Lecture notes on Mechanics of composite
materials

Tomas Mares

January 4, 2016

1 Composite materials

What composite materials are and how they are made see
http://en.wikipedia.org/wiki/Composite material.

2 Mechanics

Mechanics (in Greek Mnyavikn) is a branch of physics dealing with the move-
ment of bodies and its causes. Mechanics is based on two sets of axioms. They
are either Newton’s laws of motion or the principle of least action. Starting with
Newton’s laws we can, using variational methods, easily obtain the principle of
least action and vice versa.

Just a reminder:

Newton’s law of inertia (it defines inertial frame) F=0&a=0
Newton’s law of force and acceleration F=ma
Newton’s law of action and reaction ?:—ﬁ

and on the other hand the principle of least action says the path taken by a
ta

body (or a system) minimizes the action S = Ldt
t
where the Lagrangian L=T- 1%
In our lectures we are interested only in statics (a = 0) of deformable bodies of
a special kind, namely bodies obeying the Hooke’s law o = pabedg

3 Hooke’s law

The last expression of Hooke’s law is writen in tensor notation nevertheless we
will use the Voigt’s notation! o= Fe

Thttp://en.wikipedia.org/wiki/Voigt_notation



o11 By Eips Ei3 Eu Eis Eig €11

022 Esy Eay FEaz3 Esy Eas Eog €22
e o33 | _ | Es1 Esy Ess FEss Ess Esg €33
023 Eyn By FEiz Eu Eis Egg 2e93
031 Es1 Eso FEs3 FEsqy Ess Esg 2e31
o12 E¢1 FEe2 Fez Fea FEes FEegs 2e12
It seems there are 36 independent entries in F
As strain energy u= 50'5
and Qu=oce=¢FEe
and at the same time 2u = ¢’oc = ¢'Eo
it follows E=F
and that there are 21 independent entries
o11 Enn Ei2 Ei3 Euw Eis Egg €11
022 Ei12 Ez FEx3 Eoy Eas Eag €22
033 Ei3 FEo3 FE3z3 FEzy Ezs FEsg €33
namely o3 | | Fuu Fau Esyx FEu Ess Egg 2e23
031 Evs FEas Ezs Eys Ess Esg 2e31
o12 Ei¢ FEos FE3zs FEis Esg FEsgs 2e12

It holds true for every lineary elastic material. We call it Hooke’s law for
anisostropic material. In what follows we will study material symmetries.

4 Monoclinic material

In mechanics of composite materials we study symmetry in other way than in
crystallography. What we call monoclinic material is a material that have one
plane of material symmetry in point like sense. What I meen is the fact that
Hooke’s law in the stated form is point like and to state material symmetry it
is sufficient to study this Hooke’s law. We call a plane of material symmetry
such a plane with respect to which both stress and strain is either symetric or
anisotropic (both the same).

4.1 Monoclinic material with the plane of symmetry being
plane 12

Let us say, in 123 coordinate system, the plane 12 is the plane of symmetry.
Then to insure the material symmetry the entries of £ that bind the entries of
symmetric stress and antisymmetric strain and vice versa should be equal zero.
And so the stiffness matrix must be like

011 £y Bz Ei3 0 0 E €11
0922 Eis Ep Exz 0 0 Eg €22
o33 | | Eiz FEa Eszz 0 0 Es €33
023 - 0 0 0 E44 E45 0 2823
031 0 0 0 E45 E55 0 2631
o12 Eig FEx FEzs O 0  Ege 2e12



4.2 Monoclinic material with the plane of symmetry being
plane 23

If the plane 23 is the plane of symmetry then

011 Eynn Eip Ei3 Ey 0 0 €11
0922 Ei2 Ezp FEaz3 FEoy 0 0 €22
o33 | _ | Fiz Eo3 Es3 Ez 0 0 €33
o3 | | Fia FEou Ess Esun 0 0 2e93
031 0 0 0 0 E55 E56 2631
g12 0 0 0 0 E56 E66 2612

4.3 Monoclinic material with the plane of symmetry being

plane 31
If the plane 31 is the plane of symmetry then
o11 Eyw Eip Ez3 0 Es 0 €11
022 Eis Eg FEx3 0 FEyp 0 €22
o33 | _ | Bz FEoz Eszz 0 Kz 0 €33
0923 0 0 0 E44 0 E46 2523
031 Eis Eys FEzs 0 Ess 0 2e31
012 0 0 0 E46 0 EGG 2812

A monoclinic material has 13 independent material characteristics.

5 Orthotropic materal

An orthotropic material is a material that have three mutually perpendicular
planes of symmetry, let us say 12,23,31. As every one of the three above men-
tioned monoclinic cases holds there is just one way

011 Eyn Bz Ei3 0 0 0 €11
0922 Ei; Eyp FExz 0 0 0 €22
o33 | _ | Ews FEas Eszz 0 0 0 €33
0923 0 0 0 E44 0 0 2623
031 0 0 0 0 E55 0 2631
012 0 0 0 0 0 E66 2612

An orthotropic material thus has 9 independent material characteristics.

6 Transverse isotropic material

If there is an axis such that every plane containing this axis is a plane of ma-
terial symmetry then this material is called transverse isotropic material. This
material has 5 independent characteristics as may be shown using rotational
transformation about the axis of symmetry.



7 Isotropic material

It is symetric with respect to every plane and there are only 2 independent
material characteristics.



8 Orthotropic material in more detail

Elasticity tensor £%°? and compliance tensor Cypeq 5 O S
Isotropic material (A 1 — Lamé coefficients) P < /'l,

Eabcd — )\gabgcd + ugacgbd + /Lgadgbc ’/,,/
Orthotropic blOCk before deformation

;| after deformation
T

Young modulus in the direction ! =
ol —
FEy = 7 - the stress
€1 ol
Poisson ratios
1 1 : = vl
) €3 :
Vig = ——, Vi3 = —73% -
€] €1 -1
Er X &y
Similarly in the direction of 1? e
o2 &2 2 k/?<
By = 5 Va=——%, V=73
€5 €3 €5
) L 1 .
and of v 33 3 3 Strain in the v' excited by all normal stresses
o I g5 _ 1, .2, .3
E33:737 Vs = ——3, Vsp=——3 e =¢& +te+¢&
€3 &3 £ ot % o3
21 11 = —/— — U — V31 /=
- o 11 21 31
Pure shear Vz@ o By oy Fiss
F"’?]Zhe:de;';'t"’" / 12 Similarly in the other directions (Gy3, G31)
the equilibrium equation | 12 . 12 __
. 1 0" =07"=Gr(c2+en
0.12 — 0.21 i X E12 l/l ( )
1/‘5 15 € 34
Compliance tensor Cabcd CIARLET, P. G. (2005)

MARES, T. (2006)
in Cartesian coordinate system v*
alined with the principal material axes of the orthotropic material

1 V21 V31
€11 B (1) 0 (1) “5 U 0 0 -5 o1
€12 0 o ? rrer i 0 ) 0 0 012
€13 0 ? 4G5 ? 0 0 1G13 0 0 013
€a 0 w, 0 1o 0 0 0 0 0 o1
€99 = —%121 0 0 0 i 0 0 0 —%‘i 0922
€93 0 0 0 0 0 E 0 ﬁ 0 093
€31 0 0 40113 0 0 0 40113 0 0 031
€32 0 0 0 0 0 1 523 0 3 (}23 0 032
€33 —42 0 0 0 - 0 0 0 g o33
v
14 v d
Eab = Cabcd o°
Cabcd - C(cdab = C(bacd
ﬂ R oy .
Energy Equilibrium

16 € 34



9 Plane stress of an orthotropic material

Plane stress is a stress state where o3, = 0. Then we can, in the main coordinate

system of orthotropy, write

1 _vrL
€11 EL Er
e — _vLr 4
22 — EL Er
2512 0 0
or the inverse relation
o11 1 Ly viTET
022 = ﬁ vrrLEr, Er
o192 LTYTL 0 0
Symbolically

The matrix C is called Compliance matrix and matrix E is called

matrix.

e=0Co, i.ec.
0 011
0 g922
# O’
Gir 12
0 €11
0 €22
Grr(1 —vervrr) 2e12
o=FEe

Stiffness

10 2D vector Cartesian transformation

2

v
A
o
“a xt
Let us have a vector v and two vectors a and b such that v=a-+b

The coordinates of vectors v, @ and b in the coordinate system z® are respec-

xr
tively v= Z),Zz(%)andbz(?)
In the coordinate system v® the vector a has coordinates a= < _aacgisnaa

vector b has coordinates

and vector v

[ (

Thus we have coordinate transformation of a vector in the form

a

acosa + bsina
—asina + bcos «



—Smaoa  CoS«
x

. . cosa  sina
where the transformation matrix T,, = ( .

For the inverse transformation
cosa —sina

ve sinae  cos«

=)
|

the transformation matrix is inverse T, =T, = (

11 Transformation of Voigt stress vector

As the stress is second order tensor we must at first look at second order tensor

transformation. Direct multiplication of two first order tensor may be represen-

teted as matrix multiplication of components w

. . v T zxT T
Using transformation rules stated above vw =T, w T,,

For the stress tensor then
011 012 _ cosa  Sina 011 012 cosa —sina
o211 022 ), —sina  cos«o o211 022 ), sine  cos«

Executing multiplication on the right site gives (using 012 = 021) ( o1 012 > =
14

021 022
x 2 20T, si ; T 2 T T\ o . T 2 2
_ oy cos® o + 207, sina cos a + 0%, sin” « (0% — o) sinacos a + o7, (cos® a — sin® )
- x x : x 2 1.2 T qin2 T o x 2
(0%, — ofy) sinacos a + o7, (cos® o — sin® ) oy sin” o — 207, sin a cos a + 0%, cos® «
Rearranging
o1 cos? sin? o 2sin avcos o o
05y | = sin? o cos? o —2sinacos o 05
0y —sinacosa sinacosa  cos?a —sin® a 0
licall 0=T3, o
Symbolically 0=1y0
. x o v
Inverse transformation o=T7, 0
. o __ o \—1
can be obtained both TS, =(T7,)
o __ o
and T:EV(a) - Tl/a:(_a)
which leads to
2 -2 .
cos” o sin® o —2sinacosa
T, = sin? a cos? a 2sin a cos o
sinacosa —sinacosa cos®a —sin®a

12 Transformation of Voigt strain vector

Strain tensor has the same structure as stress tensor and so the transformation
of Voigt strain vector would by the same as the transformation of Voigt stress
vector as long as the structure of the vectors is the same. But it is not. There



is 215 instead of €15 in the last entry. This factor of 2 must be incorporated in
the transformation matrix which leads to the transformation matrices

cos? a sin? o sin a cos o
T, = sin? o cos? « — sin « cos o

—2sinacosa 2sinacosa  cos?a — sin? a

cos® a sin? o — sin v cos a
T:, = sin? a cos? o sin a cos a = (T°,)"
2sinacosa —2sinacosa cos? a — sin?
13 Stiffness matrix transformation
z Tg T v
As oc=Fe=F Til;e
_o=E¢
and ) Ej TS, o= T}, ET:, £
it holds E=T° ET:, =T, E (T°,)"
For inverse transformation...
14 Compliance matrix transformation
Similarly E= ...

15 Composite micromechanics

Given the micromechanical geometry and the material properties of each con-
stituent, it is possible to estimate the effective composite material properties
and the micromechanical stress/strain state of a composite material.

Thus, for fibre composite we can estimate...

16 Strength theories for filamentary composite
materials

17 Composite laminate — layup nomenclature
A laminate is an organized stack of uni-directional composite plies (uni-directional

meaning the plies have a single fiber direction rather than a weave pattern). The
stack is defined by the fiber directions of each ply like this:



v =1 >

v =2 1
y v =3 T
e o

= o

/
z a1<0‘r

P2
JO&Q >0
v=1
v =2
Y
v=3

Such laminates are often described by an orientation code [a1/an/as/ay)
For example [0/-45/90/45/0/0/45/90/-45/0]
Short hand [0/-45/90/45/0]s
Other examples of short hand [0/90]4
or [0/£45/90], [0/452/30]
etc.

18 Equilibrium equation of a laminated plate (a

laminate)
= & = :
< v =3 ;a,: x@ v =3 ;y
T — N1 = N1
x da ; Y dy
Y Y " A
s
a; <0 T
=
=)
el

Cut out the element dzxdy

AN

as resultants of applied stresses

and apply the internal forces and moments



—> Ua:m(-r +dz, z, y)

|

As h is finite the stresses are unknown functions of z. On the other hand the
dimensions dz and dy are infinitesimally small and we may approximate the

functions according to Taylor series

and

Uab(.%‘ + dx? Y, Z) =0ab + Uab7:vdx

oap(®,y +dy, 2) = 0ap + Oapydy

where by o, we understand
Now, to write equilibrium equations we need forces and moments acting upon
the element. The acting generalized forces are the resultants of the stresses

10

Oab

NZCI)

N,

yy —

= Uab(xvya Z)

h
2
= / Oprdz

I
[l
> Wl
q
D)
<
o,
N



h
2
Mmy:/ 205ydz

ENCRY

My, = / X 20yzdz

2
From the definition of these quantities we see that they are not forces or moments

but in fact linear densities of these forces and moments. To get a real forces we
need to multiply them by the width of the appropriate area of the element.

11



The forces acting in the z-direction and the equilibrium equation

| N

NyztNyz ydy

NTT,T + Ny.r,y =0 (X)

The forces acting in the y-direction and the equilibrium equation

Nay,z + Nyy,y =0 (v)

12



The forces acting in the z-direction and the equilibrium equation

.l| | l| ) l| | l|
M *l”l

T

-
-~
~

==]

| Qyz + Qyz,y
|
~ J_ - T

Y

| |p:p(fr7y)
—

Qrz T Qrz,xdx

p+ Qyz,y + Q:vz,w =0 (Z)

The moments acting in the z-direction and the equilibrium equation

Hresultant moment

of theI couple Q.-Qy

- —

Myy,z + Myy,y — Qy- =0 (mx)

—— Mgy + My pdx

13



of theI couple Q;,-Qx-

The moments acting in the y-direction and the equilibrium equation

Hresultant moment

t M'Er,r + Myr,y - sz =0 (Y)
|
|
| o
- T
]y’r’tl g
Mz T Myz ,ydy

|

R

z
Puting these equilibrium equations together we get Map,ap = —p
and Ngp,qa = 0 where a,b =x,y

There are three equations for six unknown. We need a compatibility equation.
The most common one is Kirchhoff hypothesis resulting in Classical lamination
theory.

19 Classical lamination theory

In Classical lamination theory we assume Kirchhoff hypothesis that says that
points on a normal to an undeformed middle plane stay on a normal to the
deformed middle plane.

Following the Kirchhoff hypothesis shown on the figure below

U = Uo(T,Yy)

Vo = Vo(Z, Y)

w=w, =w(x,y)

U= Uy — 2W g

V= Vp — 2Wy

14



1
From Cauchy’s strain tensor formula Eab = §<ua’b + Upq)

we have Eox = Uz = Uo gz — 2W gy

Eyy = Vy = Vo,y — ZW yy

Eay = 5(“03; + Vo,z) = 2W zy

w:O
€y =10
€., =0

The last expression is in contrariety with the assumption of plane stress. ..
Now, we are to express the stresses using the Hooke’s law for plane stress state.
Why plane stress when the Kirchhoff hypothesis leads to plane strain we will

discuss later. According to (..) we have o=F¢
. ULUI
where o= | oyy
Oy
" Exx Uo,x Wz
and E= | &yy | = Vo,y —z| wyy | =€+ 2K
Eay %(uo,y t Vo Wy
Note the change in the + sign due to the deﬁnition of the curvature vector k.
h
For the generalized forces N = / odz = E (€0 + 2zK)dz
—h
or, as €, and k do not depend on z, N Ae, + Bk
where A= E dz = Z/ TS, (o) E T . (a,)dz
-3

15



Zv

2T7 (o) lVE' T (a,)dz

N
and B/ngdzZ

N 22 52 ) v
. €. B = z v T? v ET& v
e > H T (0) BT
Similarly for the moments M= / zodz= / 2 E (e, + 2zk)dz
_h _h
or, as €, and k do not depend on z, ’ ’ M = Be, + D&
n N . .
where D= 2Ed-= Z/ 22T9, () ETE,(a,)dz
-% v=1"7%v-1
N 3,3 . v
D= Eore () ETE, (o,

20 Symmetric laminate

Symmetric laminate is a laminate for which for every v there is a p such

that ay = ay and z, = —z,1
Then B=0
and N = Ae,

M = Dk
Using (here) and (there) we get DapcaWabed = p
and Aabcdugyad =0

Add comment on coupling...

21 Balanced laminate
22 Solved problems not only on B =0 case

23 Buckling analysis of laminated plates

Let us consider symmetric laminate B = 0. For this case we have from above
Dabcdw,abcd =0
Nab,a =0
These equations of equilibrium have been derived under the undeformed geom-
etry configuration. As in the case of column buckling we need to look at the
case of deformed shape.

16



z w(z,y) z w(z,y)

Ng + Ny odz Ny + Ny, dy
The contribution to the z-direction equilibrium equation

—Nydyw g + (N + Ny pda)(w z + w gpde)dy — Nydzw » + Ny + Ny, dy)(w,, + w gy dy)de

/ —Nyyw ydy + (Npy + Npy odz)(w y + w ypda)dy
Yy

—Nyyw 2dz + (Noy + Nay ydy) (w2 + 0 gydy)dz

Zy,ydy

The Figures above show forces whose components in the z-direction are zero

17



if the element is in undeformed position. Nevertheless, if deformed, as on the
Figures, there are nonzero components in the direction. That means the equi-

librium equation in the z-direction Dapedw gbeqdrdy = pdedy
has the following additional terms (after using Ngp, = 0 and O(3) = 0) on its
I‘lght side: Dabcdw,abcd =p+ Napwap

24 Buckling of plates—solved example

For one layered and orthotropic plate with v || « loaded as shown in the figure
and simply supported we have the following.

a
| — — — — — — —1 x;
1 =
— |—
< | | I
|
Y
In the Lamé equation of equilibrium DabedW,abed = P + NapWap
h
2 T
we have Dapeq = Eopeq 22dz
h
-3
E; 0 0 wvrLEL
x v 0 Grr Grr 0 Er
here Egpea=FEapca= aE* =
WHETE Babed bed 0 Grr Grr 0 L= 1 v vTL
vprEpr 0 0 E%
further Ny=—-F,N,=0,N;, =0,p=0
Thus we get D zaza + D12W oy + DoW yyyy = —FW 2
E*h3 I/TLfa*h3 Z/LTE* h3 4GLTh3 Ex h3
h Dy=—L— Dy = L - Dy = —F
WHere ! 12 2 T2 T T

Let as look for the solution using Fourier series expansion

o0
. nmx ., kmy
w = E Wnpk SIn —— sin —=
a b
n,k=1
Using in our Lamé equation

18



3 e (01 () o0 ()" () 0 () = () s 22 252 <

n,k=1

nwx km
As functions sin — sin Ty are linearly independent, there are possible solu-
a

Dy (5) D () (5) "+ (5)

2
nm
()
. . . nmx . kmy
The corresponding eigenmodes are sin —— sin o
a

tions For =

25 Sandwich beam theory

26 Thermal deformation of simple composite beams

26.1 Bimetal-A beam made of two materials

Consider a beam made of two different materials unloaded by any force or
external moment but undergoing a change in temperature (see the Fig.)

b
<0
Ist material: Ey, 0q Neutral axis el LG hy
>0
2nd material: Fs, as 92 —°02 ha

Y

The material properties are described by the Young’s modulus (FE7, Es) and
coefficient of thermal expansion (a1, as).

As the beam is unloaded by external forces the overall internal normal force, N,
and bending moment, Mj, are zero:

N=0,M,=0
Let us suppose that the Bernoulli’s hypothesis holds:
e=ky

where k is the curvature and y the coordinate.
The strain can be decomposed into its elastic and thermal parts:

(o
€ = Eelastic T Ethermal = E +aAT

19



That gives
o = Fky — EaAT

For the normal force we then have

Nz/UdA:/ 0'1dA-|—/ oo dA
A A1 As

N = E1 ]Cy dA — ElalATdA + Egk’y dA — EQOQATdA
A Ay Az Az
i.e.
N = Elel - ElalATAl + EQ]CQQ - EQQQATAQ

where @1 and @2 are the first moment of area of the cross-section of the 1st
and 2nd material with respect to the Neutral axis, respectively.
For the bending moment we can write

Mb:/yodA:/ yaldAJr/ yoo dA
A Ay Az

M, = | Ejky*dA— / yEBioy ATdA + | Eoky*dA — / yEyas ATdA
Al A2

A1 A2
i.e.

Mb = Elkll — EloélATQl + E2]€IQ — EQO{QATQQ
where I1; and I> are second moment of area with respect to the Neutral axis of
the respective areas.
As N =0 and M, = 0 we have the conditions fixing the position of the Neutral
axis and the curvature, k, which in the case of the rectangular cross-section
gives

k o 6E1E2(h1 + hg)hlhg(al - OZQ)AT
" E2h} + 4B, Exh3hy + 6By Eah2h2 + AE, Eahyh3 + E2h4

26.2 A two material beam with doubly symmetric cross-
section

Let us study the thermal deformation of a two material beam with doubly
symmetric cross section with the aim to design a beam without thermal change
in its length.

20



Material 1: Fq, aq

Material 2: Fs, as A

The hypothesis is that the displacement, A, is constant across the cross-section
and consequently the strain, €, is constant along the whole body:

o
€ = Eelastic T Ethermal = I + aAT = a constant

The internal normal force, IV, is zero as there are not external forces applied:

Nz/UdA: 0'1dA-|—/ oy dA
A Aq As

N = El(E—OélAT) dA—|— EQ(E—OQAT) dA=0
A1 A2
Consequently,
c— OzlElAl + a2E2A2 AT
E A + By A,

As there are carbon fibres with a negative coefficient of thermal expansion it is
possible to arrange the dimensions and composition of the beam in such a way
that the fraction vanishes and the beam has a zero thermal expansion.

27 Deformation of loaded beams made of two
parallel parts

Let us consider a beam composed of two parallel beams as shown at the Figure:

21



1st beam: FEq, I3
2nd beam: Fs, I

N
v

27.1 Unbound case

First, consider the case of free conection, i.e. the case when the two parts can
freely slice on each orther surface. In this case we can regard it as two Bernoulli
beams with an identical displacements and an additional distributed load as a

result of action and reaction as seen in the following figure.
/—_’

2nd beam: FEs, I

N

For the two beams we have two equilibrium equations (valid for Bernoulli’s

22



hypothesis and constant EI along the length of the beam)

Elflva =q—w (1)
Byl =w (2)

and compatibility conditions
v; = vy = v and, consequently, v!¥ = vlV (3)

where v; and v are the displacements, F; and F, are the Young’s moduli,
and I; and I are the second moments of area of the upper and lower beam,
respectively.

(1 is the centre of the cross-sectional area of the

first beam

i Ci_ | a1 I is the second moment of the first beam’s area
with respect to the axis a;

I _.QZ_ _9% (5 is the centre of the cross-sectional area of the
first beam

I is the second moment of the first beam’s area
with respect to the axis as

Using the equations of equilibrium (5 and 7) in the compatibility condition (3)
gives

q—w w
Eil, By
i.e.
w EsI> (@)

- quh + Eb

As ¢ > 0 = w > 0 there is not a gap between the two beams.
Inserting w given by (4) into either (5) or (7) leads to

where

(EI)eq = E11 + Eolp

27.2 Ideally bound case

Now, let us consider the same beam but ideally bounded together. Once more
we assume the Bernoulli hypothesis, e = ky, only this time for the whole beam
with one common Neutral axis that is not generally passing through the centroid
of the cross-section.

23



] ™~
q(x)
b
A |
. <0 \C
] astmaterial: B 1A | Newtlaxis 4| |I
>0
2nd material: Es, Is, As Y2 —102 ho
y |
b
strain € |
y1 <0 \C
o _g/__ _ Neutralaxis ———1——% | |M
/£ ezl 6|,
y |
b
stress o |
<0 C
o _:g_/_ _ Neutralaxis —————4"_| |k
o1 = E1€ = Elky 1
09 = Foe = Ezky y2 >0 102 h
2
y |

The position of the neutral axis is given by the fact that the resultant axial

force, N, is zero due to the chosen supports:

N = O’ldA+/ (TQdA:O
A1 A2

where A; and As is the cross-sectional area of material 1 and 2, respectively.

Thus

El/ ydA+E2/ ydA =0
A1 A2

24



i.e.
EiQ1+ E>2Q2 =0

where Q; and s is the first moment of the cross-sectional area 1 and 2 with
respect to the Neutral axis, respectively. The last equation gives the origin of
coordinate y.

Moment-curvature relationship is based on the expression of the bending
moment as an integral of elementary bending moments

Mb:/ yaldA—i—/ yUQdAZkEl/ y2dA+kE2/ y?dA
A4 Az Ay Az
that is

Mb = k(Eljl + EQJQ)

where
Ji=1 +yidy

is the second moment of the cross-sectional area A; with respect to the Neutral
axis and
Jo =1 + y% Ay

is the second moment of the cross-sectional area A, with respect to the same
Neutral axis.

In the case of small deformations the curvature can be approximated by k = —v
and the differential equation for deflection is

"

where the equivalent stiffness
(EJ)eq = E1Jy + ExJs = Ey(I1 + y3 A1) + Ex(Iz + y3 As)

Using the curvature k in the stress formulas gives

E,
= M,
(251 b(EJ)eqy
Ey
o2 = Mp———y
(EJ)eq

25



27.3 Elastically bound case

b
My |
T — . NA, I
Ei LAy €1 N yc1 Oy
—+ h
Ana Y1 !
AC ]
_ T __—_— ___——° _ %Nlﬁ _ __jc_
By, 15, Ay :62 N My \l/j\'ycﬁ 2 ho
Y2 !
T dx |

Let us assume that both parts of the beam obey the Bernoulli’s hypothesis
€1 = ky1 and e = kyo

where the curvature, k, is the same for both parts as for small deformations
k = —v” and the deflection, v, is supposed to be the same for both parts. The
coordinates y; and yo originates at the two respective neutral axes, NA; and
NA2, as seen at the Figure above.

The connection between the two parts is assumed to be elastic with the shear
stress at the interface given by

interface interface
— &2 )

T = g(e]

where g is a spring constant and ei™*erface (4 = 1,2) are the respective normal

strains at the two parts at the point of the interface.
Let us cut two elements of the length dx. First, from the upper part of the
beam.

T dx
N, N, +dN; The equilibrium equation
PES .5 S I 05 W S A5 U
Ey, I, Ay dN; —7bdx =0
where b is a width of the beam at
= the interface

The internal normal force, N; is given by integrating the stress, o1 = F1e1, over
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the cross-sectional area of the upper part of the beam, A,
le/ 0‘1dA:E1k‘/ yldA:Elel
Aq Ay

where Q1 = yo1A; is the first moment of the area A; with respect to the neutral
axis of the upper part of the beam, NA;.
Using N; in the equilibrium equation leads to

d inter interfa
@(k’yCﬂElAl _ bgk(yl terface Y terf: ce) =0 (5)

ilnterface _ interface)

where note that yo1 (as well as yo2 and Axa =y Ya is a function
of x, i.e., the neutral axis is not, generally, at the same place at every cross-
section.

Now, cut the element of the lower part:

x dz
T
The equilibrium equation
N P N+ dN
EQ,IQ,AQ dN2+deJ):O

The two equilibrium equations imply Ny = — N, that is
E1Avyct + ExAzyce =0 (6)

Also using

N2 = / g9 dA = EQk‘ Y2 dA = EQkQQ
A2 A2

where QQ2 = yc2As, in the last equilibrium equation gives
d
@(kyCQ)EQAQ -+ bgkANA = 0 (7)

As N1 = — N, there is a force couple, NoAxa, adding to the resulting bending
moment
My = My + Mpz + NoAna

Using the stress expression above leads to

Mb = Elk/ yf dA+E2k/ yg dA+E2kyCQA2ANA
A1 A2
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and
My = k(E1Jy + EaJa + EaycoAs Ana) (8)

where
Jl = Il -+ yg'lAl and J2 = IQ -+ y%vQAQ

I, and I, being the second moments of area with respect to the two principal
central axis.
There is also a geometric condition (as seen in the Figure)

yc1 +Ac — yc2 = Ana 9)

There are five equations, four of them linearly independent, (5-9) for four un-
known functions, k,yc1,yc2 and Ana.
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