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January 4, 2016

1 Composite materials

What composite materials are and how they are made see
http://en.wikipedia.org/wiki/Composite material.

2 Mechanics

Mechanics (in Greek Mηχανικη) is a branch of physics dealing with the move-
ment of bodies and its causes. Mechanics is based on two sets of axioms. They
are either Newton’s laws of motion or the principle of least action. Starting with
Newton’s laws we can, using variational methods, easily obtain the principle of
least action and vice versa.
Just a reminder:
Newton’s law of inertia (it defines inertial frame) F = 0⇔ a = 0
Newton’s law of force and acceleration F = ma
Newton’s law of action and reaction

−→
F =-

−→
R

and on the other hand the principle of least action says the path taken by a

body (or a system) minimizes the action S =

∫ t2

t1

Ldt

where the Lagrangian L = T − V
In our lectures we are interested only in statics (a = 0) of deformable bodies of
a special kind, namely bodies obeying the Hooke’s law σab = Eabcdεcd

3 Hooke’s law

The last expression of Hooke’s law is writen in tensor notation nevertheless we
will use the Voigt’s notation1 σ = Eε

1http://en.wikipedia.org/wiki/Voigt notation
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i.e.




σ11
σ22
σ33
σ23
σ31
σ12




=




E11 E12 E13 E14 E15 E16

E21 E22 E23 E24 E25 E26

E31 E32 E33 E34 E35 E36

E41 E42 E43 E44 E45 E46

E51 E52 E53 E54 E55 E56

E61 E62 E63 E64 E65 E66







ε11
ε22
ε33
2ε23
2ε31
2ε12




It seems there are 36 independent entries in E

As strain energy u =
1

2
σ′ε

and 2u = σ′ε = ε′E′ε
and at the same time 2u = ε′σ = ε′Eσ
it follows E = E′

and that there are 21 independent entries

namely




σ11
σ22
σ33
σ23
σ31
σ12




=




E11 E12 E13 E14 E15 E16

E12 E22 E23 E24 E25 E26

E13 E23 E33 E34 E35 E36

E14 E24 E34 E44 E45 E46

E15 E25 E35 E45 E55 E56

E16 E26 E36 E46 E56 E66







ε11
ε22
ε33
2ε23
2ε31
2ε12




It holds true for every lineary elastic material. We call it Hooke’s law for
anisostropic material. In what follows we will study material symmetries.

4 Monoclinic material

In mechanics of composite materials we study symmetry in other way than in
crystallography. What we call monoclinic material is a material that have one
plane of material symmetry in point like sense. What I meen is the fact that
Hooke’s law in the stated form is point like and to state material symmetry it
is sufficient to study this Hooke’s law. We call a plane of material symmetry
such a plane with respect to which both stress and strain is either symetric or
anisotropic (both the same).

4.1 Monoclinic material with the plane of symmetry being
plane 12

Let us say, in 123 coordinate system, the plane 12 is the plane of symmetry.
Then to insure the material symmetry the entries of E that bind the entries of
symmetric stress and antisymmetric strain and vice versa should be equal zero.
And so the stiffness matrix must be like




σ11
σ22
σ33
σ23
σ31
σ12




=




E11 E12 E13 0 0 E16

E12 E22 E23 0 0 E26

E13 E23 E33 0 0 E36

0 0 0 E44 E45 0
0 0 0 E45 E55 0
E16 E26 E36 0 0 E66







ε11
ε22
ε33
2ε23
2ε31
2ε12
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4.2 Monoclinic material with the plane of symmetry being
plane 23

If the plane 23 is the plane of symmetry then




σ11
σ22
σ33
σ23
σ31
σ12




=




E11 E12 E13 E14 0 0
E12 E22 E23 E24 0 0
E13 E23 E33 E34 0 0
E14 E24 E34 E44 0 0
0 0 0 0 E55 E56

0 0 0 0 E56 E66







ε11
ε22
ε33
2ε23
2ε31
2ε12




4.3 Monoclinic material with the plane of symmetry being
plane 31

If the plane 31 is the plane of symmetry then




σ11
σ22
σ33
σ23
σ31
σ12




=




E11 E12 E13 0 E15 0
E12 E22 E23 0 E25 0
E13 E23 E33 0 E35 0
0 0 0 E44 0 E46

E15 E25 E35 0 E55 0
0 0 0 E46 0 E66







ε11
ε22
ε33
2ε23
2ε31
2ε12




A monoclinic material has 13 independent material characteristics.

5 Orthotropic materal

An orthotropic material is a material that have three mutually perpendicular
planes of symmetry, let us say 12,23,31. As every one of the three above men-
tioned monoclinic cases holds there is just one way




σ11
σ22
σ33
σ23
σ31
σ12




=




E11 E12 E13 0 0 0
E12 E22 E23 0 0 0
E13 E23 E33 0 0 0
0 0 0 E44 0 0
0 0 0 0 E55 0
0 0 0 0 0 E66







ε11
ε22
ε33
2ε23
2ε31
2ε12




An orthotropic material thus has 9 independent material characteristics.

6 Transverse isotropic material

If there is an axis such that every plane containing this axis is a plane of ma-
terial symmetry then this material is called transverse isotropic material. This
material has 5 independent characteristics as may be shown using rotational
transformation about the axis of symmetry.
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7 Isotropic material

It is symetric with respect to every plane and there are only 2 independent
material characteristics.
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8 Orthotropic material in more detail

Elasticity tensor Eabcd and compliance tensor Cabcd
Ciarlet, P. G. (2005)

Mareš, T. (2006)

Isotropic material

Eabcd = λgabgcd + µgacgbd + µgadgbc
(λ, µ — Lamé coefficients)

Orthotropic block
Young modulus in the direction ν1

E11 =
σ11

ε1
1

Poisson ratios

ν12 = −ε
1
2

ε1
1

, ν13 = −ε
1
3

ε1
1

Similarly in the direction of ν2

E22 =
σ22

ε2
2

, ν21 = −ε
2
1

ε2
2

, ν23 = −ε
2
3

ε2
2

and of ν3

E33 =
σ33

ε3
3

, ν31 = −ε
3
1

ε3
3

, ν32 = −ε
3
2

ε3
3

Strain in the ν1 excited by all normal stresses
ε11 = ε1

1 + ε2
1 + ε3

1

ε11 =
σ11

E11

− ν21
σ22

E22

− ν31
σ33

E33

Similarly in the other directions (G23, G31)

ν1

ν2

before deformation

ν3

after deformation

∝ ε1
1

∝
ε
1
3

2

∝
ε1 2 2

the stress

σ11

Pure shear
From the definition
ε12 = ε21

the equilibrium equation

σ12 = σ21
σ12 = σ12 = G12(ε12 + ε21)

ν1

ν2

ν3
⊗

σ12

σ21

�

∝
ε 2

1

∝ε12

At the tensor notation. . . 15 ∈ 34

Compliance tensor Cabcd Ciarlet, P. G. (2005)
Mareš, T. (2006)

in Cartesian coordinate system νa

alined with the principal material axes of the orthotropic material




ε11

ε12

ε13

ε21

ε22

ε23

ε31

ε32

ε33




=




1
E11

0 0 0 − ν21
E22

0 0 0 − ν31
E33

0 1
4G12

0 1
4G12

0 0 0 0 0

0 0 1
4G13

0 0 0 1
4G13

0 0

0 1
4G12

0 1
4G12

0 0 0 0 0

− ν12
E11

0 0 0 1
E22

0 0 0 − ν32
E33

0 0 0 0 0 1
4G23

0 1
4G23

0

0 0 1
4G13

0 0 0 1
4G13

0 0

0 0 0 0 0 1
4G23

0 1
4G23

0

− ν13
E11

0 0 0 − ν23
E22

0 0 0 1
E33







σ11

σ12

σ13

σ21

σ22

σ23

σ31

σ32

σ33




⇔

ν
εab =

ν

Cabcd
ν

σcd

Cabcd = Ccdab = Cbacd
⇒

Energy
⇒

Equilibrium

Elasticity tensor Eabcd. . . 16 ∈ 34
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9 Plane stress of an orthotropic material

Plane stress is a stress state where σ3a = 0. Then we can, in the main coordinate
system of orthotropy, write εεε = CCCσσσ, i.e.




ε11
ε22
2ε12


 =




1
EL

−νTLET 0

−νLTEL
1
ET

0

0 0 1
GLT






σ11
σ22
σ12




or the inverse relation



σ11
σ22
σ12


 =

1

1− νLT νTL




EL νLTET 0
νTLEL ET 0

0 0 GLT (1− νLT νTL)






ε11
ε22
2ε12




Symbolically σσσ = EEEεεε
The matrix CCC is called Compliance matrix and matrix EEE is called Stiffness
matrix.

10 2D vector Cartesian transformation

x1
-

x2

6
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-

bbb
6

Let us have a vector vvv and two vectors aaa and bbb such that vvv = aaa+ bbb
The coordinates of vectors vvv, aaa and bbb in the coordinate system xa are respec-

tively
x
vvv=

(
a
b

)
,
x
aaa=

(
a
0

)
and

x

bbb=

(
0
b

)

In the coordinate system νa the vector aaa has coordinates
ν
aaa=

(
a cosα
−a sinα

)

vector bbb has coordinates
ν

bbb=

(
b sinα
b cosα

)

and vector vvv
ν
vvv=

ν
aaa +

ν

bbb=

(
a cosα+ b sinα
−a sinα+ b cosα

)

Thus we have coordinate transformation of a vector in the form
ν
vvv= TTT νx

x
vvv
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where the transformation matrix TTT νx =

(
cosα sinα
− sinα cosα

)

For the inverse transformation
x
vvv= TTT xν

ν
vvv

the transformation matrix is inverse TTT xν = TTT−1νx =

(
cosα − sinα
sinα cosα

)

11 Transformation of Voigt stress vector

As the stress is second order tensor we must at first look at second order tensor
transformation. Direct multiplication of two first order tensor may be represen-

teted as matrix multiplication of components
ν
vvv
ν
vvv
T

Using transformation rules stated above
ν
vvv
ν
vvv
T

= TTT νx
x
vvv
x
vvv
T
TTTTνx

For the stress tensor then
(
σ11 σ12
σ21 σ22

)

ν

=

(
cosα sinα
− sinα cosα

)(
σ11 σ12
σ21 σ22

)

x

(
cosα − sinα
sinα cosα

)

Executing multiplication on the right site gives (using σ12 = σ21)

(
σ11 σ12
σ21 σ22

)

ν

=

=

(
σx11 cos2 α+ 2σx12 sinα cosα+ σx22 sin2 α (σx22 − σx11) sinα cosα+ σx12(cos2 α− sin2 α)

(σx22 − σx11) sinα cosα+ σx12(cos2 α− sin2 α) σx11 sin2 α− 2σx12 sinα cosα+ σx22 cos2 α

)

Rearranging




σν11
σν22
σν12


 =




cos2 α sin2 α 2 sinα cosα
sin2 α cos2 α −2 sinα cosα

− sinα cosα sinα cosα cos2 α− sin2 α






σx11
σx22
σx12




Symbolically
ν
σσσ= TTTσνx

x
σσσ

Inverse transformation
x
σσσ= TTTσxν

ν
σσσ

can be obtained both TTTσxν = (TTTσνx)
−1

and TTTσxν(α) = TTTσνx(−α)
which leads to

TTTσxν =




cos2 α sin2 α −2 sinα cosα
sin2 α cos2 α 2 sinα cosα

sinα cosα − sinα cosα cos2 α− sin2 α




12 Transformation of Voigt strain vector

Strain tensor has the same structure as stress tensor and so the transformation
of Voigt strain vector would by the same as the transformation of Voigt stress
vector as long as the structure of the vectors is the same. But it is not. There
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is 2ε12 instead of ε12 in the last entry. This factor of 2 must be incorporated in
the transformation matrix which leads to the transformation matrices

TTT ενx =




cos2 α sin2 α sinα cosα
sin2 α cos2 α − sinα cosα

−2 sinα cosα 2 sinα cosα cos2 α− sin2 α




TTT εxν =




cos2 α sin2 α − sinα cosα
sin2 α cos2 α sinα cosα

2 sinα cosα −2 sinα cosα cos2 α− sin2 α


 = (TTTσνx)T

13 Stiffness matrix transformation

As
x
σσσ=

x

EEE
x
εεε=

x

EEE TTT εxν
ν
εεε

ν
σσσ=

ν

EEE
ν
εεε

and
ν
σσσ= TTTσνx

x
σσσ= TTTσνx

x

EEE TTT εxν
ν
εεε

it holds
ν

EEE= TTTσνx
x

EEE TTT εxν = TTTσνx
x

EEE (TTTσνx)T

For inverse transformation...

14 Compliance matrix transformation

Similarly
x
εεε= ...

15 Composite micromechanics

Given the micromechanical geometry and the material properties of each con-
stituent, it is possible to estimate the effective composite material properties
and the micromechanical stress/strain state of a composite material.
Thus, for fibre composite we can estimate...

16 Strength theories for filamentary composite
materials

17 Composite laminate – layup nomenclature

A laminate is an organized stack of uni-directional composite plies (uni-directional
meaning the plies have a single fiber direction rather than a weave pattern). The
stack is defined by the fiber directions of each ply like this:
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�y -x

?
z

ν = N
ν = N − 1

ν = 1
ν = 2
ν = 3

z0
z1

zN−1
zN

⊗z

ν = 1

-x

?
y

α1 < 0

ν = 2

α2 > 0

ν = 3

Such laminates are often described by an orientation code [α1/α2/α3/α4]
For example [0/-45/90/45/0/0/45/90/-45/0]
Short hand [0/-45/90/45/0]s
Other examples of short hand [0/90]4
or [0/±45/90], [0/452/30]
etc.

18 Equilibrium equation of a laminated plate (a
laminate)

�y -x

-x �dx
?

z

?

6

h

ν = N
ν = N − 1

ν = 1
ν = 2
ν = 3

z0
z1

zN−1
zN

⊗x -y

-
y

�
dy

?
z

ν = N
ν = N − 1

ν = 1
ν = 2
ν = 3

z0
z1

zN−1
zN

⊗z -x

?
y

α1 < 0

-x �dx

?

6

y
d
y

Cut out the element dx×dy

and apply the internal forces and moments

as resultants of applied stresses
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y
��

���

x-

z
?

σxx(x+ dx, z, y)-
σxy
�

σxz?σyy
�

σyz?

σyx-

h

6

?

As h is finite the stresses are unknown functions of z. On the other hand the
dimensions dx and dy are infinitesimally small and we may approximate the
functions according to Taylor series σab(x+ dx, y, z) = σab + σab,xdx
and σab(x, y + dy, z) = σab + σab,ydy
where by σab we understand σab = σab(x, y, z)
Now, to write equilibrium equations we need forces and moments acting upon
the element. The acting generalized forces are the resultants of the stresses

Nxx =

∫ h
2

−h2
σxxdz

Nyy =

∫ h
2

−h2
σyydz

Nxy =

∫ h
2

−h2
σxydz

Nyx =

∫ h
2

−h2
σyxdz

Qxz =

∫ h
2

−h2
σxzdz

Qyz =

∫ h
2

−h2
σyzdz

Mxx =

∫ h
2

−h2
zσxxdz

Myy =

∫ h
2

−h2
zσyydz
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Mxy =

∫ h
2

−h2
zσxydz

Myx =

∫ h
2

−h2
zσyxdz

From the definition of these quantities we see that they are not forces or moments
but in fact linear densities of these forces and moments. To get a real forces we
need to multiply them by the width of the appropriate area of the element.
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The forces acting in the x-direction and the equilibrium equation

y
�����

x-

z
?

Nxx +Nxx,xdx-Nxx�

Nyx�

Nyx+Nyx,ydy
-

Nxx,x +Nyx,y = 0 (x)

The forces acting in the y-direction and the equilibrium equation

y
�

����

x-

z
?

Nxy +Nxy,xdx
�

Nxy
*

Nyy
*

Nyy +Nyy,ydy�

Nxy,x +Nyy,y = 0 (y)
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The forces acting in the z-direction and the equilibrium equation

y
�����

x-

z
?

Qxz +Qxz,xdx?

Qxz

6

Qyz +Qyz,ydy
?

Qyz
6

p = p(x, y)
?

?
?

?
?

?
?

?
?

?

?
?

?
?

?

?
?

?
?

?

?
?

?
?

?
p+Qyz,y +Qxz,x = 0 (z)

The moments acting in the x-direction and the equilibrium equation

y
�

����

x-

z
?

Mxy +Mxy,xdx�Mxy -

Myy -

Myy+Myy,ydy
�

+resultant moment
of the couple Qyz-Qyz

Mxy,x +Myy,y −Qyz = 0 (mx)
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The moments acting in the y-direction and the equilibrium equation

y
�����

x-

z
?

Mxx +Mxx,xdx
�

Mxx
*

Myx
*

Myx +Myx,ydy�

+resultant moment
of the couple Qxz-Qxz

Mxx,x +Myx,y −Qxz = 0 (y)

Puting these equilibrium equations together we get Mab,ab = −p
and Nab,a = 0 where a, b = x, y
There are three equations for six unknown. We need a compatibility equation.
The most common one is Kirchhoff hypothesis resulting in Classical lamination
theory.

19 Classical lamination theory

In Classical lamination theory we assume Kirchhoff hypothesis that says that
points on a normal to an undeformed middle plane stay on a normal to the
deformed middle plane.
Following the Kirchhoff hypothesis shown on the figure below

uo = uo(x, y)
vo = vo(x, y)

w = wo = w(x, y)
u = uo − zw,x
v = vo − zw,y
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�y -x

?
z

rAorBo6?z

rArB-u
-uo

w,x

w,x

��z

Kirchhoff hypothesis?

w(x, y)

⊗x -y

?
z

rAorBo6?z

rArB-v
-vo

w,y

w,y

��z

Kirchhoff hypothesis?

w(x, y)

From Cauchy’s strain tensor formula εab =
1

2
(ua,b + ub,a)

we have εxx = u,x = uo,x − zw,xx
εyy = v,y = vo,y − zw,yy

εxy =
1

2
(uo,y + vo,x)− zw,xy

εzx = 0
εyz = 0
εzz = 0

The last expression is in contrariety with the assumption of plane stress. . .
Now, we are to express the stresses using the Hooke’s law for plane stress state.
Why plane stress when the Kirchhoff hypothesis leads to plane strain we will

discuss later. According to (..) we have
x
σσσ=

x

EEE
x
εεε

where
x
σσσ=




σxx
σyy
σxy




and
x
εεε=




εxx
εyy
εxy


 =




uo,x
vo,y

1
2 (uo,y + vo,x


− z




w,xx
w,yy
w,xy


 = εεεo + zκκκ

Note the change in the ± sign due to the definition of the curvature vector κκκ.

For the generalized forces NNN =

∫ h
2

−h2

x
σσσ dz =

∫ h
2

−h2

x

EEE (εεεo + zκκκ)dz

or, as εεεo and κκκ do not depend on z, NNN = AAAεεεo +BBBκκκ

where AAA =

∫ h
2

−h2

x

EEE dz =

N∑

ν=1

∫ zν

zν−1

TTTσxν(αν)
ν

EEE TTT ενx(αν)dz
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and BBB =

∫ h
2

−h2
z
x

EEE dz =

N∑

ν=1

∫ zν

zν−1

zTTTσxν(αν)
ν

EEE TTT ενx(αν)dz

i.e. BBB =

N∑

ν=1

z2ν − z2ν−1
2

TTTσxν(αν)
ν

EEE TTT ενx(αν)

Similarly for the moments MMM =

∫ h
2

−h2
z
x
σσσ dz =

∫ h
2

−h2
z
x

EEE (εεεo + zκκκ)dz

or, as εεεo and κκκ do not depend on z, MMM = BBBεεεo +DDDκκκ

where DDD =

∫ h
2

−h2
z2

x

EEE dz =

N∑

ν=1

∫ zν

zν−1

z2TTTσxν(αν)
ν

EEE TTT ενx(αν)dz

i.e. DDD =

N∑

ν=1

z3ν − z3ν−1
3

TTTσxν(αν)
ν

EEE TTT ενx(αν)

20 Symmetric laminate

Symmetric laminate is a laminate for which for every ν there is a µ such
that αν = αµ and zν = −zµ−1
Then BBB = 0
and NNN = AAAεεεo

MMM = DDDκκκ
Using (here) and (there) we get Dabcdwabcd = p
and Aabcdu

o
c,ad = 0

Add comment on coupling...

21 Balanced laminate

22 Solved problems not only on BBB = 0 case

23 Buckling analysis of laminated plates

Let us consider symmetric laminate BBB = 0. For this case we have from above
Dabcdw,abcd = 0

Nab,a = 0
These equations of equilibrium have been derived under the undeformed geom-
etry configuration. As in the case of column buckling we need to look at the
case of deformed shape.
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�y -x

?
z

?

w(x, y)

yNxq
w,x

q
Nx +Nx,xdx

q
w,x + w,xxdx

The contribution to the z-direction equilibrium equation

−Nxdy w,x + (Nx +Nx,xdx)(w,x + w,xxdx)dy −Nydxw,x +Ny +Ny,ydy)(w,y + w,yydy)dx

⊗x -y

?
z

?

w(x, y)

yNyq
w,y

q
Ny +Ny,ydy

q
w,y + w,yydy

y

��
���

���
���

x-

z ?

w,xi

Nxy

w,x + w,xydy

q
Nxy +Nxy,ydy

���

w ,y �
Nxy

�� w,y + w,yxdx

	Nxy +Nxy,xdx

−Nxyw,ydy + (Nxy +Nxy,xdx)(w,y + w,yxdx)dy

−Nxyw,xdx+ (Nxy +Nxy,ydy)(w,x + w,xydy)dx

The Figures above show forces whose components in the z-direction are zero
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if the element is in undeformed position. Nevertheless, if deformed, as on the
Figures, there are nonzero components in the direction. That means the equi-
librium equation in the z-direction Dabcdw,abcddxdy = pdxdy
has the following additional terms (after using Nab,a = 0 and O(3) = 0) on its
right side: Dabcdw,abcd = p+Nabwab

24 Buckling of plates–solved example

For one layered and orthotropic plate with ν ‖ x loaded as shown in the figure
and simply supported we have the following.

?y

-x

-

-

-

-

-

-

�

�

�

�

�

�

F

� -a

?

6

b

In the Lamé equation of equilibrium Dabcdw,abcd = p+Nabwab

we have Dabcd =

∫ h
2

−h2

x

Eabcd z
2dz

where
x

Eabcd=
ν

Eabcd=




E∗L 0 0 νTLE
∗
L

0 GLT GLT 0
0 GLT GLT 0

νLTE
∗
T 0 0 E∗T


 , E∗T,L =

ET,L
1− νLT νTL

further Nx = −F,Ny = 0, Nxy = 0, p = 0
Thus we get D1w,xxxx +D12w,xxyy +D2w,yyyy = −Fw,xx
where D1 =

E∗Lh
3

12
, D12 =

νTLE
∗
Lh

3

12
+
νLTE

∗
Th

3

12
+

4GLTh
3

12
, D2 =

E∗Th
3

12
Let as look for the solution using Fourier series expansion

w =

∞∑

n,k=1

wnk sin
nπx

a
sin

kπy

b

Using in our Lamé equation
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∞∑

n,k=1

wnk

(
D1

(nπ
a

)4
+D12

(nπ
a

)2(kπ
b

)2

+D2

(
kπ

b

)4

−F
(nπ
a

)2
)

sin
nπx

a
sin

kπy

b
= 0

As functions sin
nπx

a
sin

kπy

b
are linearly independent, there are possible solu-

tions Fnk =
D1

(
nπ
a

)4
+D12

(
nπ
a

)2 (kπ
b

)2
+D2

(
kπ
b

)4
(
nπ
a

)2

The corresponding eigenmodes are sin
nπx

a
sin

kπy

b

25 Sandwich beam theory

26 Thermal deformation of simple composite beams

26.1 Bimetal–A beam made of two materials

Consider a beam made of two different materials unloaded by any force or
external moment but undergoing a change in temperature (see the Fig.)

Neutral axis r

y

ry1 < 0 C1

ry2 > 0 C2

b

h1

h2

1st material: E1, α1

2nd material: E2, α2

The material properties are described by the Young’s modulus (E1, E2) and
coefficient of thermal expansion (α1, α2).
As the beam is unloaded by external forces the overall internal normal force, N ,
and bending moment, Mb, are zero:

N = 0,Mb = 0

Let us suppose that the Bernoulli’s hypothesis holds:

ε = ky

where k is the curvature and y the coordinate.
The strain can be decomposed into its elastic and thermal parts:

ε = εelastic + εthermal =
σ

E
+ α∆T
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That gives
σ = Eky − Eα∆T

For the normal force we then have

N =

∫

A

σ dA =

∫

A1

σ1 dA+

∫

A2

σ2 dA

N =

∫

A1

E1ky dA−
∫

A1

E1α1∆TdA+

∫

A2

E2ky dA−
∫

A2

E2α2∆TdA

i.e.
N = E1kQ1 − E1α1∆TA1 + E2kQ2 − E2α2∆TA2

where Q1 and Q2 are the first moment of area of the cross-section of the 1st
and 2nd material with respect to the Neutral axis, respectively.
For the bending moment we can write

Mb =

∫

A

yσ dA =

∫

A1

yσ1 dA+

∫

A2

yσ2 dA

Mb =

∫

A1

E1ky
2 dA−

∫

A1

yE1α1∆TdA+

∫

A2

E2ky
2 dA−

∫

A2

yE2α2∆TdA

i.e.
Mb = E1kI1 − E1α1∆TQ1 + E2kI2 − E2α2∆TQ2

where I1 and I2 are second moment of area with respect to the Neutral axis of
the respective areas.
As N = 0 and Mb = 0 we have the conditions fixing the position of the Neutral
axis and the curvature, k, which in the case of the rectangular cross-section
gives

k =
6E1E2(h1 + h2)h1h2(α1 − α2)∆T

E2
1h

4
1 + 4E1E2h31h2 + 6E1E2h21h

2
2 + 4E1E2h1h32 + E2

2h
4
2

26.2 A two material beam with doubly symmetric cross-
section

Let us study the thermal deformation of a two material beam with doubly
symmetric cross section with the aim to design a beam without thermal change
in its length.
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r
Material 1: E1, α1

r
Material 2: E2, α2

∆

The hypothesis is that the displacement, ∆, is constant across the cross-section
and consequently the strain, ε, is constant along the whole body:

ε = εelastic + εthermal =
σ

E
+ α∆T = a constant

The internal normal force, N , is zero as there are not external forces applied:

N =

∫

A

σ dA =

∫

A1

σ1 dA+

∫

A2

σ2 dA

N =

∫

A1

E1(ε− α1∆T ) dA+

∫

A2

E2(ε− α2∆T ) dA = 0

Consequently,

ε =
α1E1A1 + α2E2A2

E1A1 + E2A2
∆T

As there are carbon fibres with a negative coefficient of thermal expansion it is
possible to arrange the dimensions and composition of the beam in such a way
that the fraction vanishes and the beam has a zero thermal expansion.

27 Deformation of loaded beams made of two
parallel parts

Let us consider a beam composed of two parallel beams as shown at the Figure:
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r
v

1st beam: E1, I1

2nd beam: E2, I2r x

q(x)

27.1 Unbound case

First, consider the case of free conection, i.e. the case when the two parts can
freely slice on each orther surface. In this case we can regard it as two Bernoulli
beams with an identical displacements and an additional distributed load as a
result of action and reaction as seen in the following figure.

v

1st beam: E1, I1

r x

q(x)

−w(x)

2nd beam: E2, I2

w(x)

For the two beams we have two equilibrium equations (valid for Bernoulli’s
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hypothesis and constant EI along the length of the beam)

E1I1v
IV
1 = q − w (1)

E2I2v
IV
2 = w (2)

and compatibility conditions

v1 = v2 = v and, consequently, vIV1 = vIV2 (3)

where v1 and v2 are the displacements, E1 and E2 are the Young’s moduli,
and I1 and I2 are the second moments of area of the upper and lower beam,
respectively.

rC1 a1

C1 is the centre of the cross-sectional area of the
first beam

I1 is the second moment of the first beam’s area
with respect to the axis a1

rC2 a2 C2 is the centre of the cross-sectional area of the
first beam

I2 is the second moment of the first beam’s area
with respect to the axis a2

Using the equations of equilibrium (5 and 7) in the compatibility condition (3)
gives

q − w
E1I1

=
w

E2I2

i.e.

w = q
E2I2

E1I1 + E2I2
(4)

As q > 0⇒ w > 0 there is not a gap between the two beams.
Inserting w given by (4) into either (5) or (7) leads to

vIV =
q

(EI)eq

where
(EI)eq = E1I1 + E2I2

27.2 Ideally bound case

Now, let us consider the same beam but ideally bounded together. Once more
we assume the Bernoulli hypothesis, ε = ky, only this time for the whole beam
with one common Neutral axis that is not generally passing through the centroid
of the cross-section.
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Neutral axis r

y

ry1 < 0 C1

ry2 > 0 C2

b

h1

h2

1st material: E1, I1, A1

2nd material: E2, I2, A2

q(x)

Neutral axis r

y

ry1 < 0 C1

ry2 > 0 C2

b

h1

h2

strain ε

Neutral axis r

y

ry1 < 0 C1

ry2 > 0 C2

b

h1

h2

stress σ

σ1 = E1ε = E1ky

σ2 = E2ε = E2ky

The position of the neutral axis is given by the fact that the resultant axial
force, N , is zero due to the chosen supports:

N =

∫

A1

σ1 dA+

∫

A2

σ2 dA = 0

where A1 and A2 is the cross-sectional area of material 1 and 2, respectively.
Thus

E1

∫

A1

y dA+ E2

∫

A2

y dA = 0
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i.e.
E1Q1 + E2Q2 = 0

where Q1 and Q2 is the first moment of the cross-sectional area 1 and 2 with
respect to the Neutral axis, respectively. The last equation gives the origin of
coordinate y.
Moment-curvature relationship is based on the expression of the bending
moment as an integral of elementary bending moments

Mb =

∫

A1

yσ1 dA+

∫

A2

yσ2 dA = kE1

∫

A1

y2 dA+ kE2

∫

A2

y2 dA

that is
Mb = k(E1J1 + E2J2)

where
J1 = I1 + y21A1

is the second moment of the cross-sectional area A1 with respect to the Neutral
axis and

J2 = I2 + y22A2

is the second moment of the cross-sectional area A2 with respect to the same
Neutral axis.
In the case of small deformations the curvature can be approximated by k = −v′′
and the differential equation for deflection is

v′′ = − Mb

(EJ)eq

where the equivalent stiffness

(EJ)eq = E1J1 + E2J2 = E1(I1 + y21A1) + E2(I2 + y22A2)

Using the curvature k in the stress formulas gives

σ1 = Mb
E1

(EJ)eq
y

σ2 = Mb
E2

(EJ)eq
y
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27.3 Elastically bound case

NA1

NA2

r
y1r
y2

ryC1 C1

ryC2 C2

b

h1

h2

E1, I1, A1

E2, I2, A2

∆NA
∆C

ε1

ε2

N1

N2

M1

M2

r x dx

Let us assume that both parts of the beam obey the Bernoulli’s hypothesis

ε1 = ky1 and ε2 = ky2

where the curvature, k, is the same for both parts as for small deformations
k = −v′′ and the deflection, v, is supposed to be the same for both parts. The
coordinates y1 and y2 originates at the two respective neutral axes, NA1 and
NA2, as seen at the Figure above.
The connection between the two parts is assumed to be elastic with the shear
stress at the interface given by

τ = g(εinterface1 − εinterface2 )

where g is a spring constant and εinterfacea (a = 1, 2) are the respective normal
strains at the two parts at the point of the interface.
Let us cut two elements of the length dx. First, from the upper part of the
beam.

x dx

E1, I1, A1

N1 N1 + dN1

τ

The equilibrium equation

dN1 − τbdx = 0

where b is a width of the beam at
the interface

The internal normal force, N1 is given by integrating the stress, σ1 = E1ε1, over
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the cross-sectional area of the upper part of the beam, A1

N1 =

∫

A1

σ1 dA = E1k

∫

A1

y1 dA = E1kQ1

where Q1 = yC1A1 is the first moment of the area A1 with respect to the neutral
axis of the upper part of the beam, NA1.
Using N1 in the equilibrium equation leads to

d

dx
(kyC1)E1A1 − bgk(yinterface1 − yinterface2 ) = 0 (5)

where note that yC1 (as well as yC2 and ∆NA = yinterface1 −yinterface2 ) is a function
of x, i.e., the neutral axis is not, generally, at the same place at every cross-
section.
Now, cut the element of the lower part:

x dx

E2, I2, A2

N2 N2 + dN2

τ
The equilibrium equation

dN2 + τbdx = 0

The two equilibrium equations imply N1 = −N2 that is

E1A1yC1 + E2A2yC2 = 0 (6)

Also using

N2 =

∫

A2

σ2 dA = E2k

∫

A2

y2 dA = E2kQ2

where Q2 = yC2A2, in the last equilibrium equation gives

d

dx
(kyC2)E2A2 + bgk∆NA = 0 (7)

As N1 = −N2 there is a force couple, N2∆NA, adding to the resulting bending
moment

Mb = Mb1 +Mb2 +N2∆NA

Using the stress expression above leads to

Mb = E1k

∫

A1

y21 dA+ E2k

∫

A2

y22 dA+ E2kyC2A2∆NA
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and
Mb = k(E1J1 + E2J2 + E2yC2A2∆NA) (8)

where
J1 = I1 + y2C1A1 and J2 = I2 + y2C2A2

I1 and I2 being the second moments of area with respect to the two principal
central axis.
There is also a geometric condition (as seen in the Figure)

yC1 + ∆C − yC2 = ∆NA (9)

There are five equations, four of them linearly independent, (5–9) for four un-
known functions, k, yC1, yC2 and ∆NA.
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