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Analysis of the Elastic Composite in the Shape of
the Human Heart

L. Jiran, T. Mares

Abstract—This work deals with a deformation analysis of the
thick-walled closed anisotropic model whose geometry and cross-
section are motivated by human heart shape. The problem is
solved using the semi-analytical method, anisotropic elasticity in
curvilinear coordinates and the Fourier series expansion. Several
models with different geometry are briefly mentioned. The most
realistic model is described in more details and its responses to
the different loadings are presented.

Index Terms—elasticity, tensor calculus, heart, anisotropic,
analysis.

I. INTRODUCTION

THIS report builds on the first part of the planned work
to create an anisotropic model of a human heart and to

determine its deformation which was described in details in
[1]. In [1] there are our motivation, aims, related works and
difficulties briefly discussed too. The aim of this paper is to
present several elastic composite models which are used as the
approximation of the real geometry of the heart. We are going
to use one of this models in the next step of our work - in the
future dynamic analysis. The linear elastic small deformation
behavior of the modeled body is used for the analysis again.

II. MODELS

The heart motivated anisotropic elastic tube with a constant
cross-section was used as the first model, see [1]. Models that
are presented in this article are based on this first model but
their geometry is more complicated to create closed model
with a required cross-section - a model more similar to the
real heart geometry.

We have created three different models and tested various
boundary conditions. All thick-walled models are wound in
six layers with the winding angle α = ± π/6 by a laminated
composite which represents muscle mass. A static load is
applied through the internal pressures.

A. Model based on the elastic tube

The first closed model was created as a modification of our
previous model, see [1]. The cross-section, Fig. 1, is defined
by using ellipses and circles

x1 = r1ξ
1d1 cos ξ2,

x2 = r2ξ
1d1 sin ξ2,

x3 = ξ3, (1)
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y1 = η1d2 cos η2,

y2 = η1d2 sin η2,

y3 = η3, (2)

with parameters r1, r2 and the range of coordinates

ξ1 ∈ [a, b] = [1, 1.0], ξ2 ∈ [0, 2π], ξ3 ∈ [0, l] = [0, 120],

η1 ∈ [R1, R2] = [15, 26.5], η2 ∈ [0, 2π], η3 ∈ [0, l] = [0, 120],

and

d1 = 2(−(ξ3 − 0.6)2 + 0.5),

d2 = 2(−(η3 − 0.6)2 + 0.5).
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Fig. 1. The first model
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B. Model based on ellipsoids

The second closed model, Fig. 2, is created via equations
of two ellipsoids:

x1 = r1ξ
1 cos ξ2 sin(r6ξ

3),

x2 = r2ξ
1 sin ξ2 sin(r6ξ

3),

x3 = r3 + r4ξ
1 cos(r6ξ

3), (3)

y1 = η1 cos η2 sin(r6η
3),

y2 = η1 sin η2 sin(r6η
3),

y3 = r5 + r4η
1 cos(r6η

3), (4)

with parameters r1, r2, r3, r4, r5 and the range of coordi-
nates

ξ1 ∈ [a, b] = [1, 1.0], ξ2 ∈ [0, 2π], ξ3 ∈ [0, l] = [0, 120],

η1 ∈ [R1, R2] = [15, 26.5], η2 ∈ [0, 2π], η3 ∈ [0, l] = [0, 120].
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Fig. 2. The second model

C. Non-symmetric closed model

The third closed model, Fig. 3, is created via equations
of two ellipsoids too but other relation between coordinate
systems yi and xi enables us to create model whose outer
profile is non symmetric. A wall thickness of the modeled left
and right ventricles is approximately constant for the all height
of the model (compare Fig. 2 with Fig. 3).

y1 ≡ x1y2 ≡ x2

y3

x3

Fig. 3. The third model.

III. NON-SYMMETRIC CLOSED MODEL OF THE HEART

Deformation analysis procedure is described in details only
for the third of developed models which in our opinion best
approximates the real heart geometry. Other two models were
only briefly introduced.

We are going to use this model and apply a dynamic
load, model a circulation of blood, use a viscoelastic material
behavior and model active functions of heart muscles in the
future work.

A. The coordinate systems

The heart geometry is modeled via two ellipsoids and there
are introduced six coordinate systems for description, Fig. 4
and Fig. 5. The global Cartesian coordinate system, yi, the
global circular coordinate system, ηi, the global coordinate
system, xi, the global elliptic coordinate system, ξi, the
local Cartesian coordinate system, µi, and the local Cartesian
coordinate system, νi, aligned with the direction of the local
orthotropy.

This coordinate systems are defined by the mutual relations
in the next paragraphs.

The relations between the global circular coordinate system
ηi and the global Cartesian coordinate system yi are

y1 = r5η
1 cos η2 sin(r6η

3),

y2 = r5η
1 sin η2 sin(r6η

3),

y3 = r3 + r4η
1 cos(r6η

3), (5)

where r3, r4, r5, r6 are the properly selected parameters of
the ellipsoid. The coordinates ηi have the range

η1 ∈ [R1, R2] = [0.9, 1.2], η2 ∈ [0, 2π], η3 ∈ [0, l] = [0, 120],

where l is the length parameter.
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The relations between the global coordinate system yi and
the global coordinate system xi are

y1 = x1 − k sin(r6x
3),

y2 = x2,

y3 = x3, (6)

where k is the parameter of the coordinate systems displace-
ment.

The relations between the global elliptic coordinate system
ξi and the global coordinate system xi are

x1 = r1ξ
1 cos ξ2 sin(r6ξ

3),

x2 = r2ξ
1 sin ξ2 sin(r6ξ

3),

x3 = r3 + r4ξ
1 cos(r6ξ

3), (7)

where r1, r2 are the remaining parameters of the ellipsoid.
The coordinates ξi have the range

ξ1 ∈ [a, b] = [0.95, 1.05], ξ2 ∈ [0, 2π], ξ3 ∈ [0, l] = [0, 120].

The relations between the coordinate system ξi and the
global computing coordinate system ηi are known

η2 = arctan

(
r2ξ

1 sin(r6ξ
2)

r1ξ1 cos ξ2 sin(r6ξ3)− k sin(r6x3)

)

η3 =
1

r6
arctan

(
r2 sin ξ2ξ1 sin(r6ξ

3)

r5 sin η2 cos(r6ξ3)ξ1

)

η1 =
r1 cos ξ2ξ1 sin(r6ξ

3)− k sin(r6x
3)

r5 cos η2 sin(r6η3)
. (8)

The coordinate systems yi, µi, νi are Cartesian. The metrics
are

y
gij=

µ
gij=

ν
gij= δij . (9)

For the components of the metric tensor
η
gij we have

η
gij=

∂yk

∂ηi
∂yl

∂ηj
y
gkl, (10)
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y1 ≡ x1y2 ≡ x2

y3

x3

Fig. 4. The coordinate systems.
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Fig. 5. The coordinate systems.

where
∂yi

∂ηj
=

 a11 a12 a13
a21 a22 a23
a31 0 a33

 , (11)

a11 = r5 sin(r6η
3) cos η2,

a12 = −r5η1 sin(r6η
3) sin η2,

a13 = η1r5r6 cos(r6η
3) cos(η2),

a21 = r5 sin(r6η
3) sin η2,

a22 = r5η
1 sin(r6η

3) cos η2,

a23 = η1r5r6 cos(r6η
3) sin(η2),

a31 = r4 cos(r6η
3),

a33 = −η1r4r6 sin(r6η
3).

And for the components of the metric tensor
ξ
gij we have

ξ
gij=

∂xk

∂ξi
∂xl

∂ξj
x
gkl, (12)

where
∂xi

∂ξj
=

 b11 b12 b13
b21 b22 b23
b31 0 b33

 , (13)

b11 = r1 sin(r6ξ
3) cos ξ2,

b12 = −r1ξ1 sin(r6ξ
3) sin ξ2,

b13 = ξ1r1r6 cos(r6ξ
3) cos(ξ2),

b21 = r2 sin(r6ξ
3) sin ξ2,

b22 = r2ξ
1 sin(r6ξ

3) cos ξ2,

b23 = ξ1r2r6 cos(r6ξ
3) sin(ξ2),

b31 = r4 cos(r6ξ
3),

b33 = −ξ1r4r6 sin(r6ξ
3)

and
x
gij=

∂yk

∂xi
∂yl

∂xj
y
gkl, (14)

where
∂yi

∂xj
=

 1 0 −kr6 cos(r6x
3)

0 1 0
0 0 1

 . (15)
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Others transformation matrices are

∂xi

∂µj
=

 n1ξ −n2ξ 0

n2ξ n1ξ 0

0 0 1

 , (16)

where nξ = (n1ξ , n
2
ξ , 0) is the normal to the ellipse, Fig. 6,

with

n1ξ =

∂x2

∂ξ2√(
∂x1

∂ξ2

)2
+
(
∂x2

∂ξ2

)2 ,
n2ξ =

−∂x
1

∂ξ2√(
∂x1

∂ξ2

)2
+
(
∂x2

∂ξ2

)2 , (17)

similarly

∂yi

∂µj
=

 n1η −n2η 0
n2η n1η 0
0 0 1

 , (18)

where nη = (n1η, n
2
η, 0) is the normal to the circle, Fig. 6,

with

n1η =

∂y2

∂η2√(
∂y1

∂η2

)2
+
(
∂y2

∂η2

)2 ,
n2η =

−∂y
1

∂η2√(
∂y1

∂η2

)2
+
(
∂y2

∂η2

)2 , (19)

and finally

∂µi

∂ηj
=

 1 0 0
0 cosα − sinα
0 sinα cosα

 , (20)

where α is the winding angle, Fig. 5.

y1 ≡ x1y3x3

y2x2

nη

nξ

Fig. 6. Normals.

B. Deformation analysis

Deformations are determined using the principle of the
total potential energy minimum. The global circular coordinate
system ηi is used as the global computational coordinate
system. The constrained minimum of the total potential energy

is found using the Lagrange multipliers method. The necessary
condition of stationary is expressed using the Lagrangian

L(
η
ui) = Π(

η
ui) + L(

η
ui), (21)

where the total potential energy of the model Π(
η
ui) is ex-

pressed in the form

Π(
η
ui) = U(

η
ui)−W (

η
ui), (22)

with the elastic strain energy U(
η
ui) and the potential energy of

the applied forces −W (
η
ui). The second term L(

η
ui) in (21) is

the linear combination of the left-hand sides of the constrains.

1) Fourier series expansion:
The displacement functions

η
ui are approximated by the Fourier

series expansion and this approximation enables us to integrate
the total potential energy. Fulfilment of the boundary condi-
tions is ensured by using the method of Lagrange multipliers
so the Fourier series expansion is

η
u1 =

K∑
hkm=−K

Ahkm1

(
ehkmη

1 + em
)
,

η
u2 =

K∑
hkm=−K

Ahkm2

(
ehkmη

1 + em
)
,

η
u3 =

K∑
hkm=−K

Ahkm3

(
ehkmη

1 + em
)
, (23)

where Ahkm1 , Ahkm2 , Ahkm3 are coefficients to be determined,

ehkm = eih2π
η1−R1
c−R1 eikη

2

eimη
3 2π
l , (24)

and
em = eimη

3 2π
l . (25)

For parameter K is chosen value 3 so that each displacement
function is approximated by 73 members of the Fourier series
expansion. The coordinates ξi are mapped by (8) to the global
computational coordinates ηi and, therefore, the coordinate
η1 has a new range η1 ∈ [R1, c] = [0.9, 2.27]. The c is the
parameter in the Fourier series (23).

This mapping caused an enlargement of an area on whose is
the Fourier series expansion defined, see the hatch at Fig. 7.
All points of this area (described by the range of coordinates
η1 ∈ [R1, c], η

2 ∈ [0, 2π], η3 ∈ [0, l]) must be included in the
computing procedure.

It is necessary to perform numerical integration over the
whole area to obtain a numerical regularity of matrices in the
calculation. Points of material which belong to the area but
not to the model itself, see the hatch at Fig. 8, are considered
with a minimal value of the material parameters.

2) Elastic energy:
The procedure for calculating the elastic energy U is basically
the same as the procedure that was described in detail in the
previous work [1]. The coordinate systems ηi is used as the
computational coordinate system so we can for the elastic
energy write

U =
1

2
ATKA, (26)
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y1

y3

Fig. 7. The area.

y1

y3

Fig. 8. The area with a minimal value of the material parameters.

where the stiffness matrix of the whole model K is a sum of
η

K and
ξ

K

K =
η

K +
ξ

K, (27)

where

η

K=

l∫
0

2π∫
0

R2∫
R1

(B −G)
T

η

Eijkl (B −G)
∣∣∣ηgij∣∣∣ 12 dη1dη2dη3,

(28)

ξ

K=

l∫
0

2π∫
0

b∫
a

(B −G)
T

η

Eijkl (B −G)

∣∣∣∣ξgij∣∣∣∣ 12 dξ1dξ2dξ3,

(29)
where B and G are the matrices1

B =



∂v1/∂η
1 zeros(1, 343) zeros(1, 343)

∂v1/∂η
2 zeros(1, 343) zeros(1, 343)

∂v1/∂η
3 zeros(1, 343) zeros(1, 343)

zeros(1, 343) ∂v2/∂η
1 zeros(1, 343)

zeros(1, 343) ∂v2/∂η
2 zeros(1, 343)

zeros(1, 343) ∂v2/∂η
3 zeros(1, 343)

zeros(1, 343) zeros(1, 343) ∂v3/∂η
1

zeros(1, 343) zeros(1, 343) ∂v3/∂η
2

zeros(1, 343) zeros(1, 343) ∂v3/∂η
3


,

(30)
with v1, v2, v3 defined using (24) and (25)

v1 = v2 = v3 = ehkmη1 + em, (31)

and

G =

{ η

Γ1
ij

}
ije

(v1 zeros(1, 343) zeros(1, 343)) +

+

{ η

Γ2
ij

}
ije

(zeros(1, 343) v2 zeros(1, 343)) +

+

{ η

Γ3
ij

}
ije

(zeros(1, 343) zeros(1, 343) v3) , (32)

where
η

Γ1
ij ,

η

Γ2
ij ,

η

Γ3
ij are Christoffel symbols of the second kind.

In (28) and (29)
η
gij and

ξ
gij are the components of the

metric tensor (10), (12) and
η

Eijkl is the elasticity tensor in
the global computational coordinate system

η

Eijkl=
∂ηi

∂νm
∂ηj

∂ηn
∂ηk

∂νo
∂ηl

∂νp

ν

Emnop, (33)

with
∂ηi

∂νj
=
∂ηi

∂yk
∂yk

∂xl
∂xl

∂µm
∂µm

∂νj
. (34)

The elasticity tensor
ν

Eijkl in (33) in the local Cartesian
coordinate system νi (which is aligned with the direction of
the local orthotropy) is known.

Finally A in (26) is the column vector of the coefficients to
be determined

A =

 Ahkm1

Ahkm2

Ahkm3

 . (35)

3) Work of internal pressures:
The model is loaded by internal pressures p1, p2 (p2 > p1),
Fig. 9. The whole procedure and all relations necessary to
determining the work of the applied forces were introduced
and described in previous work. See [1] for more information.

1Typewrite font is used for the MATLAB syntax.
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p2p1

Fig. 9. Internal pressures

The procedure used in this work is quite analogous. Calcula-
tion is performed in the global computing coordinate system
ηi and needed transformation matrices are described in the
section The coordinate systems.

We can write as a result

W = W1 +W2 +W3 = PA, (36)

where W1, W2, W3 represent works done by the pressures
on the relevant surfaces.

4) Lagrange multipliers:
The method of Lagrange multipliers is used for a fulfilment
of the boundary conditions. The model is fixed at three points
Aη , Bη and Cη , see Fig. 10.

y1y2

y3

Bη Aη

Cη

Fig. 10. The boundary conditions.

These points have in the global computational coordinate
system ηi coordinates

Aη = [η1(A), η
2
(A), η

3
(A)] = [R2, 0, l/2],

Bη = [η1(B), η
2
(B), η

3
(B)] = [c, π, l/2],

Cη = [η1(C), η
2
(C), η

3
(C)] = [R2, 0, l]. (37)

The point Aη is fixed in all directions (uη1 , u
η
2 , u

η
3), the point

Bη is fixed in uη2 and uη3 directions and the point Cη is fixed
only in uη2 direction.

This condition can be written in the form

η
u1(A)
η
u2(A)
η
u3(A)
η
u2(B)
η
u3(B)
η
u2(C)


= MA = 0, (38)

where

M =


ϕ(ηA) zeros(1, 343) zeros(1, 343)

zeros(1, 343) ϕ(ηA) zeros(1, 343)
zeros(1, 343) zeros(1, 343) ϕ(ηA)

zeros(1, 343) ϕ(ηB) zeros(1, 343)
zeros(1, 343) zeros(1, 343) ϕ(ηB)

zeros(1, 343) ϕ(ηC) zeros(1, 343)

 ,

(39)
with

ϕ = ehkmη1 + em. (40)

Then the term in (22)

L(
η
ui) = λTMA, (41)

where λ is a vector of the Lagrange multipliers, matrix M
is defined by (39) and A is the vector of coefficients to be
determined.

5) Total potential energy:
When we use the needed relations in the form (26), (36), (41)
we can write for the Lagrangian L (22)

L =
1

2
ATKA− PA+ λTMA. (42)

The stationary condition of the Lagrangian
∂L
∂A

= KA− P +MTλ = 0,
∂L
∂λ

= MA = 0

leads to(
K MT

M zeros(6, 6)

)(
A
λ

)
=

(
P

zeros(1, 6)

)
(43)

and the column vector A of the coefficients to be determined
is realized from(

A
λ

)
=

(
K MT

M zeros(6, 6)

)−1(
P

zeros(1, 6)

)
.

(44)

6) Displacement functions:
The displacement functions in the global computational coor-
dinate system ηi 

η
u1
η
u2
η
u3

 = real(N ∗ A), (45)

where

N =

 v1 zeros(1, 343) zeros(1, 343)
zeros(1, 343) v2 zeros(1, 343)
zeros(1, 343) zeros(1, 343) v3

 ,

(46)
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with v1, v2, v3 defined by (31). Results are demonstrated in
the global Cartesian coordinate system yi

y
uj=

∂ηi

∂yj
η
ui . (47)

C. Results

The results are demonstrated for three different types of
loading by internal pressures. The first set (Fig. 11) shows
the response to the loading by pressure p2 only, see Fig. 9.
The second set (Fig. 12) shows the response to the loading
by pressure p1 only, see Fig. 9. The third set (Fig. 13) shows
the response to the loading by pressures p1 and p2 together,
p2 = 2p1.

IV. CONCLUSION

This report presents the new results of our work. We
have introduced the closed anisotropic elastic models whose
geometry and cross-section are motivated by human heart
shape. Entire deformation analysis was described for one of
these models and results for three different types of loading
are depicted in the final part of this report.

We are going to use this presented geometric model of
human heart in the next step of our planned work to perform
viscoelasto dynamic analysis of the heart.
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Fig. 11. Response to the loading by p2.
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Fig. 12. Response to the loading by p1.
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Fig. 13. Response to the loading by p1 and p2, p2 = 2p1.


