13
E11

− ν23
E22

1
E33

0 0 0
0 0 0 1

2G12
0 0

0 0 0 0 1
2G23

0
0 0 0 0 0 1

2G31




σ11

σ22

σ33

σ12

σ23

σ31


or in a more convenient form

ν
εab=

ν
Cabcd

ν

σcd,

where the compliance tensor

{
ν

Cabcd

}
{abdcd}

=



1
E11

0 0 0 − ν21
E22

0 0 0 − ν31
E33

0 1
4G12

0 1
4G12

0 0 0 0 0
0 0 1

4G13
0 0 0 1

4G13
0 0

0 1
4G12

0 1
4G12

0 0 0 0 0
− ν12
E11

0 0 0 1
E22

0 0 0 − ν32
E33

0 0 0 0 0 1
4G23

0 1
4G23

0
0 0 1

4G13
0 0 0 1

4G13
0 0

0 0 0 0 0 1
4G23

0 1
4G23

0
− ν13
E11

0 0 0 − ν23
E22

0 0 0 1
E33


.

The ν above the tensor symbol indicates that the symbol does not symbolize an abstract tensor but
that it stands for the tensor components in the ν-frame of reference and {ijdkl} indicate how the entries
are stored in the array, namely that the rows belong successively to the following pairs of indices (ij =
11, 12, 13, 21, 22, 23, 31, 32, 33) and the pairs to the couples (kl = 11, 12, . . . , 33).

A little tedious arrangement leads to the generalized Hooke’s law of the laminated block in the form
ν

σab=
ν

Eabcd
ν
εcd

with components of the elasticity tensor

{ ν

Eabcd
}
{abdcd

=



Φ1111 0 0 0 Φ1122 0 0 0 Φ1133

0 G12 0 G12 0 0 0 0 0
0 0 G13 0 0 0 G13 0 0
0 G12 0 G12 0 0 0 0 0

Φ2211 0 0 0 Φ2222 0 0 0 Φ2233

0 0 0 0 0 G23 0 G23 0
0 0 G13 0 0 0 G13 0 0
0 0 0 0 0 G23 0 G23 0

Φ3311 0 0 0 Φ3322 0 0 0 Φ3333


,

where
Φ1111 =

1− ν23ν32

N
E11, Φ1122 =

ν21 + ν23ν31

N
E11, Φ1133 =

ν31 + ν32ν21

N
E11,

Φ2211 =
ν12 + ν13ν32

N
E22, Φ2222 =

1− ν13ν31

N
E22, Φ2233 =

ν32 + ν31ν12

N
E22,

Φ3311 =
ν13 + ν12ν23

N
E33, Φ3322 =

ν23 + ν21ν13

N
E33, Φ3333 =

1− ν12ν21

N
E33,

and
N = 1− ν12ν21 − ν23ν32 − ν31ν13 − ν12ν23ν31 − ν13ν32ν21.

It is well known, following the elastic energy expression, that in a Cartesian reference frame,22 like
the ν-frame,

ν

Eabcd=
ν

Ecdab and
ν

Cabcd=
ν

Ccdab

22Compare, for instance, [Sal01] p. 329.

20



holds which means Φ1122 = Φ2211 and ν21E11 = ν12E22, etc. The two last equalities imply

ν23ν31ν12 = ν13ν32ν21.

Similarly, for the other two cases. From

σab = σba and εab = εba

it follows that
Cabcd = Cbacd.

As the main frame of reference is orthogonal it is evident that covariant and contravariant tensor
components coincide, i.e.,

ν
eeei

ν

eeej= δji ,
ν
eeei

ν
eeej= δij = δji ⇒

ν
eeej=

ν

eeej

and thus, as indicated above,
ν

Eijkl=
ν

Eijkl=
ν

Eijkl .

What is essential is that these tensor components are physical quantities, i.e., quantities possessing
true units, however the coordinate systems are distorted in the reference frame of computation.

8. Concept of locally orthotropic material

The above relations may be readily used in very large variety of anisotropic materials via the concept
of locally orthotropic material.

The concept of locally orthotropic material is based on the idea that at every point of a material
it is possible to construct a cartesian coordinate system νa such that the material in its infinitesimal
surrounding behaves orthotropically, i.e., the mentioned relations hold.

Thus we only need to perform a transformation from the main frame of orthogonality, νa, into a
frame of computation. In the frame of the computation the tensor entries are not necessarily physical
quantities.
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CHAPTER 2

Analysis of thick-walled anisotropic elliptic tube

1. Introduction

`

b1

b2

⊗
b3

t a

t
b

α

b1

b3

�
b2

F

Figure 1. The anisotropic elliptic tube

In this chapter we focus on an analysis of a thick-walled elliptic tube which is wound by a fiber such
as a laminated composite (Fig. 1). The upper end of the tube is clamped and a uniformly distributed
force, F , is applied on the lower end. The fiber is wound at an angle, α. The problem is solved using
the concept of locally orthotropic material, where the elasticity tensor is expressed in a local Cartesian
coordinate system aligned with the principal directions of local orthotropy of the material. A system of
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coordinate transformations from the local Cartesian coordinate systems into a global coordinate system of
computation is performed. The total potential energy of the problem is expressed in the global coordinate
system. After approximating the dependent variables, representing the displacements, with Fourier series,
the potential energy expression is minimized.

2. A compendium of the coordinate systems

b1

b2

ϑ
⊗

b3

x1 = t
3

x1 = 2t
3

x1
0 tx3=x3=ξ3=

Aξ1Aξ2

γA

A

Aν2

Aν3

Aξ2

ξ3

⊗Aν1‖ Aξ1

α

α

x1 ∈ [0, t]

x2 ∈ [0, 2π]

x3 ∈ [0, `]

Figure 2. Coordinate systems

As has been said, the foremost task rests on a choice of appropriate coordinate systems and the
expression of the transformations. In the case of the elliptic tube shown in Fig. 2, there are the global
Cartesian coordinate system, ba, the global elliptic coordinate system, xa, the local Cartesian coordinate
system, ξa, and the local coordinate system aligned with the principal directions of the local orthotropy,
νa. The basic advantages of the elliptic coordinate system are the range of the coordinates

x ∈ [0, t], x ∈ [0, 2π], x ∈ [0, `]
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and the known relations with the global Cartesian coordinate system ba

b1 = (a+ x1) cosx2,

b2 = (b+ x1) sinx2,

and
b3 = x3.

3. Metric tensors of the coordinate systems

As the coordinate systems b, ξ and ν are Cartesian, the metrics are
b
gab= δab,

ξ
gab= δab,

and
ν
gab= δab.

The following transformation rule
x
gab=

∂bc

∂xa
∂bd

∂xb
δcd

and the transformation matrix

∂ba

∂xb
=

 cosx2 −(a+ x1) sinx2 0
sinx2 (b+ x1) cosx2 0

0 0 1


adb

imply

x
gab=

 1 (b− a) sinx2 cosx2 0
(b− a) sinx2 cosx2 (a+ x1)2 sin2 x2 + (b+ x1)2 cos2 x2 0

0 0 1

 .

4. Elasticity tensor in the global computational coordinate system

Elasticity tensor in the global computational coordinate system can be expressed via the transforma-
tion rule

x

Eabcd=
∂xa

∂νi
∂xb

∂νj
∂xc

∂νk
∂xd

∂νl

ν

Eijkl,

where
ν

Eijkl is the known elasticity tensor in the coordinate system ν aligned with the directions of the
local orthotropy. For the transformation matrix, we have

∂xa

∂νb
=
∂xa

∂bc
∂bc

∂ξd
∂ξd

∂νb
,

where
∂xa

∂bb
=
(
∂ba

∂xb

)−1

,

i.e.

∂xa

∂bb
=

1
a sin2 x2 + b cos2 x2 + x1

 (b+ x1) cosx2 (a+ x1) sinx2 0
− sinx2 cosx2 0

0 0 a sin2 x2 + b cos2 x2 + x1

 ,

∂ba

∂ξb
=

 cos γA − sin γA 0
sin γA cos γA 0

0 0 1


and

∂ξa

∂νb
=

 1 0 0
0 cosα − sinα
0 sinα cosα

 .

The determination of cos γA and sin γA is the only remaining problem. Fig. 3 indicates

cos γA = (1, 0) ·nnn
25



and
sin γA = (0, 1) ·nnn.

From analytical geometry we have

n1 =
b2t√

(b1t )2 + (b2t )2

and

n2 =
−b1t√

(b1t )2 + (b2t )2
,

where
bat =

∂ba

∂x2

and
b1 = (a+ x1) cosx2,

b2 = (b+ x1) sinx2.

Performing the differentiation leads to

nnn =
1
d

(
(b+ x1) cosx2

(a+ x1) sinx2

)
with

d =
√

(a+ x1)2 sin2 x2 + (b+ x1)2 cos2 x2

and hence

cos γA =
b+ x1

d
cosx2

and

sin γA =
a+ x1

d
sinx2.

5. Total potential energy of the elliptic tube

b1

b2

⊗
b3

x1 = 2t
3

x1 = 2t
3

x1
0 t

nnn

Aξ1

γA

A

Figure 3. Normal to ellipse
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It was stated already that1

ûa = arg min
ub∈U

Π(uc),

i.e., that the real state ûa of the deformed body minimizes, on a set U of admissible states, the total
potential energy

Π(ua) = a(ua)− l(ua)
with the elastic strain energy

a(ua) =
1
2

∫
Ω

Eabcdεab(ua)εcd(ua)dΩ

and the potential energy of the applied forces

−l(ua) = −
∫
Ω

pauadΩ−
∫
∂tΩ

tauadΓ.

Let us limit ourselves to the case of small deformations, then

εab=
1
2

(∇aub +∇bua),

where2

∇aub = ∂aub − Γcabuc
and Christoffel symbol of the second kind is

Γdab = gdc
1
2

(∂bgac + ∂agcb − ∂cgab).

Thus
x
εab=

1
2

(∂a
x
ub +∂b

x
ua −2 Γcab

x
uc)

with
Γcab

x
uc= Γ1

ab

x
u1 +Γ2

ab

x
u2 +Γ3

ab

x
u3 .

Using GNU Maxima3 we readily obtain (in the coordinate system xa)

Γ1
12 = Γ1

21 =
(a− b) cosx2 sinx2

(b− a) cos2 x2 + x1 + a
,

Γ2
12 = Γ2

21 =
1

(b− a) cos2 x2 + x1 + a
,

Γ1
22 = − (x1)2 + x1(a+ b) + ab

(b− a) cos2 x2 + x1 + a

and

Γ2
22 =

(a− b) cosx2 sinx2

(b− a) cos2 x2 + x1 + a

with the remaining entries equal to zero, i.e.,

Γ1
ab =

1
J

 0 (a− b) cosx2 sinx2 0
(a− b) cosx2 sinx2 −((x1)2 + x1(a+ b) + ab) 0

0 0 0

 ,

Γ2
ab =

1
J

 0 1 0
1 (a− b) cosx2 sinx2 0
0 0 0


and

Γ3
ab = 0,

where
J = (b− a) cos2 x2 + x1 + a.

Now, as
Eabcd = Ebacd

1[Mik64], [Was75], [LR89], [Dac89], [Ped00] and [Che00].
2[SS78], [LR89].
3http://sourceforge.net/projects/maxima
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we can replace
x
εab with ∂a

x
ub − Γcab

x
uc and write the total potential energy at the form

a =
1
2

∫
Ω

(
∂a

x
ub − Γpab

x
up

) x

Eabcd
(
∂c

x
ud − Γpcd

x
up

) ∣∣∣ xgab∣∣∣ 1
2 d3x.

The elasticity tensor in the x-coordinates
x

Eabcd=
∂xa

∂νi
∂xb

∂νj
∂xc

∂νk
∂xd

∂νl

ν

Eijkl

can be very easily performed in GNU Octave4 syntax as
xnu=xb*bxi*xinu
Ex=kron(xnu,xnu)*Enu*kron(xnu’,xnu’)

6. Solution approximated by the Fourier series

Let us approximate the solution by a Fourier series that satisfies the boundary conditions

x3 = 0 :
x
u1= 0,

x
u2= 0,

x
u3= 0.

Such a series is, for example,

x
u1=

K∑
j,k,m=−K

ajkm1 x3ei(jx
1 2π
t

+kx2+mx3 2π
` ),

x
u2=

K∑
j,k,m=−K

ajkm2 x3ei(jx
1 2π
t

+kx2+mx3 2π
` ),

x
u3=

K∑
j,k,m=−K

ajkm3 x3ei(jx
1 2π
t

+kx2+mx3 2π
` ),

where, ideally, K =∞ but in practice, K = 3.
Provided that we denote

x
u1,2,3= Σ a1,2,3 ϕ (ϕ = x3φ)

we can write

∂b
x
ua=

∂
x
ua

∂xb
=

 Σ a1 ϕ ij
2π
t Σ a1 ϕ ik Σ a1 (ϕ im2π

` + φ)
Σ a2 ϕ ij

2π
t Σ a2 ϕ ik Σ a2 (ϕ im2π

` + φ)
Σ a3 ϕ ij

2π
t Σ a3 ϕ ik Σ a3 (ϕ im2π

` + φ)

 .

As
ϕ = ϕjkm = x3eijx

1 2π
t · eikx2 · eimx3 2π

`

we can write, in GNU Octave syntax,
j=(-3:1:3); k=(-3:1:3); m=(-3:1:3);
phi=x3*kron(kron(exp(i*j*x1*2*pi/t),exp(i*k*x2)),exp(i*m*x3*2*pi/ell));
ux=[phi,zeros(1,686);zeros(1,343),phi,zeros(1,343);zeros(1,686),phi]*A;

where A is a vector of unknown coefficients ajkla and ux stands for

ux =


x
u1
x
u2
x
u3

 .

Writing {
∂
x
ua

∂xb

}
abd

= B*A

the matrix B is computed via5

4http://www.octave.org/
5Presented just to demonstrate the simplicity of the numerical realisation of the solution.
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B=[i*2*pi/t*phi.*kron(kron(j,jedna),jedna),zeros(1,343),zeros(1,343);
i*phi.*kron(kron(jedna,k),jedna),zeros(1,343),zeros(1,343);
i*2*pi/ell*phi.*kron(kron(jedna,jedna),m)+varphi,zeros(1,686);
zeros(1,343),i*2*pi/t*phi.*kron(kron(j,jedna),jedna),zeros(1,343);
zeros(1,343),i*phi.*kron(kron(jedna,m),jedna),zeros(1,343);
zeros(1,343),i*2*pi/ell*phi.*kron(kron(je,je),m)+varphi,zeros(1,343);
zeros(1,343),zeros(1,343),i*2*pi/t*phi.*kron(kron(j,jedna),jedna);
zeros(1,343),zeros(1,343),i*phi.*kron(kron(jedna,k),jedna);
zeros(1,686),i*2*pi/ell*phi.*kron(kron(jedna,jedna),m)+varphi];

As the part of the deformation gradient containing the Christoffel symbols

Γcab
x
uc= Γ1

ab

x
u1 +Γ2

ab

x
u2 +Γ3

ab

x
u3

is expressible in the form{
Γpab

x
up

}
abd

=
{

Γ1
ab

}
abd *[phi,zeros(1,686)]*A +

{
Γ2
ab

}
abd *[zeros(1,343),phi,zeros(1,343)]*A

we may write for the whole deformation gradient(
∂a

x
ub − Γpab

x
up

)
= (B-Gam)*A

where
J=(b-a)*(cos(x2))**2+x1+a;
G1=1/J*[0,(a-b)*cos(x2)*sin(x2),0;

(a-b)*cos(x2)*sin(x2),-((x1)**2+{x1}*(a+b)+a*b),0;0,0,0];
G2=1/J*[0,1,0;1,(a-b)*cos(x2)*sin(x2),0;0,0,0];

Gam=vec(G1’)*[phi,zeros(1,686)]+vec(G2’)*[zeros(1,343),phi,zeros(1,343)];

7. Results

Thus, we can write for the elastic energy

a =
1
2
ATKA

with the stiffness matrix

K =

`∫
0

2π∫
0

t∫
0

(B-Gam)’*Ex*(B-Gam)*sqrt(det(gx))dx1dx2dx3

where gx=(xb**(-1))’*xb**(-1) and the integration is performed numerically.
The work of the applied force

l =
∫
S

F

S

x
u3 dS

may be expressed as
l = P′ ∗ A

with

P =


zeros(343,1)
zeros(343,1)

2π∫
0

t∫
0

F
S phi’*sqrt(det(gx))dx1dx2


the integration being once more performed numerically.

The resulting displacements, ub, in the global coordinate system, b, obtained easily, at a given point
(x1,x2,x3), via a few lines at GNU Octave syntax

A=K**(-1)*P
phi=x3*kron(kron(exp(i*j*x1*2*pi/t),...
ux=real([phi,zeros(1,siz),zeros(1,...
xb=1/(a*(sin(x2))**2+b*(cos(x2))**2+...
ub=xb*ux

are demonstrated in Fig. 4.
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b1

b2

⊗
b3

F

Figure 4. deformation of the elliptic tube
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CHAPTER 3

Intervertebral disk

1. Anatomy and histology of the intervertebral disk

Cervical part of the spine

Thoracic

Lumbar

Figure 1. The vertebral column

The intervertebral disks (or intervertebral fibrocartilage) lie between adjacent vertebrae in the spine.
The spine (vertebral column or backbone) is a column comprising besides the intervertebral disks and
twenty-four vertebrae also the sacrum and the coccyx; Fig. 1.1 Each disk forms a cartilaginous joint to
allow slight movement of the vertebrae, and acts as a ligament to hold the vertebrae together, Fig. 2.

1[Gra18]
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Figure 2. Section of lumbar vertebrae

The Intervertebral disk consists of an outer annulus fibrosus, which surrounds the inner nucleus
pulposus. The annulus fibrosus consists of several layers of fibrocartilage and may be modeled as sequence
of elastic locally orthotropic lamellae with rheological description that was discussed above,

ν

σij=
ν

Eijkl
ν
εkl,

ν

Eijkl=



Φ11 0 0 0 Φ12 0 0 0 Φ13

0 G12 0 G12 0 0 0 0 0
0 0 G13 0 0 0 G13 0 0
0 G12 0 G12 0 0 0 0 0

Φ21 0 0 0 Φ22 0 0 0 Φ23

0 0 0 0 0 G23 0 G23 0
0 0 G13 0 0 0 G13 0 0
0 0 0 0 0 G23 0 G23 0

Φ31 0 0 0 Φ32 0 0 0 Φ33


{ijdkl}

,

and viscoelastic isotropic layers described by a three element viscoelastic model whose both variants are
treated in the following section.

The strong annular fibres contain the nucleus pulposus that contains loose fibers suspended in a mu-
coprotein gel the consistency of jelly. This tissue can be once more modeled as a three element viscoelastic
isotropic material (Fig. 3).
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Annulus fibrosus
layers of fibrocartilage Nucleus pulposus

loose fibres suspended in a protein gel

poroelastic tissue
30◦

60◦

30◦
Elastic lamella

Collagen fibres

Poroelastic
layer

Elastic locally orthotropic:
ν1

ν2

ν3

ν

σij=
ν

Eijkl νεkl

ν

Eijkl=



Φ11 0 0 0 Φ12 0 0 0 Φ13

0 G12 0 G12 0 0 0 0 0
0 0 G13 0 0 0 G13 0 0
0 G12 0 G12 0 0 0 0 0

Φ21 0 0 0 Φ22 0 0 0 Φ23

0 0 0 0 0 G23 0 G23 0
0 0 G13 0 0 0 G13 0 0
0 0 0 0 0 G23 0 G23 0

Φ31 0 0 0 Φ32 0 0 0 Φ33


{ijdkl}

Viscoelastic model

σ̇
ab

+
A
ab cd

σ
cd

=
B
ab
cd ε̇ c

d
+
D
ab
cd ε c

d

Figure 3. Transversal section of the intervertebral disk

2. Three element viscoelastic models

E2 η3 dashpot

E1 spring

σ̇ +
E1 + E2

η3
σ = E1ε̇+

E1E2

η3
ε

Figure 4. Poynting-Thompson model

2.1. Poynting-Thompson viscoelastic model. Rheological description of Poynting-Thompson
model will be formulated using the free model diagram where the stress and strain is labeled as indicated
in Fig. 4. Thus

(14) σ = σ1 = σ2 + σ3

and

(15) ε = ε1 + ε2, ε2 = ε3.

Using the well known relations for elastic model and viscoelastic model

σ = Eε
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and
σ = ηε̇,

respectively, we have

(16) σ = E1ε1

and

(17) σ = E2ε2 + η3ε̇2.

From (15) a (17)
σ = E2 (ε− ε1) + η3 (ε̇− ε̇1)

and using (16) the Poynting-Thompson model takes the form

(18) σ̇ +
E1 + E2

η3
σ = E1ε̇+

E1E2

η3
ε.

Such a differential equation has the general solutions

σ = e
−E1+E2

η3
t

 t∫
t0

e
E1+E2
η3

τ
(
E1ε̇+

E1E2

η3
ε

)
dτ + e

E1+E2
η3

t0σ(t0)


and

ε = e
−E2
η3
t

 t∫
t0

e
E2
η3
τ
(

1
E1
σ̇ +

E1 + E2

E1η3
σ

)
dτ + e

E2
η3
t0ε(t0)

 ,

where σ(t0) = E1ε(t0).

E1

E2

η3

σ̇ +
E2

η3
σ = (E1 + E2) ε̇+

E1E2

η3
ε

Figure 5. Zener model

2.2. Zener viscoelastic model. Reological description of the Zener model, Fig. 5, is obtained in a
way similar to the previous case. From the free model diagram we have

(19) σ = σ1 + σ2 and σ2 = σ3.

The compatibility condition has the form

(20) ε = ε1 = ε2 + ε3.

Then
ε̇ = ε̇2 + ε̇3 =

σ̇2

E2
+
σ3

η3

and, with the aid of (19) and σ1 = E1ε, the Zener model has the form

(21) σ̇ +
E2

η3
σ = (E1 + E2) ε̇+

E1E2

η3
ε.

The solutions are once more

σ = e
−E2
η3
t

 t∫
t0

e
E2
η3
τ
(

(E1 + E2)ε̇+
E1E2

η3
ε

)
dτ + e

E2
η3
t0σ(t0)


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and

ε = e
− E1E2

(E1+E2)η3
t

 t∫
t0

e
E1E2

(E1+E2)η3
τ
(
σ̇ +

E2

η3
σ

)
dτ

E1 + E2
+ e

E1E2
(E1+E2)η3

t0ε(t0)

 ,

where σ(t0) = (E1 + E2)ε(t0).

2.3. General three element viscoelastic model. Both of these models may be written as

σ̇ + aσ = bε̇+ cε

with the solution for stress

(22) σ = e−at

 t∫
t0

eaτ (bε̇+ cε) dτ + σ(t0)eat0


and strain

(23) ε = e−
c
b
t

 t∫
t0

e
c
b
τ (σ̇ + aσ)

dτ
b

+ ε(t0)e
c
b
t0

 ,

where
σ(t0) = bε(t0)

with b = E1 + E2 for the Zener model and b = E1 for the Poynting-Thompson model.
The one-dimensional model can be straightforwardly generalized into three-dimensional model

σ̇ab +Aabcdσ
cd = Babcdε̇cd +Dabcdεcd,

where in the isotropic case
Aabcd = α1g

abgcd + α2

(
δac δ

b
d + δadδ

b
c

)
,

Babcd = β1g
abgcd + β2

(
gacgbd + gadgbc

)
,

Dabcd = γ1g
abgcd + γ2

(
gacgbd + gadgbc

)
.

The general solution of this differential equation has a form

σab = UabcdΛ
cd
ij

(∫
L
ij
klU

kl
mn (Bmnopε̇op +Dmnopεop) dt

)
+ cab,

where

Uabcd =
({

Mab
1

}
abd
,
{
Mab

2

}
abd
, . . . ,

{
Mab

9

}
abd

)
abdcd

,

UabcdU
cd
kl = δakδ

b
l ,

Λabcd =

 eλ1t . . . 0
...

. . .
...

0 . . . eλ9t


abdcd

and

Labcd =

 e−λ1t . . . 0
...

. . .
...

0 . . . e−λ9t


abdcd

with λ,Mab being the solution of the eigenvalue problem2(
−Aabcd − λδac δbd

)
M cd = 0,

and cab is a constant tensor.

2Using Octave, Maxima, etc. these are eigenvalues and eigenvectors, respectively, of the matrix
n
−Aabcd

o
abdcd

.
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3. Geometrical model of the intervertebral disk

Figure 6. Real geometry of the intervertebral disk

The real geometry, Fig. 6, can be modeled as an epicycloidal cylinder, Fig. 7, parametrically defined
by

b1 = 2rxx1 cosx2 − dxx1 cos 2x2,

b2 = 2ryx1 sinx2 − dyx1 sin 2x2,

b3 = x3,

with parameters
0 ≤ x1 ≤ 1,

0 ≤ x2 ≤ 2π,

0 ≤ x3 ≤ h
called the epicycloidal coordinate system.

The metric tensor of this coordinate system is given by the transformation of the metric tensor,
b
gcd= δcd, of the global cartesian coordinate system b:

x
gab=

∂bc

∂xa
∂bd

∂xb
b
gcd,

where the transformation matrix

∂ba

∂xb
=

 2rx cosx2 − dx cos 2x2 2dxx1 sin 2x2 − 2rxx1 sinx2 0
2ry sinx2 − dy sin 2x2 2ryx1 cosx2 − 2dyx1 cos 2x2 0

0 0 1

 .

4. Elasticity tensor of the elastic lamellae

The elastic part of annulus fibrosus consists of collagen fibre lamellae modeled as a locally orthotropic

material with the known elasticity tensor
ν

Eijkl expressed in the the principal material axes νa. As the
computation is to be performed in the epicycloidal coordinate system, x, we need to transform the
elasticity tensor in accord with the rule

x

Eabcd=
∂xa

∂νi
∂xb

∂νj
∂xc

∂νk
∂xd

∂νl

ν

Eijkl
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Figure 7. Geometrical model of the intervertebral disk

with the transformation matrix
∂xa

∂νi
=
∂xa

∂bb
∂bb

∂ξc
∂ξc

∂νi
,

where
∂xa

∂bb
=
(
∂ba

∂xb

)−1

,

∂ξa

∂νb
=

 1 0 0
0 cosα sinα
0 − sinα cosα


and

∂ξa

∂bb
=

 n1 n2 0
−n2 n1 0

0 0 1

 ,

∂ba

∂ξb
=

 n1 −n2 0
n2 n1 0
0 0 1

 ,

nnn =
(
n1, n2, 0

)
being the normal to the epicycloid:

n1 =
∂b2

∂x2√
( ∂b1
∂x2 )2 + ( ∂b2

∂x2 )2
,

n2 =
− ∂b1

∂x2√
( ∂b1
∂x2 )2 + ( ∂b2

∂x2 )2
.
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Figure 8. Transformation of the elasticity tensor

It holds that

n1 =
N1

d
, N1 = 2ryx1 cosx2 − 2dyx1 cos 2x2,

n2 =
N2

d
, N2 = 2rxx1 sinx2 − 2dxx1 sin 2x2

with

d =
√

(N1)2 + (N2)2.

Once the transformation matrices are known the GNU Octave code is very simple:

xnu=xb*bxi*xinu
Ex=kron(xnu,xnu)*Enu*kron(xnu’,xnu’)

5. Computational models

Regarding the geometrical and material models described above, there are at least four possible
computational models:

(1) Small deformations and elastic nucleus pulposus. In this model the small deformations are only
considered. The elastic part of the annulus fibrosus is described as proposed in the last section
and the poroelastic nucleus pulposus as well as the poroelastic lamellae of the annulus fibrosus
are regarded only as an isotropic elastic, very soft and almost incompressible material with
elastic tensor

Eabcdpulpos = λgabgcd + µgacgbd + µgadgbc.

Such a model of the nucleus pulposus can be viewed as an appropriate one at least in the case
of short-time loading.

This model can be solved using the principle of the total potential energy minimum.

38



(2) Small deformations and viscoelastic nucleus pulposus. Once more only small deformations and
locally orthotropic elastic part of the annulus fibrosus are considered while the poroelastic parts
are modeled as an isotropic three element viscoelastic material

σ̇ab +Aabcdσ
cd = Babcdε̇cd +Dabcdεcd.

This model could be solved using Galerkin method applied to the equations

∇aσab = 0,

2εab = ∇aub +∇bua
with the appropriate material model and base functions fulfilling the boundary conditions.

(3) Large deformations and elastic nucleus pulposus. This model is identical with the first one but the
considered deformations are the large ones. Thus

2Eab = ∇aub +∇bua +∇auc∇buc
and

Eabcdpulpos = λgabgcd + µgacgbd + µgadgbc.

The solution is sought through minimization of the total elastic energy.
(4) Large deformations and viscoelastic nucleus pulposus. This is essentially the second model with

large deformations taken into respect. Consequently, for the nucleus pulposus and the poroelastic
lamellae, the material model is

Ṡab +AabcdS
cd = BabcdĖcd +DabcdEcd

and the solution of the problem could be found using Galerkin method applied to the equations

2Eab = ∇aub +∇bua +∇auc∇buc
and

∇aSab = 0
with base functions fulfilling appropriate boundary conditions.

At the following we will concentrate on the case where the small deformations and elastic nucleus
pulposus are taken into account.

6. Small deformations and elastic nucleus pulposus

At this section we are going to analyse the deformation of the intervertebral disk in the case of small
deformations when the elastic part of the annulus fibrosus is described as the locally orthotropic material
and both the poroelastic nucleus pulposus and the poroelastic lamellae of the annulus fibrosus as isotropic
elastic, very soft and almost incompressible material.

6.1. Total potential energy of the intervertebral disk. As we are going to use the principle of
the potential energy minimum we must express the total potential energy

Π(ua) = a(ua)− l(ua)
with elastic strain energy

a(ua) =
1
2

∫
Ω

Eabcdεab(ua)εcd(ua)dΩ

and the work of the applied forces

l(ua) =
∫
Ω

pauadΩ +
∫
∂tΩ

tauadΓ.

The small strain tensor
εab=

1
2

(∇aub +∇bua)

is defined by the covariant derivative of the displacement

∇aub = ∂aub − Γcabuc

with the Christoffel symbol of the 2nd

Γdab = gdc
1
2

(∂bgac + ∂agcb − ∂cgab).
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We can write
x
εab=

1
2

(∂a
x
ub +∂b

x
ua −2 Γcab

x
uc)

and
Γcab

x
uc= Γ1

ab

x
u1 +Γ2

ab

x
u2 +Γ3

ab

x
u3,

where Christoffel symbols for the epicycloidal coordinate system x are3

Γ1
ab =

 0 0 0
0 Γ1

22 0
0 0 0

 ,

Γ2
ab =

 0 Γ2
12 0

Γ2
21 Γ2

22 0
0 0 0

 ,

Γ3
ab = 0,

with
Γ2

12 = Γ2
21 =

1
x1
,

Γ1
22 = −(2dxry + 4dyrx) sinx2 sin 2x2 + (4dxry + 2dyrx) cosx2 cos 2x2 − 2rxry − 4dxdy

(2dxry + dyrx) sinx2 sin 2x2 + (dxry + 2dyrx) cosx2 cos 2x2 − 2rxry − dxdy
x1

and

Γ2
22 = − 3dyrx cosx2 sin 2x2 − 3dxry sinx2 cos 2x2

(2dxry + dyrx) sinx2 sin 2x2 + (dxry + 2dyrx) cosx2 cos 2x2 − 2rxry − dxdy
.

ua = 0

b
ua=

b

uoa +αab
1 + βab

2

αaαa = 1

βaβa = 1

αaβa = 0

b3

b1
⊗b

2

Figure 9. Boundary conditions

6.2. Fourier series expansion. To integrate the total potential energy, we approximate the dis-
placement functions by the Fourier series expansion. The chosen Fourier series needs to fulfil the boundary
conditions, Fig. 9. The lower vertebra is fixed and the upper vertebra moves as a rigid model, which is,
for the small deformations, expressed as

b

uh1=
b

uo1 − b2ϕ3,
b

uh2=
b

uo2 + b1ϕ3,
b

uh3=
b

uo3 − b1ϕ2 + b2ϕ1,

where ϕ1 is rotation around axis b1, ϕ2 is rotation around axis b2, ϕ3 is rotation around axis b3 and uoa
is displacement of the point b1,2 = 0, b3 = h.

The convenient Fourier series fulfilling these boundary conditions is

x
ua=

∞∑
k,l=−∞

∞∑
m=1

Uklma

(
ei2πkx

1
eilx

2
x1 + 1

)
sin

πmx3

h
+

x

uha
x3

h
,

where
x

uha=
∂bb

∂xa

b

uhb .

In the GNU Octave syntax this can be written as

3Using GNU Maxima software.
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ux=N*U
B=B(x1,x2,x3)
B=kron(kron(e.^(i*k*2*pi*x1),x1*e.^(i*l*x2)+1),sin(pi*m*x3/h))
bc=[0,0,-b(2); 0,0,b(1); b(2),-b(1),0];
N=[[B,zeros(1,K),zeros(1,K); zeros(1,K),B,zeros(1,K);
zeros(1,K),zeros(1,K),B],bx*x3/h,bx*bc*x3/h]; ## size(U)=3*K+6

where the infinite number of terms is replace by the number K and the unknown coefficients are

U =



Ū
b

u0
1
b

u0
2
b

u0
3

ϕ1

ϕ2

ϕ3


where Ū is a vector composed of Uklma .

6.3. Elastic energy. The expression of elastic energy

a(ua) =
1
2

∫
Ω

Eabcdεab(ua)εcd(ua)dΩ

is a quadratic function of strain tensor

εab=
1
2

(∇aub +∇bua)

with covariant derivative
∇aub = ∂aub − Γcabuc.

As the elasticity tensor Eabcd is the symmetric one in indices ab and cd

Eabcd = Ebacd = Ecdab,

we may the elastic energy, in the epicycloidal coordinate system x, write like

a =
1
2

∫
Ω

(
∂a

x
ub − Γpab

x
up

) x

Eabcd
(
∂c

x
ud − Γpcd

x
up

) ∣∣∣ xgab∣∣∣ 1
2 d3x,

which in the GNU Octave syntax looks as

a =
1
2
U′ ∗ K ∗ U

with the stiffness matrix

K =

1∫
0

2π∫
0

h∫
0

(DG(x)′ − Gamma(x)′) ∗ Ex(x) ∗ (DG(x)− Gamma(x)) ∗ sqrt(det(gx(x)))dx1dx2dx3

where {
∂a

x
ub

}
abd

= DG ∗ U,

with DG constructed in GNU Octave code in a similar way as the matrix B above, and{
Γpab

x
up

}
abd

= Gamma ∗ U

with
Gamma = vec(G1′) ∗ N(1, :) + vec(G2′) ∗ N(2, :),

where
G1 =

{
Γ1
ab

}
adb ,

and
G2 =

{
Γ2
ab

}
adb .
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The integration of stiffness matrix has to be performed numerically. Nevertheless, as this integration
is carried out on the block

0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 2π, 0 ≤ x3 ≤ h,
it is not great problem to perform it.

6.4. Work done by the external forces. Work done by the external forces

l(ua) =
∫
Ω

pauadΩ +
∫
∂tΩ

tauadΓ

is in the GNU Octave syntax expressed as

l = F ∗ U.
As

U =



Ū
b

u0
1
b

u0
2
b

u0
3

ϕ1

ϕ2

ϕ3


,

the vector F has straightforwardly the form

F = [zeros(3 ∗ K, 1); Vs; Vl;−N; Ml; Mf; Mr],

with Vs,Vl,N,Ml,Mf,Mr defined in the Fig. 7.

6.5. The necessary condition of minimum and solution of the problem. The necessary
condition of the minimum of the total potential energy

∂Π
∂U

= 0,

with the total potential energy expressed in the GNU Octave syntax as

Π =
1
2
U′ ∗ K ∗ U− F ∗ U,

is linear
K ∗ U = F

with the solution of the unknown coefficients

U = K−1∗F.
The displacement tensor in the epicycloidal coordinate system x

x
ua= ux = real(N(x) ∗ U)

and in the global cartesian system b
b
ua=

∂xb

∂ba
x
ub

or, in the GNU Octave syntax,
ub = xb′ ∗ ux.

The results for different types of loading, drawn using the last (cartesian) expression of the displace-
ment tensor, are depicted in the Figs. 10–15.
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b1

b2

�
b3

b3

b2

⊗b
1

VL

Figure 12. Response to the loading by VL
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CHAPTER 4

Nanomechanics of cortical bone

1. Geometry and internal structure of thigh bone

The femur,1 the longest and strongest bone in the skeleton, is almost perfectly cylindrical in the
greater part of its extent.

1.1. Geometry and nomenclature of the femur. In the following let us list some comments
regarding the terms stated in Figs. 1 and 2.2

Proximal extremity [Upper extremity] presents for examination the head, the neck, the greater and
lesser trochanter.

Caput femoris [L., head of femur] is the proximal end of the femur, articulating with the acetabulum
on the os coxae. Called also femoral head.

Acetabulum [L., vinegar-cruet, from acetum vinegar] is the large cup-shaped cavity on the lateral
surface of the os coxae in which the head of the femur articulates; called also acetabular bone, cotyloid
cavity, and os acetabuli.

Fovea [L., a pit], i.e., anatomic nomenclature for a small pit in the surface of a structure or organ.
Fovea capitis femoris, i.e., fovea of head of femur: a depression in the head of the femur where the

ligamentum teres is attached; called also fossa capitis femoris and fossa of head of femur.
Collum femoris [Femoral neck, Neck of femur] is the heavy column of bone connecting the head of the

femur and the shaft. The collum femoris (neck) is broader laterally than medially.
Tuberculum [L., dimension of tuber], is a general term in anatomical nomenclature for a tubercle,

nodule, or small eminence.
Capsula articularis [L., articular capsule] is the saclike envelope that encloses the cavity of a synovial

joint by attaching to the circumference of the articular end of each involved bone; it consists of a fibrous
membrane and a synovial membrane. Called also joint capsule and synovial capsule.

Linea intertrochanterica [Anterior intertrochanteric line] is a line running obliquely downward and
medially from the tubercle of the femur, winding around the medial side of the body of the bone.

Musculus psoas (so’as) major [Greater psoas muscle] is a muscle with origin from the bodies of the
lumbar vertebrae and the intervertebral disks from the twelfth thoracic to the fifth lumbar vertebrae and
from the transverse processes of the lumbar vertebrae, with insertion into the lesser trochanter of femur,
with nerve supply from the lumbar plexus, and whose action flexes the thigh or trunk.

Musculus quadriceps femoris [Quadriceps muscle of thigh] is a name applied collectively to the rectus
femoris, vastus intermedius, vastus lateralis, and vastus medialis, inserting by a common tendon that
surrounds the patella and ends on the tuberosity of the tibia, and acting to extend the leg upon the
thigh.

Musculus vastus lateralis has origin on capsule of hip joint, lateral aspect of femur. Insertion point:
patella, common tendon of quadriceps femoris. Action: extends leg.

Musculus vastus intermedius (Crureus) is the muscle for extension of the knee joint and thus extends
leg. It origins at anterior and lateral surfaces of the body of the femur in its upper two-thirds and from
the lower part of the lateral intermuscular septum (Septum intermusculare femoris laterale). Its fibers
end in a superficial aponeurosis, which forms the deep part of the Quadriceps femoris tendon.

Musculus vastus medialis originates on medial aspect of femur. Its insertion is on patella, common
tendon of quadriceps femoris. Action: extends leg.

Trochanter major [Greater trochanter] is a broad, flat process at the upper end of the lateral surface
of the femur, to which several muscles are attached.

Trochanter minor [Lesser trochanter] is a short conical process projecting medially from the lower
part of the posterior border of the base of the neck of the femur.

1[Gra18], e.g. at http://www.bartleby.com/107/59.html.
2Cf. [DN03] and A.D.A.M. Encyclopedia at http://www.mercksource.com.
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Figure 1. Right femur—Anterior surface
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Figure 2. Right femur—Posterior surface
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Musculus piriformis [Piriform muscle] has origin on ilium, second to fourth sacral vertebrae and
insertion on upper border of greater trochanter.

Musculus gemellus inferior [Inferior gemellus muscle] originates from the tuberosity of ischium and
inserts on the greater trochanter of femur. It rotates thigh laterally.

Musculus gemellus superior [Superior gemellus muscle] originates from the spine of ischium and inserts
on the greater trochanter of femur. Action: It rotates thigh laterally.

Obturator [L.] is any structure, natural or artificial, that closes an opening.
Musculus obturatorius internus [Internal obturator muscle] has origin on pelvic surface of hip bone,

margin of obturator foramen, ramus of ischium, inferior ramus of pubis, internal surface of obturator
membrane. The insertion is on greater trochanter of femur. The action is to rotate thigh laterally.

Musculus glutæus minimus [Least gluteal muscle] has origin on lateral surface of ilium between anterior
and inferior gluteal lines. Insertion: greater trochanter of femur. Action: abducts, rotates thigh medially.

Musculus glutæus medius [Mesogluteus, Middle gluteal muscle] originates on lateral surface of ilium
between anterior and posterior gluteal lines. Insertion is on greater trochanter of femur. Action: abducts
and rotates thigh medially.

Musculus glutæus maximus [Gluteus maximus muscle] originates posteriorly from the posterior gluteal
line of the ilium, aponeurosis of the erector spinae, dorsal surface of the sacrum, coccyx, and sacrotuberous
ligament. It inserts at the iliotibial band and the gluteal tuberosity of the femur. The gluteus maximus
is the uppermost of the three muscles. Its action is to extend and outwardly rotate hip, and extend the
trunk. The direct attachment to the sacrum it may influence the stability of the joint.

Musculus articularis genus [Articular muscle of knee] originates at the distal fourth of anterior surface
of shaft of femur. Insertion: synovial membrane of knee joint. Action: lifts capsule of knee joint.

Epicondylus [Epicondyle] is an eminence upon a bone, above its condyle.
Epicondylus lateralis femoris [Lateral epicondyle of femur] is a projection from the distal end of the

femur, above the lateral condyle, for the attachment of collateral ligaments of the knee. Called also
external epicondyle of femur.

Epicondylus medialis femoris [Medial epicondyle of femur] is a projection from the distal end of the
femur, above the medial condyle, for the attachment of collateral ligaments of the knee; called also internal
epicondyle of femur.

Condylus (pl. condyli) [L., from Gr. kondylos knuckle, condyle] is a rounded projection on a bone,
usually for articulation with another.

Condylus lateralis femoris [Lateral condyle of femur] is the lateral of the two surfaces at the distal end
of the femur that articulate with the superior surfaces of the head of the tibia. It is also called external
or fibular condyle of femur.

Condylus medialis femoris [Medial condyle of femur] is the medial of the two surfaces at the distal
end of the femur that articulate with the superior surfaces of the head of the tibia. Called also internal
or tibial condyle of femur, and condylus tibialis femoris.

Facies patellaris femoris (Patellar surface of femur) is the smooth anterior continuation of the condyles
that forms the surface of the femur articulating with the patella; called also anterior intercondylar fossa
of femur and patellar fossa of femur.

Tuberculum adductorium femoris [Adductor tubercle of femur] is a small projection from the upper
part of the medial epicondyle of the femur, to which the tendon of the adductor magnus muscle is
attached.

Fossa (pl. fossae), [L.] is a trench, channel, or hollow place.
Fossa trochanterica [Trochanteric fossa] is a deep depression on the medial surface of the greater

trochanter that receives the insertion of the tendon of the obturator externus muscle.
Musculus obturatorius externus [External obturator muscle] originates on pubis, ischium, and super-

ficial surface of obturator membrane. Insertion is on trochanteric fossa of femur. Action: rotates thigh
laterally.

Crest is a projection or projecting structure, or ridge, especially one surmounting a bone or its border;
see also crista and ridge.

Crista intertrochanterica [Intertrochanteric crest] is a prominent ridge running obliquely downward
and medialward from the summit of the greater trochanter on the posterior surface of the neck of the
femur to the lesser trochanter; called also intertrochanteric ridge, linea intertrochanterica posterior, and
posterior intertrochanteric line.
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Musculus quadratus femoris [Quadrate muscle of thigh, Quadratus femoris muscle] originates on upper
part of lateral border of tuberosity of ischium; inserts on quadrate tubercle of femur, intertrochanteric
crest. It adducts, rotates thigh laterally.

Musculus iliacus [Iliac muscle] originates on iliac fossa and base of sacrum; inserts on greater psoas
tendon and lesser trochanter of femur. Action: flexes thigh, trunk on limb.

Musculus pectineus [Pectineal muscle] originates on pectineal line of pubis; inserts on femur distal to
lesser trochanter. Action: flexes, adducts thigh.

Musculus adductor brevis [Short adductor muscle, Short h. of triceps femoris muscle] originates on
outer surface of inferior ramus of pubis; insertion is on upper part of linea aspera of femur. Action:
adducts, rotates, flexes thigh.

Musculus adductor magnus [Great adductor muscle] (2 parts): Deep part originates on inferior ramus
of pubis, ramus of ischium. Superficial part on ischial tuberosity. Deep part inserts on linea aspera of
femur. Superficial part on adductor tubercle of femur. Action: Deep part adducts thigh, Superficial part
extends thigh.

Musculus adductor longus [Long adductor muscle] originates on crest and symphysis of pubis. Insertion
is on linea aspera of femur. Action: adducts, rotates, flexes thigh.

Caput breve musculi bicipitis femoris [Short head of the biceps femoris muscle] is arising from the
linea aspera femoris.

Facies (pl. facies) is a specific surface of a body structure, part, or organ.
Facies articularis ossium is articular surface of bone: the surface by which a bone articulates with

another.
Facies poplitea femoris [Popliteal surface of femur] is the triangular lower third of the posterior surface

of the femur, between the medial and lateral supracondylar lines, which forms the superior part of the
floor of the popliteal fossa; called also planum popliteum femoris.

Musculus plantaris [Plantar muscle] has origin on oblique popliteal ligament, lateral supracondylar
line of femur; insertion on posterior part of calcaneus. Action: plantar flexes foot.

Epicondylus lateralis femoris [Lateral epicondyle of femur] is a projection from the distal end of the
femur, above the lateral condyle, for the attachment of collateral ligaments of the knee. Called also
external epicondyle of femur.

Musculus popliteus [Popliteal muscle] has origin on lateral condyle of femur, lateral meniscus; insertion
is on posterior surface of tibia. Action: flexes leg, rotates leg medially.

Fossa intercondylaris femoris [Intercondylar fossa of femur] is the posterior depression between the
condyles of the femur; called also fossa intercondyloidea femoris, intercondylar notch of femur, and
popliteal notch or incisure.

Caput laterale musculi gastrocnemii [Lateral head of the gastrocnemius muscle, Lateral gastrocnemius
muscle] is arising from the lateral condyle and posterior surface of the femur, and the capsule of the knee
joint.

Caput mediale musculi gastrocnemii [Medial head of the gastrocnemius muscle, Medial gastrocnemius
muscle] is arising from the medial condyle of the femur and the capsule of the knee joint.

Corpus femoris [Body, Shaft] is almost cylindrical in form. It is slightly arched, so as to be convex in
front.

1.2. The architecture and internal structure of the femur. John C. Koch3 by mathematical
analysis has “shown that in every part of the femur there is a remarkable adaptation of the inner structure
of the bone to the machanical requirements due to the load on the femur-head.”

It is believed that the following laws of bone structure have been demonstrated for the femur:
1. The inner structure and external form of human bone are closely adapted to the mechanical

conditions existing at every point in the bone.
2. The inner architecture of a normal bone is determined by definite and exact requirements of

mathematical and mechanical laws to produce a maximum of strength with a minimum of material.4

3[Koc17]. Cf. [Gra18] at http://www.bartleby.com/107/59.html. See also Wolff and Roux.
4That all is cited from [Gra18]. There also is the following: Diagram of the lines of stress in the upper femur, based upon

the mathematical analysis of the right femur. These result from the combination of the different kinds of stresses at each point
in the femur. (After Koch.) See http://www.bartleby.com/107/illus248.html, http://www.bartleby.com/107/illus251.html,
etc. Cf. second half of http://www.bartleby.com/107/59.html.
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Figure 3. Internal structure of the right femur—Anterior surface
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Trabeculae descend from the periphery of the femoral head toward the medial cortex along the
direction of the resultant compressive force, exactly like the compressive trajectories obtained theoretically
and by the photoelastic method. A bundle of trabeculae follows an arched course from the lateral to the
medial cortex, as do the tensile trajectories derived from theory.5

Trigonum internum femoris [Ward’s triangle] is the space formed by the angle of the trabeculae (an
area of diminished density in the trabecular pattern) in the neck of the femur; a vulnerable point for
fracture. It is evident by X-ray as well as by direct inspection.

Cancellus (pl. cancelli) [L., a lattice] any structure arranged like a lattice. A reticular, spongy, or
lattice-like structure.

Substantia (pl. substantiae) [L., substance, called also matter] is a general anatomical nomenclature
for material of which a tissue, organ, or body is composed.

Substantia spongiosa ossium [Spongy substance of bone, called also Cancellated or Cancellous bone,
Spongy bone, Trabecular substance, and Substantia trabecularis ossium] is bone substance made up of
thin intersecting lamellae, usually found internal to compact bone.

Corticalis [Cortical] means pertaining to or of the nature of a cortex or bark.
Substantia corticalis ossium [Cortical substance of bone] is the substance comprising the hard outer

layer of a bone.
Cavitas medullaris [Medullary cavity, Marrow cavity, Medullary canal, and Medullary space] is the

space in the diaphysis of a long bone containing the marrow.
Endo [L., inside, within].
Membrana (gen. and pl. membranae) [Membrane] is an anatomic nomenclature for a thin layer of

tissue that covers a surface, lines a cavity, or divides a space or organ.
Endosteum [Medullary membrane] is the tissue lining the medullary cavity of a bone.
Peri (Gr., around, about).
Periosteum (Peri- + Gr. osteon, bone) [Periost] is a specialized connective tissue covering all bones

of the body, and possessing bone-forming potentialities; in adults, it consists of two layers that are not
sharply defined, the external layer being a network of dense connective tissue containing blood vessels,
and the deep layer composed of more loosely arranged collagenous bundles with spindle-shaped connective
tissue cells and a network of thin elastic fibers. Thus, the periosteum is a fibrous sheath that covers bones.
It contains the blood vessels and nerves that provide nourishment and sensation to the bone.

Epiphysis (pl. epiphyses, Gr.: an ongrowth, excrescence) is the expanded articular end of a long
bone, developed from a secondary ossification center, which during the period of growth is either entirely
cartilaginous or is separated from the shaft by the epiphyseal cartilage. Called also apophysis ossium.

Metaphysis (pl. metaphyses) is the wider part at the extremity of the shaft of a long bone, adjacent
to the epiphyseal disk. During development it contains the growth zone and consists of spongy bone; in
the adult it is continuous with the epiphysis.

Diaphysis (pl. diaphyses, Gr.: the point of separation between stalk and branch) [Shaft] is the portion
of a long bone formed from a primary center of ossification. It is the elongated cylindrical portion (the
shaft) of a long bone, between the ends or extremities (the epiphyses), which are usually articular and
wider than the shaft; it consists of a tube of compact bone, enclosing the medullary (marrow) cavity.

1.3. Sector of the shaft of a long bone. Osteon (Gr., bone) [Haversian system] is the basic unit
of structure of compact bone, comprising a haversian canal and its concentrically arranged lamellae, of
which there may be 4 to 20, each 3 to 7 micrometres thick, in a single (haversian) system. Such units are
directed mainly in the long axis of the bone.6

Canalis nutricius [Haversian canal, Haversian space, Canalis nutriens, Nutrient canal of bone] is one of
the freely anastomosing channels of the haversian system of compact bone, which contain blood vessels,
lymph vessels, and nerves. Named for Clopton Havers, English physician and anatomist, 1650—1702

Volkmann’s canal [Alfred Wilhelm Volkmann, German physiologist, 1800—1877] is a passage
other than haversian canals (canales nutricii), for the passage of blood vessels through bone. It is usually
transversely connecting two Haversian canals.

Haversian lamella (L., genitive and plural: lamellae) is one of the concentric bony plates surrounding
a haversian canal.

Collagen fiber [collagenous fiber] is the soft, flexible, white fiber which is the most characteristic
constituent of all types of connective tissue, consisting of the protein collagen, and composed of bundles

5See Fig. 3. Cf. [Pau76], [Koc17], [Gra18] at http://www.bartleby.com/107/59.html.
6Cf. [Gra18] at http://www.bartleby.com/107/18.html
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Figure 4. Sector of the shaft of a long bone

of fibrils that are in turn made up of smaller units (unit fibrils or microfibrils) which show a characteristic
crossbanding with a major periodicity of approximately 65 nm. In describing the hierarchy of arrangement
of collagen structure, the terms fiber and fibril are sometimes loosely interchanged.

Interstitial lamella (pl. lamellae) [Ground lamella, Intermediate lamella] is one of the bony plates that
fill in between the haversian systems.

Cement line is a name applied to a line, visible in microscopic examination of bone in cross section,
marking the boundary of an osteon (haversian system).

Circumferential lamella (gen. and pl. lamellae) is one of the layers of bone. There are external circum-
ferential lamellae and internal circumferential lamellae.

Trabecula (pl. trabeculae) is, in anatomical nomenclature, a supporting or anchoring strand of con-
nective tissue, such as one extending from a capsule into the substance of the enclosed organ.
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Trabeculae of bone are anastomosing bony spicules in cancellous bone which form a meshwork of
intercommunicating spaces that are filled with bone marrow.

2. Mathematical model of the cortical bone osteon

2.1. Introduction. Osteon (Gr., bone) [Haversian system] is the basic unit of structure of compact
bone. The osteon consists of a number (may be 4 to 20) Haversian lamellae, i.e., the concentric bony
plates surrounding a haversian canal. Each of these lamellae is 3 to 7 microns thick.7

Haversian lamella is composed of collagen fibers. Collagen fiber is the soft, flexible, white fiber which
is the most characteristic constituent of all types of connective tissue, consisting of the protein collagen,
and composed of bundles of fibrils that are in turn made up of smaller units (unit fibrils or microfibrils)
which show a characteristic crossbanding with a major periodicity of approximately 65 nm.

b1

b2 b3

ν = 1

ν = 2

ν = 3

Figure 5. Cortical bone osteon global coordinate system

2.2. Frames of reference as a foundation of a mathematical modeling of the osteons.
In the mathematical modeling it is essential to constitute a coordinate system. It is true that abstract
tensor notation derives the label from abstract in the meaning unrelated to a specified coordinate system.
Nevertheless, every mechanical modeling is connected with a body and the body has a geometry that is
describable only with a coordinate system. At this stage let us look at the osteon, Fig. 5, in the b3-direction
and draw one lamella of the osteon, say ν = 1, together with the global computational coordinates and
one of the infinite number of local Cartesians, Fig. 6.

The relations between the coordinates of the osteon are (see carefully Fig. 6)

b1 = β1 cosβ2,

b2 = β1 sinβ2,

b3 = β3.

β1 =
√

(b1)2 + (b2)2,

β2 = arctan
b2

b1
,

β3 = b3.

x1 = β1 − ro,
x2 = roβ

2,

x3 = β3.

β1 = x1 + ro,

7Cf. [Gra18] at http://www.bartleby.com/107/18.html
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⊗
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ξa — Local Cartesian coordinate system
ba — Global Cartesian coordinate system of the osteon
βa — Global computational coordinate system of the osteon
xa — Global computational coordinate system of the unfolded osteon lamella

Figure 6. Cortical bone osteon lamella coordinate system

β2 =
1
ro
x2,

β3 = x3.

The transformation between the x-frame and the ξ-frame we postpone to another opportunity.
The matrices of tensor transformation between the above listed frames are given8 via the following

derivatives.
∂ba

∂βb
=

 cosβ2 −β1 sinβ2 0
sinβ2 β1 cosβ2 0

0 0 1


8[LR89], [SS78].
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As
∂ba

∂βb
∂βb

∂bc
= δac

we have also

∂βa

∂bb
=

 cosβ2 sinβ2 0
−1
β1 sinβ2 1

β1 cosβ2 0
0 0 1

 .

Further,

∂xa

∂βb
=

 1 0 0
0 ro 0
0 0 1

 ,
∂βa

∂xb
=

 1 0 0
0 1

ro
0

0 0 1

 ,

and

∂ba

∂xb
=
∂ba

∂βc
∂βc

∂xb
=

 cosβ2 −β1

ro
sinβ2 0

sinβ2 β1

ro
cosβ2 0

0 0 1

 ,

∂xa

∂bb
=
∂xa

∂βc
∂βc

∂bb
=

 cosβ2 sinβ2 0
−ro
β1 sinβ2 ro

β1 cosβ2 0
0 0 1

 .

Now, we arrive at the constitution of the metric tensors, gab. It holds

ds2 =
x
gab dxadxb =

β
gab dβadβb =

b
gab dbadbb.

As the b-frame is the Cartesian one (in the Euclidian space),

ds2 = dbadba = δabdbadbb

and thus

b
gab= δab =

 1 0 0
0 1 0
0 0 1

 .

Transforming,

x
gab=

∂bc

∂xa
∂bd

∂xb
δcd =

 cosβ2 sinβ2 0
−β1

ro
sinβ2 β1

ro
cosβ2 0

0 0 1


 cosβ2 −β1

ro
sinβ2 0

sinβ2 β1

ro
cosβ2 0

0 0 1

 ,

i.e.,

(24)
x
gab=

 1 0 0

0
(
β1

ro

)2
0

0 0 1

 =

 1 0 0

0
(
x1+ro
ro

)2
0

0 0 1

 ,

the entry
(
β1

ro

)2
=
(
x1+ro
ro

)2
being the “stretching” of the x2-coordinate.

Similarly,

β
gab=

∂bc

∂βa
∂bd

∂βb
δcd =

 cosβ2 sinβ2 0
−β1 sinβ2 β1 cosβ2 0

0 0 1

 cosβ2 −β1 sinβ2 0
sinβ2 β1 cosβ2 0

0 0 1

 ,

and thus

β
gab=

 1 0 0
0
(
β1
)2 0

0 0 1

 .

Another task to look at is the local coordinate system of the unfolded infinitesimal ply of the lamella,
ξa, and the connection between ξ-frame and x-frame, Fig. 7. The ξ-frame, being Cartesian, has the metric
equal to δab and thus the tensor transformation must be such that

δab =
ξ
gab=

∂xc

∂ξa
∂xd

∂ξb
x
gcd,
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Figure 7. Local coordinate system ξa of an unrolled infinitesimal ply of a lamella of the osteon

i.e., as the directions of respective axes are alined,

∂xa

∂ξb
=

 1 0 0
0 ro

β1 0
0 0 1

 =

 1 0 0
0 ro

ro+x1 0
0 0 1


and

∂ξa

∂xb
=

 1 0 0
0 β1

ro
0

0 0 1

 =

 1 0 0
0 ro+x1

ro
0

0 0 1

 .

dξ3

ξ2

dξ2

ξ3

ν3

αν

ν2

αν

A

ξ1 ‖ ν1

�

Figure 8. Principal material coordinate system νa of an unrolled infinitesimal part of the lamella

The connection of the principal coordinate system of local orthotropy, νa, with the local coordinate
system, ξa, of an unrolled infinitesimal ply of a lamella of the osteon is apparent from the Fig. 8. It holds
that

∂νa

∂ξb
=

 1 0 0
0 cosαν sinαν
0 − sinαν cosαν

 ,
∂ξa

∂νb
=

 1 0 0
0 cosαν − sinαν
0 sinαν cosαν

 .
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2.3. The stress-strain relation of a lamella of the osteon. The components of the stress tensor
relevant to the ξ-frame are the physical ones, i.e., the components that possess the stress units, MPa.
The same holds for strains. Now, imagine that in a way the stress-strain relation of a very thin unrolled
ply of an osteon lamella written in the principal coordinate system of the orthotropy was obtained.9 Thus

ν

σij=
ν

Eijkl
ν
εkl

and
ν
εij=

ν
Cijkl

ν

σkl

are the relations derived for an infinitesimal curved block regarded, or really adjusted, as rectangular.
From the entries of the metric tensor of the x-frame, see (24), we can deduced that for x1 � ro there is
minimal error to put

x

Eabcd=
ξ

Eabcd=
∂ξa

∂νi
∂ξb

∂νj

ν

Eijkl
∂ξc

∂νk
∂ξd

∂νl
.

But if we take into account the opposite case, the case of an osteon where the thickness is not negligible
compared with the radius, we must take deeper analysis:

x

Eoprs=
∂xo

∂ξa
∂xp

∂ξb

ξ

Eabcd
∂xr

∂ξc
∂xs

∂ξd
=
∂xo

∂ξa
∂xp

∂ξb
∂ξa

∂νi
∂ξb

∂νj

ν

Eijkl
∂ξc

∂νk
∂ξd

∂νl
∂xr

∂ξc
∂xs

∂ξd
.

That is

∂νa

∂xb
=
∂νa

∂ξc
∂ξc

∂xb
=

 1 0 0
0 ro+x1

ro
cosαν sinαν

0 − ro+x1

ro
sinαν cosαν


and

∂xa

∂νb
=
∂xa

∂ξc
∂ξc

∂νb
=

 1 0 0
0 ro

ro+x1 cosαν − ro
ro+x1 sinαν

0 sinαν cosαν

 .

Similarly,

∂νa

∂βb
=
∂νa

∂xc
∂xc

∂βb
=

 1 0 0
0 β1 cosαν sinαν
0 −β1 sinαν cosαν

 ,

∂βa

∂νb
=
∂βa

∂xc
∂xc

∂νb
=

 1 0 0
0 1

β1 cosαν − 1
β1 sinαν

0 sinαν cosαν

 ;

and

∂νa

∂bb
=
∂νa

∂xc
∂xc

∂bb
=

 cosβ2 sinβ2 0
− cosαν sinβ2 cosαν cosβ2 sinαν
sinαν sinβ2 − sinαν cosβ2 cosαν

 ,

∂ba

∂νb
=
∂ba

∂xc
∂xc

∂νb
=

 cosβ2 − cosαν sinβ2 sinαν sinβ2

sinβ2 cosαν cosβ2 − sinαν cosβ2

0 sinαν cosαν

 .

2.4. Elastic strain energy of the osteon. The elastic strain energy is the functional

a =
∫
Ω

εabεcdE
abcd dΩ,

where the differential element of a volume in a curvilinear coordinate system is related to the differentials
of the coordinates by the square root of the determinant of the metric tensor gab, e.g., in the β-frame,

dΩ =
∣∣∣∣ βgab∣∣∣∣ 1

2

d3β = β1dβ1dβ2dβ3,

and the invariant
εabεcdE

abcd

9The Cartesian entries of the elastic and compliance tensor see at [Mar06a].
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must be the function of the integrative coordinates. Nevertheless, components of the acting tensors may
be relevant to any, but for all the same, coordinate system. If specified, in the case of the osteon,

a =

l∫
0

nb∑
ν=1

rν+1∫
rν

β1

2π∫
0

β
εab

β
εcd

∂βa

∂νi
∂βb

∂νj

ν

Eijkl
∂βc

∂νk
∂βd

∂νl
dβ2 dβ1 dβ3,

nb being the number of the osteon lamellae, rν the inner radius of the ν-th lamella, rnb+1 outer radius of
the osteon, and l the regarded length of the osteon.

3. Method of cortical bone analysis

The geometry and internal structure of thigh bone have been described. At the last section a method
of mathematical description of the osteon has been proposed. At this stage let us use the description to
analyse a sample of the cortical bone, e.g., the shaft of a thigh bone.

z1

z2

z3

a1

a2 a3

b1

b2 b3

Figure 9. Relation between the coordinate systems of long bone osteons

3.1. Osteons of a cortical bone. Let us pursue the model according to Fig. 9—something like
a number of osteons embedded in interstitial bone tissue, for our purposes considered as homogeneous
isotropic material. For one osteon it holds that elastic strain energy of the osteon is the functional10

(25) a` =
∫
Ω`

εabε
cdEabcd dΩ,

where, in the β-frame,11

dΩ =
∣∣∣∣ βgab∣∣∣∣ 1

2

d3β = β1dβ1dβ2dβ3.

Now, we must collect the set of osteons into one whole, i.e., into the cylinder of the cortical diaphysis of a
long bone. More for convenience than for absolute accuracy, let us assume the contour of the femur diaph-
ysis as a hollow circular shaft with inner diameter, Ri, and outer diameter, Ro, respectively. The number
of the osteons being n, every one of them, with its own global Cartesian coordinate system (a, b, . . . , n),
consists of a number of lamellae, n` (` = a, b, . . . , n) of known winding angles, α`ν (ν = 1, 2, . . . , n`). Be-
sides the global Cartesian coordinate system of the diaphysis, za, consider the global cylindrical coordinate
system of the diaphysis, θa.

10[Mar06b]
11See once more [Mar06b].
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The elastic energy stored in the hollow cylindrical shaft of the diaphysis, a, may be, as every integral,
decomposed into the sum of integrals over disjunct subsets of the considered part of the diaphysis volume,
Ω. Thus,

a =
∫
Ω

εabεcdE
abcd dΩ +

n∑
`=1

∫
Ω`

εabεcdE
abcd dΩ−

n∑
`=1

∫
Ω`

εabεcdE
abcd dΩ,

Eabcd being the elasticity (stiffness) tensor of the interstitial lamellae modeled as a transversally isotropic
material (this choice will be discussed later), Eabcd elasticity (stiffness) tensor of the osteons as described
at another place, Ω` the volume of `-th osteon. The point of expressing the elastic energy in this way is
the comfortable integration over the osteons with β-frames as the chosen coordinates and over the entire
cross section of diaphysis in the global cylindrical coordinate system of the diaphysis, θa.
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CHAPTER 5

Residual stresses in blood vessels

1. Anatomy of blood vessel

The main function of blood vessels is to transport blood throughout the body. The most important
vessels in the system are the capillaries which are the microscopic vessels enabling the actual exchange
of water and chemicals between the blood and the tissues. The conduit vessels, arteries and veins, carry
blood away from the heart and through the capillaries or back towards the heart.

The arteries and veins, which have the same basic structure, are composed of three different layers. The
innermost layer is called tunica intima. It is made up of one layer of endothelial cells and is supported
by an internal elastic lamina. The middle layer of an artery or vein is known as tunica media. It is
the thickest layer and consists of circularly arranged elastic fiber, connective tissue and polysaccharide
substances. In the case of arteries, the tunica media may contain vascular smooth muscle, which controls
the calibre of the vessel. The outermost layer (tunica adventitia) is entirely made of connective tissue
and contains nerves that supply the muscular layer.

Generally, it may be said that the blood vessels are anisotropic and heterogeneous structures but
they are commonly modeled in a highly simplified manner.

2. Biomechanical models of blood vessel

Predominantly, the blood vessel is modeled as a cylindrical tube made of a homogeneous elastic
material. There are also viscoelastic models but they are not especially popular. The elasticity of blood
vessel is usually expressed in the form of a hyperelastic (Green elastic) material where

Sab =
∂w

∂Eab
,

with w being a strain energy density function.
The most approved models are both the Hooke’s material with the strain energy density function

w =
1
2
EabcdEabEcd

and Zhou-Fung model

w =
c

2
eG

abcdEabEcd ,

where Eabcd and Gabcd are regarded either as isotropic

Eabcd = λgabgcd + µgacgbd + µgadgbc

or othotropic as established above. It is evident that Gabcd is a dimensionless quantity while the constant
c has the unit of stress. The most modern models are based on a linear combination of the two models
just mentioned.

3. Residual strain in blood vessels

Let us determine residual strain in a sector of the blood vessel. The studied sector is a short cylinder
and we are going to study both the state before (left hand side in the Fig. 1) and the state after executing
a cut along the length of the sample (right hand side in the Fig. 1).

Now let us inverse the perspective. The blood vessel with cut be regarded as a state before deformation
and the blood vessel without cut be the state after deformation that was induced by a stress of the amount
of the residual stress implied on the face of the cut. The coordinate system o is to be the space coordinate
system and the coordinate system ξ is to be the material coordinate space that is deformed with the
body. But this time the material coordinate system is uncharacteristically the physical one that means
the one with real units. Namely the coordinate ξ2 represents angle measured in radians.

63



b1

b3 =ξ3

⊗
b2

h
ξ

b1

b2

ξ1

ξ2

�
b3 =ξ3

π

π
2

D
ξ

b1

b3 =o3

⊗
b2

h
o

b1

o1

β

o2

�
b3 =o3

π

π
2

s D
o

Figure 1. Coordinate systems of a prestressed blood vessel

Presuming the stress and consequently the strain is constant throughout the body we may expect
the following relations between the coordinate systems:

ξ1 = δo1,

ξ2 = γo2

and
ξ3 = ηo3,

where

δ =
Do

Dξ
, γ =

π − β
2

π
, η =

ho

hξ
,

with

sin
β

2
=

s

Do
.

As coordinate system b is the cartesian one and the relation between the coordinate systems b and ξ is

b1 = ξ1 cos ξ2,

b2 = ξ1 sin ξ2,

b3 = ξ3,

the metric of the cylindrical coordinate system ξ is

ξ
gab=

∂bc

∂ξa
∂bd

∂ξb
δcd =

 cos ξ2 sin ξ2 0
−ξ1 sin ξ2 ξ1 cos ξ2 0

0 0 1

 cos ξ2 −ξ1 sin ξ2 0
sin ξ2 ξ1 cos ξ2 0

0 0 1

 =

 1 0 0
0
(
ξ1
)2 0

0 0 1

 .

Since the relation between the coordinate systems ξ and o is known we can obtain the metric of the
coordinate system o according the tensor transformation rule

o
gab=

∂ξc

∂oa
∂ξd

∂ob
ξ
gcd=

 δ 0 0
0 γ 0
0 0 η

 1 0 0
0
(
ξ1
)2 0

0 0 1

 δ 0 0
0 γ 0
0 0 η

 =

 δ2 0 0
0 γ2

(
ξ1
)2 0

0 0 η2

 .
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Once the metrics are known the Green-Lagrange-St. Venant strain in the coordinate system ξ is

ξ

Eab=
1
2

(
ξ
gab −

o
gab

)
=

1
2

 1− δ2 0 0
0

(
1− γ2

) (
ξ1
)2 0

0 0 1− η2

 .

4. Residual stress

Let us express the residual stress in the most simple case of the isotropic linear elastic (Hooke’s)
material. In the cylindrical coordinate system the 2nd Piola-Kirchhoff stress tensor is

ξ

Sab=
ξ

Eabcd
ξ

Ecd=

(
λ

ξ

gab
ξ

gcd +µ
ξ

gac
ξ

gbd +µ
ξ

gad
ξ

gbc

)
1
2

(
ξ
gcd −

o
gcd

)
,

where
ξ

gab=
(
ξ
gab

)−2

=

 1 0 0
0
(
ξ1
)−2 0

0 0 1

 .

After rearrangement of the terms in parenthesis we have

2
ξ

Sab=
ξ

gab ((3− gcc)λ+ 2µ)− 2µ
ξ

gac gbc,

where

gbc =
ξ

gbd
o
gdc=

 1 0 0
0
(
ξ1
)−2 0

0 0 1

 δ2 0 0
0 γ2

(
ξ1
)2 0

0 0 η2

 =

 δ2 0 0
0 γ2 0
0 0 η2


and

gcc = δ2 + γ2 + η2.

Thus

2
ξ

Sab=

 1 0 0
0
(
ξ1
)−2 0

0 0 1

 ((3− gcc)λ+ 2µ)− 2µ

 1 0 0
0
(
ξ1
)−2 0

0 0 1

 δ2 0 0
0 γ2 0
0 0 η2


and

2
ξ

Sab=

 (3− gcc)λ+ 2µ
(
1− δ2

)
0 0

0
(
ξ1
)−2 ((3− gcc)λ+ 2µ

(
1− γ2

))
0

0 0 (3− gcc)λ+ 2µ
(
1− η2

)
 .

In the coordinate system normal-tangent-axis, ta, the entries of the stress tensor would have physical
units. The transformation from the ξ coordinate system into the coordinate system normal-tangent-axis
can be obtained utilising the fact that these coordinate systems are aligned, the transformation of metric
is

ξ
gab=

∂tc

∂ξa
∂td

∂ξb
t
gcd

and the latter is cartesian one, which implies

∂ta

∂ξb
=

 1 0 0
0 ξ1 0
0 0 1

 .

Consequently, the stress tensor in the appropriate cartesian coordinate system is
t

Sab=
∂ta

∂ξc
∂tb

∂ξd

ξ

Scd,

i.e.,

t

Sab=
1
2

 (3− gcc)λ+ 2µ
(
1− δ2

)
0 0

0 (3− gcc)λ+ 2µ
(
1− γ2

)
0

0 0 (3− gcc)λ+ 2µ
(
1− η2

)
 .
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CHAPTER 6

Shape analysis of lipid membranes with intrinsic (anisotropic)
curvature – statistical mechanical approach

1. Cell membrane

The cell membrane (also called the plasma membrane, plasmalemma) is a semipermeable lipid bilayer
found in all cells.

The cell membrane surrounds the cytoplasm of a cell and physically separates the intracellular com-
ponents from the extracellular environment, thereby serving a function similar to that of skin. The cell
wall plays mostly a mechanical support role rather than a role as a selective boundary. The cell mem-
brane also plays a role in anchoring the cytoskeleton to provide shape to the cell, and in attaching to the
extracellular matrix to help group cells together in the formation of tissues.

The barrier is selectively permeable and able to regulate what enters and exits the cell, thus facilitating
the transport of materials. The movement of substances across the membrane can be either passive,
occurring without the input of cellular energy, or active, requiring the cell to expend energy in moving
it. The membrane also maintains the cell potential.

Specific proteins embedded in the cell membrane can act as molecular signals that allow cells to
communicate with each other. Protein receptors are found ubiquitously and function to receive signals
from both the environment and other cells. These signals are transduced into a form that the cell can use
to directly effect a response. Other proteins on the surface of the cell membrane serve as markers that
identify a cell to other cells. The interaction of these markers with their respective receptors forms the
basis of cell-cell interaction in the immune system.

The cell membrane consists of a thin layer of amphipathic1 lipids which spontaneously arrange so that
the hydrophobic tail regions are shielded from the surrounding polar fluid, causing the more hydrophilic
head regions to associate with the cytosolic and extracellular faces of the resulting bilayer. This forms a
continuous, spherical lipid bilayer containing the cellular components approximately 7 nm thick, barely
discernible with a transmission electron microscope.

A lipid bilayer or bilayer lipid membrane (BLM) is a membrane or zone of a membrane composed
of lipid molecules (usually phospholipids, see Figs. 1 and 2). The lipid bilayer is a critical component of
all biological membranes, including cell membranes, and so is absolutely essential for all known life on
Earth. Its essential structure was discovered in 1925 by two Dutch physicians, E. Gorter and F. Grendel.

Support for the existence of a lipid bilayer in cell membranes came with the discovery by Alec
Bangham in 1965 that phospholipids, when introduced into an aqueous environment, spontaneously form
liposomes. These are small balloons of lipid bilayer which can entrap polar molecules inside them. The
major force driving the formation of lipid bilayers is the hydrophobic interaction between the tails and
their repulsion by water. Within the interior of the membrane the hydrocarbon tails are arranged, on
average, perpendicular to the plane of the membrane. The properties of the bilayer are influenced by a
variety of factors, including the lipid composition, temperature and membrane pressure.

The widely accepted model for cell membranes is the fluid mosaic model proposed by Singer and
Nicolson in 1972.2 In this model, the cell membrane is considered as a lipid bilayer where the lipid
molecules can move freely in the membrane surface like fluid, while the proteins are embedded in the
lipid bilayer. Some proteins are called integral membrane proteins because they traverse entirely in the
lipid bilayer and play the role of information and matter communications between the interior of the cell
and its outer environment. The others are called peripheral membrane proteins because they are partially
embedded in the bilayer and accomplish the other biological functions.

The first step to study the elasticity of cell membranes is to study lipid bilayers. Usually, the thickness
of the lipid bilayer is much smaller than the scale of the whole lipid bilayer. It is reasonable to describe

1From the Greek αµϕις: both and ϕιλία: love, friendship.
2[SN72]
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Figure 1. Membrane lipids

the lipid bilayer by a mathematical surface. In 1973, Helfrich3 proposed the curvature energy per unit
area of the bilayer

f =
1
2
kb(c1 + c2 − Co)2 + kgc1c2,

where kb and kg are elastic constants, ca (a=1,2) the main curvatures of a mathematical surface repre-
senting the bilayer and Co is a phenomenological parameter called spontaneous curvature. The total free
energy, known as Helfrich energy, is

F =
∫
A
fdA.

2. Intrinsic curvature, anisotropic inclusions and embedded molecules

The system in this chapter analyzed is composed of a continuum of phospholipid molecules into which
anisotropic laterally mobile molecules are embedded. It can be expected that the embedded molecules
may considerably influence the membrane free energy and also the equilibrium vesicle shape (Cf. Fig. 3).
The effect of the embedded molecules on the vesicle shape was also observed in experiments.4

The term inclusion is generally used for an entity consisting of the embedded molecule and some
lipids that are significantly distorted due to the presence of the embedded molecule.

It is imagined that there exists a local membrane shape (and orientation) which fits the inclusion.
We refer to this shape as to the intrinsic shape of the inclusion. The intrinsic shape is represented with
the intrinsic curvature tensor Ba

b in a way described thereinafter.

3. Curvature, curvature tensor and metric

For a plane curve, the curvature at a given point has a magnitude equal to the reciprocal of the radius
of an osculating circle and is a vector pointing in the direction of that circle’s center. The smaller the
radius r of the osculating circle, the larger the magnitude of the curvature (1/r) will be. A straight line
has curvature 0 everywhere; a circle of radius r has curvature 1/r everywhere.

3[Hel73]
4[FKIB+03]
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Figure 2. Phosphatidylcholine – phospholipid molecule

Osculating circle of a curve at a point is a circle which 1) touches the curve at that point, 2) has its
unit tangent vector equal to the unit tangent of the curve at that point and 3) has its derivative of unit
tangent (with respect to arc length) equal to that of the curve at that point; note, the circle and the
curve must be parameterised by arc length.

For a two-dimensional surface embedded in R3, consider the intersection of the surface with a plane
containing the normal vector and one of the tangent vectors at a particular point. This intersection is
a plane curve and has a curvature. This is the normal curvature, and it varies with the choice of the
tangent vector. The maximum and minimum values of the normal curvature at a point are called the
principal curvatures, c1 and c2, and the directions of the corresponding tangent vectors are called principal
directions.

The Gaussian curvature, named after Carl Friedrich Gauss, is equal to the product of the principal
curvatures, c1c2. It has the dimension of 1/length2 and is positive for spheres, negative for one-sheet
hyperboloids and zero for planes. It determines whether a surface is locally convex (when it is positive)
or locally saddle (when it is negative).

The above definition of Gaussian curvature is extrinsic in that it uses the surface’s embedding in R3,
normal vectors, external planes etc. Gaussian curvature is however in fact an intrinsic property of the
surface, meaning it does not depend on the particular embedding of the surface; intuitively, this means
that ants living on the surface could determine the Gaussian curvature. Formally, Gaussian curvature
only depends on the Riemannian metric of the surface.

The mean curvature is equal to the sum of the principal curvatures over 2,

h =
c1 + c2

2
.
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Figure 3. Isotropic vs. anisotropic inclusions

It has the dimension of 1/length. Unlike Gaussian curvature, the mean curvature is extrinsic and depends
on the embedding, for instance, a cylinder and a plane are locally isometric but the mean curvature of a
plane is zero while that of a cylinder is nonzero.

Let us imagine a two-dimensional object (biological membrane) located in the three-dimensional
space. Introducing the curvilinear coordinates (u1, u2) lying on the surface of the membrane, position of
any point on the membrane can be described as:

(26) rrr = rrr(u1, u2) = (x1(u1, u2), x2(u1, u2), x3(u1, u2)),

where xa are cartesian coordinates in the three-dimensional space. At any point of the surface we may
define two tangent vectors rrr1 and rrr2

rrr1 =
∂rrr

∂u1
=
(
∂x1

∂u1
,
∂x2

∂u1
,
∂x3

∂u1

)
,(27)

rrr2 =
∂rrr

∂u2
=
(
∂x1

∂u2
,
∂x2

∂u2
,
∂x3

∂u2

)
(28)
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and a unit normal vector

(29) nnn = ± rrr1 × rrr2

|rrr1 × rrr2|
.

Using the expression for metric tensor aαβ (α, β = 1, 2) from the differential geometry [LR89, SS78],

(30) aαβ = rrrα · rrrβ,
the element area can be expressed as

(31) dA = |aαβ|
1
2 du1du2.

The curvature tensor5

(32) bαβ = −aαγ ∂n
nn

∂uγ
· rrrβ = aαγ∂γ∂βrrr ·nnn,

where aαγ = (aαγ)−1. The main curvatures c1, c2 may be determined as the eigenvalues of the curvature
tensor bαβ . That means that in the coordinate system coinciding with the principal directions, the curvature
tensor is diagonal:

bαβ =
(
c1 0
0 c2

)
.

4. Koiter’s energy for an elastic shell and Helfrich energy for lipid bilayer membrane

At the case of a shell, i.e., three dimensional object with one dimension (thickness, 2ε) approximate
zero (2ε → 0) the three dimensional elastic energy may be expressed in the form of Koiter’s energy for
an elastic shell

Aa =
1
2

∫
ω

2adA

where6

2a =
ε

4
aαβγδ

(
aαβ−

o
aαβ

)(
aγδ−

o
aγδ

)
+
ε3

3
aαβγδ

(
bαβ−

o
bαβ

)(
bγδ−

o
bγδ

)
,

(33) aαβγδ = λ̃aαβaγδ + µ̃aαγaβδ + µ̃aαδaγβ,

and
o
bαβ and

o
aαβ represent the zero energy (natural) state of the shell, i.e., in our setting,

o
bαβ= Bαβ and

o
aαβ= Aαβ,

where Aαβ is the metric of the bilayer without inclusions and Bβ
α the curvature tensor that fits the

inclusions.
The lipid layers represent really interesting material that in bending exhibits, astonishingly, linear

elastic behaviour while in the surface the lipids can move freely, only with the constraint that the area
of the surface is covered with a constant number of lipids, i.e., the area, A, of the layer is constant.
Consequently, the above formulation of the problem

min
aαβ ,b

β
α

Aa

is, possibly, replaced with the problem
min

aαβ ,b
β
α∈B

Fa

where
Fa =

∫
A

f dA

with

(34) f =
1
6
ε3aαβγδmαβmγδ,

and
mαβ = bαβ−

o
bαβ= mβα,

5[Cia05]
6(αβγδ = 1, 2)
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and where
B =

{
aαβ, b

β
α : A = constant

}
.

Now, (33) in (34) leads to

f =
1
6
ε3
(
λ̃mα

αm
β
β + 2µ̃mα

βm
β
α

)
and substitution

k1 = (λ̃+ 2µ̃)
ε3

6
, k2 = 2µ̃

ε3

6
leads to

(35) f = k1m
α
αm

β
β − k2

(
mα
αm

β
β −m

α
βm

β
α

)
what can be written like

f = k1Tr(m)2 − 2k2 det(m).

5. Energy per lipid

Let us look at the elastic energy of a single lipid

(36) E = fAlipid = k̃1m
α
αm

β
β − k̃2

(
mα
αm

β
β −m

α
β

)
,

where
k̃i = kiAlipid (i = 1, 2).

x1

x2

o1

o2

ω

Figure 4. Main cartesian coordinate system of the membrane and inclusion, respectively

At the little area of a single lipid it is possible to use the local Cartesian coordinate system, xa, aligned
with the principal direction of the real curvature of the membrane or the local Cartesian coordinate
system, oa, aligned with the principal direction of the intrinsic curvature of the membrane given by
the principal direction of the curvature of the inclusion. The curvature tensor of the lipid membrane in
coordinate system, xa, is diagonal with principal curvatures on the diagonal:

bαβ =
(
c1 0
0 c2

)
,

while the intrinsic curvature tensor is diagonal in the coordinate system, oa:

Bα
β =

(
C1 0
0 C2

)
.

The coordinate systems xa and oa are not, generally, aligned but rotated with an angle ω, Cf. Fig. 4.
As

x

bγδ=
∂xγ

∂oα
∂oβ

∂xδ

o

bαβ ,

with
∂xγ

∂oα
=
(

cosω − sinω
sinω cosω

)
and

∂oβ

∂xδ
=
(

cosω sinω
− sinω cosω

)
,
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we can write, in the local Cartesian coordinates xa,

mα
β =

(
c1 0
0 c2

)
−
(

cosω − sinω
sinω cosω

)(
C1 0
0 C2

)(
cosω sinω
− sinω cosω

)
.

Using the last expression in (36) together with

sin2 ω =
1
2

(1− cos 2ω), cos2 ω =
1
2

(1 + cos 2ω)

leads onwards to the expression of energy per single lipid in the form

(37) E = a(h−H)2 + b(d2 − 2dD cos 2ω +D2)

where mean curvature
h =

c1 + c2

2
,

intrinsic mean curvature

H =
C1 + C2

2
,

curvature deviator

d =
|c1 − c2|

2
,

intrinsic curvature deviator

D =
|C1 − C2|

2
,

a =
ξ

2
= k̃1 − 2k̃2

and

b =
ξ + ξ∗

4
= 2k̃2.

6. Statistical thermodynamics approach

6.1. Helmholtz free energy of a patch of lipid layer. For the sake of simplicity, let us consider
2 state model, i.e., only two energetic levels: The minimum energy level (cos 2ω = 1):

Emin = a(h−H)2 + b(d2 − 2dD +D2)

and the maximum energy level (cos 2ω = −1):

Emax = a(h−H)2 + b(d2 + 2dD +D2).

Consider a patch of lipid layer consisting of M lipid molecules, N of this number in the state of
maximal energy Emax and M −N in the state of minimal energy Emin. The energy of the patch is then

E = NEmax + (M −N)Emin

or (in the units where kT = 1)

E

kT
=
Ma

kT
(h−H)2 +

Mb

kT
(d2 +D2) +

b(2N −M)
kT

2dD.

The number of states of the patch is
M∑
N=0

M !
N !(M −N)!

and, consequently, the partition function7

Q =
M∑
N=0

M !
N !(M −N)!

e−
E
kT

or

Q = e−
Ma
kT

(h−H)2−Mb
kT

(d2+D2)
M∑
N=0

M !
N !(M −N)!

e−
b(2N−M)

kT
2dD.

7[Hil86]
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Using Newton binomial formula

(x+ y)M =
M∑
N=0

(
M
N

)
xM−NyN ,

(
M
N

)
=

M !
N !(M −N)!

and

coshx =
ex + e−x

2
,

the partition function receive the form

Q =
(

2e−
a
kT

(h−H)2− b
kT

(d2+D2) cosh
(
b

kT
2dD

))M
.

Helmholz free energy of the patch is then8

Fp = −kT lnQ

or

Fp = −kTM
(

ln 2− a

kT
(h−H)2 − b

kT
(d2 +D2) + ln cosh

(
b

kT
2dD

))
.

6.2. Helmholz free energy of the lipid bilayer. To obtain Helmholz free energy of the lipid
bilayer we need to integrate over both outer and inner layer (definition of the sign of curvatures are, as
well as the sign of the intrinsic curvatures, changed with the change of the layer):

F =
∫

Aouter

1
MAlipid,outer

Fp dA+
∫

Ainner

1
MAlipid,inner

Fp dA.

If Alipid,outer = Alipid,inner = Alipid, Aouter = Ainner = A and a = b, i.e., ξ = 2a, then

(38) F =
ξ

Alipid

∫
A

(
(h−H)2 + (d2 +D2)

)
dA− 2kT

Alipid

∫
A

ln
(

2 cosh
(
ξ

kT
dD

))
dA.

7. Minimization of Helmholtz free energy of an axisymetric closed lipid bilayer

7.1. Analytical expression. In the following we shall assume that the surface is axisymmetric. In
the case of rotational symmetry with respect to the axis z, the curvilinear coordinates u1 = ψ and u2 = ϕ
are introduced (Fig. 5). The angle ϕ defines angle of the rotation around the symmetry axis while the
angle ψ corresponds to a site of the meridian. Then

(39) rrr = rrr(ψ) =

 p(ψ) cosψ cosϕ
p(ψ) cosψ sinϕ
p(ψ) sinψ


where p(ψ) is the distance between the center of coordinates and a certain point on the surface given via
the angles ψ and ϕ.

According to Eq. (30), the metric tensor

aαβ = rrrα · rrrβ =
(
rrr,ψ · rrr,ψ rrr,ψ · rrr,ϕ
rrr,ϕ · rrr,ψ rrr,ϕ · rrr,ϕ

)
=
(
p2 + p2

,ψ 0
0 p2 cos2 ψ

)
.

For element area (31) it holds

dA = |aαβ|
1
2 dψdϕ = p cosψ

√
p2 + p2

,ψdψdϕ

and, utilizing axisymmetry,

dA = 2πp cosψ
√
p2 + p2

,ψdψ.

For volume element then

dV = π(p cosψ)2 dz
dψ

dψ = π(p cosψ)2 (p,ψ sinψ + p cosψ) dψ.

8[Hil86]
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x

z

p(ψ)

ψ
⊗
y

x

y

%(ψ)

ϕ
�z

Figure 5. The axisymmetric surface

Curvature tensor (32), utilizing (29)

nnn =
−1√
p2 + p2

,ψ

 p cosψ cosϕ+ p,ψ sinψ cosϕ
p cosψ sinϕ+ p,ψ sinψ sinϕ

p sinψ − p,ψ cosψ


and

aαβ = (aαβ)−1 =

(
1

p2+p2
,ψ

0

0 1
p2 cos2 ψ

)
,

reads

bαβ =
1√

p2 + p2
,ψ

(
2p2
,ψ + p2 − pp,ψψ 0

0 p2 cos2 ψ + pp,ψ cosψ sinψ

)
and

bαβ = aαβbαβ =
1√

p2 + p2
,ψ

 1− p2
,ψ−pp,ψψ
p2+p2

,ψ
0

0 1 + p,ψ
p tanψ

 .

Hence, the mean curvature

h =
1

2
√
p2 + p2

,ψ

(
2−

p2
,ψ − pp,ψψ
p2 + p2

,ψ

+
p,ψ
p

tanψ

)
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and curvature deviator

d =
1

2
√
p2 + p2

,ψ

∣∣∣∣∣p2
,ψ − pp,ψψ
p2 + p2

,ψ

+
p,ψ
p

tanψ

∣∣∣∣∣ .
Consequently, we arrive at the following formulation of the constrained minimization problem for the

Helmholz free energy of an axisymmetric lipid bilayer:

min
%
F,

where

F = 2
2πξ
Alipid

π
2∫

0

(
(h−H)2 + (d2 +D2)− 2kT

ξ
cosh

(
ξ

kT
dD

)
− 2kT

ξ
ln 2
)

dψ,

h =
1

2
√
p2 + p2

,ψ

(
2−

p2
,ψ − pp,ψψ
p2 + p2

,ψ

+
p,ψ
p

tanψ

)
and curvature deviator

d =
1

2
√
p2 + p2

,ψ

∣∣∣∣∣p2
,ψ − pp,ψψ
p2 + p2

,ψ

+
p,ψ
p

tanψ

∣∣∣∣∣ .
with constraints

1) 2

π
2∫

0

2πp cosψ
√
p2 + p2

,ψdψ = A

2) 2

π
2∫

0

π(p cosψ)2 (p,ψ sinψ + p cosψ) dψ = V

3) p ≥ 0.

The constraint 1) takes into account the constant area of the given surface; the constraint 2) the given
volume enclosed within the bilayer; and the 3) is the geometrical constrain.

Let us approximate the function p(ψ) with a Fourier series fulfilling the boundary condition

p,ψ(0) = 0 and p,ψ(
π

2
) = 0.

The appropriate choice might be the trigonometric series

p =
K∑
k=0

ak cos 2kψ.

The constraint minimum of the function F (ak), we try and find applying the genetic algorithm9 on
the minimization of the penalized function

Pk = F +Mk


∣∣∣∣∣∣∣2

π
2∫

0

2πp cosψ
√
p2 + p2

,ψdψ −A

∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣2
π
2∫

0

π(p cosψ)2 (p,ψ sinψ + p cosψ) dψ − V

∣∣∣∣∣∣∣+

π
2∫

0

P (p) dψ

 ,

where
P (p) = 0 if p ≥ 0,

P (p) = −p if p < 0,
and

Mk > 0
such that

lim
k→∞

Mk =∞.

9Cf. http://en.wikipedia.org/wiki/Genetic algorithm
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The GA chromosome of the problem is then

(a1, a2, . . . , aK) .

The problem described above was translated into GNU Octave code with the results of testing
runnings depicted in Figs. 6, 7 and 8.

A = 134µm2

V = 82µm3

Alipid = 60 Å
2

ξ = 20 kT · Alipid

kT = 1

H = 1µm−1

D = 0µm−1

%

z

Figure 6. H = 1µm−1

A = 134µm2

V = 82µm3

Alipid = 60 Å
2

ξ = 20 kT · Alipid

kT = 1

H = 10µm−1

D = 0µm−1

%

z

Figure 7. H = 10µm−1
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A = 134µm2

V = 82µm3

Alipid = 60 Å
2

ξ = 20 kT · Alipid

kT = 1

H = 100µm−1

D = 0µm−1

%

z

Figure 8. H = 100µm−1
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8. The shape analysis of a bilayer lipid nanotube

Let us study the shape of a bilayer lipid nanotube as depicted on Fig. 9.

x

y

z

`

Figure 9. Bilayer lipid nanotube

Analysing the shape we are going to minimize the Helmholtz free energy (38)

F =
ξ

Alipid

∫
A

(
(h−H)2 + (d2 +D2)

)
dA− 2kT

Alipid

∫
A

ln
(

2 cosh
(
ξ

kT
dD

))
dA.

The mean curvature, h, and deviatoric curvature, d, depends on the main curvatures, c1 and c2, in the
already mentioned way

h =
c1 + c2

2
,

d =
|c1 − c2|

2
.

The main curvatures are entries of the diagonal form of the

bαβ = aαγ∂γβrrr ·nnn,
where, as can be viewed from the figure,

rrr = (x, y, z)
and

nnn =
∂`rrr × ∂zrrr
|∂`rrr × ∂zrrr|

=
(x`, y`, 0)× (0, 0, 1)
|(x`, y`, 0)× (0, 0, 1)|

=
(y`,−x`, 0)√
y2
` + x2

`

= (y`,−x`, 0) ,

where we have chosen the pair of curvilinear coordinates `, z. Now

∂αβrrr =
(

(x``, y``, 0) (0, 0, 0)
(0, 0, 0) (0, 0, 0)

)
,

aαβ = ∂αrrr · ∂βrrr =
(
x` y` 0
0 0 1

) x` 0
y` 0
0 1

 =
(

1 0
0 1

)
,

thus

bαβ =
(
x``y` − x`y`` 0

0 0

)
.

Using the geometrical relations
x` = − cosψ

and
y` = sinψ,
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x

y

�z

nnn

dy

−dx

ψ

Figure 10. The definition of the angle ψ

where ψ is the angle made by the outer normal and the positive y-axis (Fig. 10), we get

bαβ =
(
ψ` 0
0 0

)
.

As the regarded nanotube is taken to be infinite the constrains on the volume and area are irrelevant
here and the continuity (periodicity) condition∫

L

ψ` d` = 2π

is replaced by boundary conditions

ψ(0) =
π

2
, ψ(

L

4
) = 0.

The boundary conditions are applied to the quarter in the first quadrant of xy-coordinat system with
tube regarded as symmetrical with respect to horizontal and vertical plane, respectively. The line density
of Helmholtz free energy to be minimized is then

F̃ =
ξ

Alipid

∫
L
4

((
ψ`
2
−H

)2

+
(
ψ`
2

)2

+D2

)
d`− 2kT

Alipid

∫
A

ln
(

2 cosh
(

ξ

2kT
ψ`D

))
d`

and the minimization is to be done without any constrains but the boundary conditions. The necessary
condition of the minimum is

∂L

∂ψ
− d

d`
∂L

∂ψ`
= 0

with

L =
ψ2
`

2
− ψ`H +H2 +D2 − p ln (2 cosh (ψ`s)) ,

where

p =
2kT
ξ

and

s =
ξD

2kT
.

Using the fact that Lagrangean L is independent of ψ, the necessary condition takes the form
∂L

∂ψ`
= K2,

K2 being a constant, and
ψ` − ps tanh (sψ`) = K2 +H = K3
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with, at the case that H is a constant, another constant K3. At the case that H and D, and consequently
also K3 and s, are constants, the last equation is an equation for unknown ψ` with the solution

ψ` = K4,

where K4 is still another constant, and
ψ = K4`+K5.

The constants are evaluated using the boundary conditions as

K4 = −2π
L
, K5 =

π

2
and the solution is

ψ =
π

2
− 2π

L
`

which being connected with the definition of the radian through the substitutions

α =
π

2
− ψ, L = 2πR, αR = `,

identifies the shape as a circular tube with the radius R =
L

2π
.

81





CHAPTER 7

Shape analysis of lipid membranes with intrinsic (anisotropic)
curvature – classical mechanical approach

At this chapter we model the problem described in the last chapter using classical mechanical ap-
proach. Let us start with the expression of the free energy (35)

f = k1m
α
αm

β
β − k2

(
mα
αm

β
β −m

α
βm

β
α

)
with

mαβ = bαβ −Bαβ = ∂α∂βrrr ·nnn−
N∑
i=1

i
Bαβ ·δ(ξa−

i

ξa),

where
i

Bαβ characterizes the intrinsic curvature of an inclusion at the spot
i

ξa and δ(ξa−
i
ξa) is the Dirac

delta function. The last expression is built on the assumption that the natural shape of lipid bilayers is
the planar one.

The model proposed uses the orientational invariants called mean curvature

h =
1
2
bαα, H =

1
2
Bα
α

and Gaussian curvature

k =
∣∣∣bβα∣∣∣ = b11b

2
2 − b12b21, K =

∣∣∣Bβ
α

∣∣∣ = B1
1B

2
2 −B1

2B
2
1 .

As the curvature of the inclusions is characterized by these two invariants, H and K, the problem of
the lipid bilayer shape determination could be formulate as

min
i
ξa,rrr,nnn,Bαβ

Fa

where
Fa =

∫
A

f dA

with constraints on the volume and area of the closed lipid bilayer, the area occupied by the inclusions∫
A

N∑
i=1

δ(ξa−
i

ξa) dA = N · p,

with p ∈ (0, 1) being the measure of allowed overlapping of the inclusions,

i
Bαβ=

i
Bβα,

i

Bα
α= 2H,

∣∣∣∣∣ i

Bβ
α

∣∣∣∣∣ = K,

nnn · ∂αrrr = 0
and

nnn ·nnn = 1.
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CHAPTER 8

Optimization of a fibre composite

1. Stiffness maximization

Start with a one-dimensional spring, Fig. 1, and look at the connection of a force, displacement,
stiffness and work of external forces.

u

F

Figure 1. The spring

For a given force, F , the displacement

u =
F

k
and the work done

W = Fu =
F 2

k
is inversely proportional to the stiffness constant, k. Thus, regarding the force F as a given constant, we
have the equivalence of the problem to maximize stiffness and to minimize the work done by external
forces

max k = minFu.
Accordingly, we can formulate the problem to maximize stifness as

min(f, û),

where (., .) stands for the inner product, f for external forces and û for the displacement in the state of
an elastic equilibrium, i.e., a solution to the Navier-Cauchy equations

(40) Aû = f

as well as a minimizer of the total potential energy:

(41) Π(û) = min
u∈U

Π(u), Π =
1
2

(Au, u)− (f, u),
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U being a set of the statically admissible displacements. Combining (40)

(Aû, û) = (f, û)

with (41)

Π(û) =
1
2

(Aû, û)− (f, û) = −1
2

(f, û),

which means that the solution of the stiffness maximization problem fulfil the following

α̂ = arg min
α

(f, û) = arg max
α

Π(û),

i.e.
α̂ = arg max

α
min
u∈U

Π.

To incorporate the constraints, g = 0, constituting the set U we can build up Lagrangian L = Π +λg
and write down necessary conditions of the extreme:

δL

δu
= 0,

δL

δα
= 0.

These equations are generally nonlinear and not easy to solve. To solve these equations there is a method
called alternating fulfilment of necessary equations based on the following algorithm:

1) Deliberately choose the design variables, α0

2) Using αk solve the elasticity problem,
δL

δu
= 0⇒ uk

3) Using uk solve the optimum condition,
δL

δα
= 0⇒ αk+1

4) If αk = αk+1 you have a solution, otherwise goto item 2)

Unfortunately, this approach does not always converge, but somewhat lengthy manipulation1 leads
to another formultion of the problem

α̂ = arg min
α

min
σ∈C

1
2

∫
Ω
Cabcdσ

abσcd dΩ,

where C is a set of statically admissible stresses, that is valid only at the case of homogeneous kinematic
boundary conditions, but with much better convergence properties.2

2. The simplest problem of fibre composite stiffness maximization

x1

x2 = ν2

x3

ν1

ν3

Figure 2. Fibre composite

1[Mar06c]
2[All02]
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To illustrate the process of optimizing the fibre angle orientation, that may be continually changing
along the length of the fibre, let us suppose the block from Fig. 2, tensioned with uniform stress, σ, in
the direction of the x1 axis, i.e., the stress tensor of the body is

σab =

 σ 0 0
0 0 0
0 0 0


which solves the step 2) of the algorithm. The material properties are orthogonal with main axes of
orthotropy νa. In the coordinate system νa the following relation of stresses to strains holds

ν
εab=

ν
Cabcd

ν

σcd,

where the compliance tensor {
ν

Cabcd

}
{abdcd}

=

=

0BBBBBBBBBBBBBB@

1
E11

0 0 0 − ν21
E22

0 0 0 − ν31
E33

0 1
4G12

0 1
4G12

0 0 0 0 0

0 0 1
4G13

0 0 0 1
4G13

0 0

0 1
4G12

0 1
4G12

0 0 0 0 0

− ν12
E11

0 0 0 1
E22

0 0 0 − ν32
E33

0 0 0 0 0 1
4G23

0 1
4G23

0

0 0 1
4G13

0 0 0 1
4G13

0 0

0 0 0 0 0 1
4G23

0 1
4G23

0

− ν13
E11

0 0 0 − ν23
E22

0 0 0 1
E33

1CCCCCCCCCCCCCCA
.

The ν above the tensor symbol indicates that the symbol does not symbolize an abstract tensor but
that it stands for the tensor components in the ν-frame of reference and {ijdkl} indicate how the entries
are stored in the array, namely that the rows belong successively to the following pairs of indices (ij =
11, 12, 13, 21, 22, 23, 31, 32, 33) and the columns to the couples (kl = 11, 12, . . . , 33).

But now, in the x coordinate system, the stiffness maximization problem of ours may be written, as
the energy is uniform throughout the volume,

min
α
c,

where

c =
x

σab
x

Cabcd

x

σcd= σ
x

C1111 σ.

Using the transformation rule
x

Cabcd=
∂νi

∂xa
∂νj

∂xb
∂νk

∂xc
∂νl

∂xd

ν
Cijkl,

i.e.,
x

C1111=
∂νi

∂x1

∂νj

∂x1

∂νk

∂x1

∂νl

∂x1

ν
Cijkl,

x
C1111=

`
cos2 α 0 cosα sinα 0 0 0 sinα cosα 0 sin2 α

´ ν
Cabcd

ff
{abdcd}

0BBBBBBBBBBB@

cos2 α
0

cosα sinα
0
0
0

sinα cosα
0

sin2 α

1CCCCCCCCCCCA
.

Thus,

c = σ2

(
cos4 α

1
E11

+ cos2 α sin2 α

(
1
G13
− ν31

E11
− ν13

E33

)
+ sin4 α

1
E33

)
.

The necessary condition
∂c

∂α
= 0

reads
cos3 α sinαA1 + cosα sin3 αA2 = 0,

with

A1 =
1
G13
− ν31

E11
− ν13

E33
− 2
E11
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and
A2 =

2
E22

+
ν31

E11
+
ν13

E33
− 1
G13

.

The last condition permits the following solutions:
1) α̂1 = ±π

2 with c1 = σ2

E33

2) α̂2 = 0, π with c2 = σ2

E11

3) α̂3,4 = arctan
(
±
√
−A1
A2

)
.

Which one of the solutions of necessary conditions is solution of the stiffness maximization problem
depends on numerical values of the material characteristics and should be decided from the numerical
values of the object function c or the study of the second derivative.3

3. Stiffness maximization of plates

Using the elasticity principles described above we can formulate the problem of stiffness maximization
at the case of laminated multilayer Kirchhoff plates of symetric layout in symbolic form as4

1) The elasticity problem
P abcdwcd = qab

2) The necessary condition of optimum

wabwcdR
abcd(αν) = 0

where wab represents Fourier series expansion coefficients of the perpendicular displacement and Rabcd(αν)
are functions of the design parameters, αν , standing for the layer orientation, see Fig. 3. The loading is
expanded into Fourier series with coefficients, qab.

There is only space for citing a few results of the described problem in this lecture. The results of
stiffness maximization of the laminate plate are quoted in Figs 3 through 7 where there are descriptions
of the loading conditions in the caption of the figures and the optimal angles of layer orientations in the
figures (only one half of the symmetric plates is depicted).5

x

y

α1

ν = 1

α1 = −45◦

ν = 2

α2 = 45◦

Figure 3. Square plate of four layers loaded by q = qo sin πx
a sin πy

b (Permutation of layout
is possible)

3[Mar05]
4[Mar04]
5[Mar06c]
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x

y

α

ν = 1ν = 1 α1 = 0◦

ν = 2ν = 2 α2 = 0◦

ν = 3ν = 3 α3 = 0◦

Figure 4. Rectangular plate (1:2) of six layers loaded by q = qo sin πx
a sin πy

b

x

y

α1

ν = 1

α1 = −45◦

ν = 2

α2 = 45◦

ν = 3

α3 = 45◦

Figure 5. Square plate of six layers loaded by q = qo sin 2πx
a sin 2πy

b (All other layouts
are possible as well)

x

y

α

ν = 1ν = 1 α1 = −15◦

ν = 2ν = 2 α2 = 18◦

Figure 6. Rectangular plate (1:2) of four layers loaded by q = qoxy (The inverse layout is equivalent)

x

y

α

ν = 1ν = 1 α1 = 14◦

ν = 2ν = 2 α2 = −20◦

ν = 3ν = 3 α3 = 14◦

Figure 7. Rectangular plate (1:2) of six layers loaded by q = qoxy (The other layouts are equivalent)
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4. Stiffness maximization of thick-walled anisotropic elliptic tube

At this section we are going to maximize the stiffness, by choosing winding angle of the fibre, of the
thick walled fibre wound, and thus anisotropic, elliptic tube analyse in Chapter 2. The tube is optimized
for three different loadings. First, under a pulling force, F , see Fig. 1, distributed evenly along the lower
face. Second and third, with shearing forces T1 (a force in the direction of the axis b1) and T2 (having
direction of the b2), respectively. Both of the last two forces are evenly distributed as well. Following the
scheme of the alternative fulfilment of necessary condition method to perform the analysis is necessary.
As this was done in Chapter 2 we can approach the necessary condition of stiffness maximum.

4.1. Stiffness maximization. Applying the method of alternating fulfilment of necessary condi-
tions as described above leads to the necessity to solve two problems.

(1) The problem of elasticity as already solved in the form

A = K−1P

(2) The stiffness maximum condition,
∂Π
∂α

= 0,

i.e.,
1
2
AT
∂K

∂α
A = 0,

that represents, at the regarded case, one equation and we can solve it numerically, e.g., using
Bisection method.

At the last equation

∂K

∂α
=

`∫
0

2π∫
0

t∫
0

(B-Gam)’*
∂Ex

∂α
*(B-Gam)*sqrt(det(gx))d3x,

∂Ex

∂α
=

∂
x

Eabcd

∂α


abdcd

,

∂
x

Eabcd

∂α
=
(
αai
∂xb

∂νj
∂xc

∂νk
∂xd

∂νl
+
∂xa

∂νi
αbj
∂xc

∂νk
∂xd

∂νl
+

+
∂xa

∂νi
∂xb

∂νj
αck
∂xd

∂νl
+
∂xa

∂νi
∂xb

∂νj
∂xc

∂νk
αdl

) ν

Eijkl,

where

αab =
∂

∂α

[
∂xa

∂νb

]
=
∂xa

∂bc
∂bc

∂ξd
∂

∂α

[
∂ξd

∂νb

]
,

∂

∂α

[
∂ξd

∂νb

]
=

 0 0 0
0 − sinα − cosα
0 cosα − sinα

 .

The last equations are stated only as a demonstration of the simplicity of the approach. For full
understanding of the symbols, one must look at more detailed description of the preceding analysis.6

4.2. Optimized winding angles. Using the above described procedure we arrive at the following
results. At the case of the pulling force, F3, the stiffness maximizing angle seems to be 90◦. For the
shearing force T1 the angle is 0◦ and for the shearing force T2 it is ±45◦, see Fig. 8. Even at this simple
one parametric case, there is necessity at every step to choose the appropriate solution of the equation
from the second step of the algorithm (as there is more than one solution of this equation.)

6[Mar08]
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Figure 8. The optimum angle α for given loadings

5. Concluding remarks

As the problem of the last section is a one-parametric one, and thus an easy one, we can check
the results by direct evaluation of the objective function in a set of discrete points. It must be stated
the computation time was similar at both cases. The results were essentially the same. But, of course,
the method of alternative fulfilment of the necessary condition is of universal usage even at the case
of multilayer (multiparameter) problems. The pointwise method must be at such a case substituted by
another method, e.g., Genetic Algorithms. As shown in the case of plates and tubes,7 such an approach
costs much more computation time and increase of uncertainty of the quality of the solution.

7[Mar06c]
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