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Dynamic Analysis of the Elastic Composite in the
Shape of the Human Heart

L. Jiran, M. Stefan, T. Mares

Abstract—This work deals with a dynamic deformation analy-
sis of the thick-walled closed anisotropic model whose geometry
and cross-section are motivated by human heart shape. The
oscillations of the model are solved using the action integral,
EulerLagrange equations for the action integral and the singular
value decomposition. The action integral is determined using
the semi-analytical method, anisotropic elasticity in curvilinear
coordinates and the Fourier series expansion.

Index Terms—dynamic analysis, action integral, oscillation,
heart, anisotropic.

I. INTRODUCTION

THIS report builds on the previous articles [1], [2] which
describe initial steps of our planned work to create an

anisotropic model of a human heart and to determine its time
dependant deformations. In [1], there are our motivation, aims,
and related works of other authors briefly discussed. Article
[2] describes the closed anisotropic model whose geometry
and cross-section are motivated by human heart shape and
presents its static deformation analysis. The same model is
used in this report but its dynamic deformation analysis is
included. Results of dynamic analysis are presented for free
oscillations and for forced oscillations separately, no damping
is considered. The linear elastic small deformation behavior
of the modeled body is used for the analysis again.

II. MODEL

The closed model whose is used as the approximation of
the real geometry of the human heart is described in detail in
[2] and will be only briefly mentioned in this section.

The heart geometry is modeled via two ellipsoids and six
coordinate systems are introduced for its description, Fig. 1.
The local Cartesian coordinate system νi is aligned with the
direction of the material local ortotrophy and the global circu-
lar coordinate system ηi is used as the global computational
coordinate system. Whole deformation analysis is performed
in this coordinate system.

Relations between the coordinate systems, ranges of coor-
dinates, and metrics are described in [2].
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Fig. 1. The coordinate systems.

III. OSCILLATIONS

Equations of motion are derived from the action integral,
which has the form

S =

t∫
0

(T −Π− L) dt, (1)

where T is the kinetic energy of the model

T =
1

2

∫
Ω

ρ u̇ku̇
kdΩ̄, (2)

where ρ is a density and uk are the displacement functions
in the global computational coordinate system ηi, which are
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approximated by a Fourier series expansion

η
u1 =

K∑
hkm=−K

Ahkm1 v1,

η
u2 =

K∑
hkm=−K

Ahkm2 v2,

η
u3 =

K∑
hkm=−K

Ahkm3 v3. (3)

The parameter K is chosen 3 so that each displacement
function is approximated by 73 = 343 members of the Fourier
series expansion and (3) can be written in the form

η
u1
η
u2
η
u3

 = NA, (4)

where1

N =

 v1 zeros(1, 343) zeros(1, 343)
zeros(1, 343) v2 zeros(1, 343)
zeros(1, 343) zeros(1, 343) v3

 ,

(5)
with v1, v2, v3 defined by

v1 = v2 = v3 = eih2π
η1−R1
c−R1 eikη2eimη3 2π

l η1 + eimη3 2π
l . (6)

Column vector A in (4) the vector of the coefficients to be
determined

A =

 Ahkm1

Ahkm2

Ahkm3

 . (7)

For more information about the displacement functions
η
uk and

their approximation by the Fourier series expansion see [2].
For the time derivative u̇k and for the contravariant compo-

nents uk we can write

u̇k = NȦ,

uk = gkl ul, (8)

with
gkl = G = (gkl)

−1
. (9)

The element of the volume in (2)

dΩ̄ = |
η
gij |

1
2 dη1dη2dη3. (10)

Hence, form (2) is modified

T =
1

2
ȦTMȦ, (11)

where the new mass matrix

M = ρ

∫
η

Ω

NTGN |
η
gij |

1
2 dη1dη2dη3. (12)

The second term in (1) is the total potential energy of the
model

Π(
η
ui) = U(

η
ui)−W (

η
ui), (13)

1Typewrite font is used for the MATLAB syntax.

with the elastic strain energy

U(
η
ui) =

1

2
ATKA, (14)

and with the work of the applied forces

W (
η
ui) = PA. (15)

Matrix K in (14) is the stiffness matrix of the whole model
and vector P in (15) represents works done by the internal
pressures. Terms K and P are described in more detail in [2].

The third term L(
η
ui) in (1) is the linear combination of the

left-hand sides of the following constraints: the model is fixed

y1
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y3

Bη Aη

Cη

Fig. 2. The boundary conditions.

at three points, see Fig. 2, and the boundary conditions can
be written in the form

η
u1(A)
η
u2(A)
η
u3(A)
η
u2(B)
η
u3(B)
η
u2(C)


= ΛA = 0, (16)

where

Λ =


v1(ηA) zeros(1, 343) zeros(1, 343)

zeros(1, 343) v2(ηA) zeros(1, 343)
zeros(1, 343) zeros(1, 343) v3(ηA)

zeros(1, 343) v2(ηB) zeros(1, 343)
zeros(1, 343) zeros(1, 343) v3(ηB)

zeros(1, 343) v2(ηC) zeros(1, 343)

 ,

(17)
with v1, v2, v3 defined by (6). Hence, the linear combination
of the left-hand sides of the constraints

L(
η
ui) = λTΛA, (18)

where λ is the vector of Lagrange multipliers.
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Substitution (11), (14), (15) and (18) in equation (1) leads
to the form

S =

t∫
0

(
1

2
ȦTMȦ− 1

2
ATKA+ PA− λTΛA

)
dt. (19)

This equation represents the functional

S =

t∫
0

L
(
t, A, Ȧ, λ

)
dt, (20)

and the famous necessary conditions of the action minimum

d

dt

∂L
∂Ȧ
− ∂L
∂A

= 0, (21)

d

dt

∂L
∂λ̇
− ∂L
∂λ

= 0. (22)

The equations of motion are, in extenso (21),

MÄ+KA+ ΛTλ = P, (23)

and, in extenso (22), leads to algebraic equations which specify
constraints

ΛA = 0. (24)

Equations (23) and (24) create together the system of
differential-algebraic equations

MÄ+KA+ ΛTλ = P,

ΛA = 0. (25)

Employing the singular value decomposition of matrix Λ
we transform the problem into quasi-coordinates and thus we
get rid of algebraic equations.

We can write in the MATLAB syntax

[a, b, c] = svd(Λ), (26)

which corresponds to

Λ = a ∗ b ∗ c′. (27)

Λ is the 6-by-1029 matrix, matrix b has the same dimensions
as Λ, matrix a is the square matrix 6-by-6 and matrix c is the
square matrix 1029-by-1029. When we use only the columns
of matrix c which correspond to zero singular values (it means
columns 7–1029 in our case), we get 1029-by-1023 matrix Ṽ
and the constraints (24) can be transformed to the form

A = Ṽ α. (28)

Equation (28) brings a new vector of unknown coefficients α
and application of this equation in (23) changes the system of
differential-algebraic equations (25) to the system of differen-
tial equations. The constraints are included in matrix Ṽ and
hence we can modify the action integral (19) to the form

S̃ =

t∫
0

(
1

2
α̇T M̃α̇− 1

2
αT K̃α+ P̃α

)
dt, (29)

where

M̃ = Ṽ TMṼ ,

K̃ = Ṽ TKṼ ,

P̃ = PṼ .

Equation (29) represents the functional

S̃ =

t∫
0

L̃ (t, α, α̇) dt, (30)

and the necessary conditions

d

dt

∂L̃
∂α̇
− ∂L̃
∂α

= 0 (31)

lead to the system of differential equations

M̃α̈+ K̃α = P̃ (32)

for the new unknown vector α.

IV. FREE OSCILLATIONS

This section describes how to find a solution to the problem
of free oscillations. The free oscillations means that no external
force acts on the model hence in (32) is P̃ = 0.

A. Equations of motion

Equations of motion are a set of linear homogeneous
differential equations with constant coefficients

M̃α̈+ K̃α = 0. (33)

Solution is expected in the form

α = aeiΩt, (34)

where a is a constant vector to be determined whose is
called the amplitude of the oscillations, Ω is the frequency
of the oscillations and t denotes time. Substitution (34) in the
equation (33) and cancelation of eiΩt leads to a set of linear
homogeneous algebraic equations

−M̃Ω2aeiΩt + K̃aeiΩt = 0,(
K̃ − M̃Ω2

)
a = 0. (35)

We obtain a non-trivial solution of this system when the
determinant vanishes

det |K̃ − Ω2M̃ | = 0, (36)

where Ω is the characteristic frequency or eigenfrequency of
the system.

Equation (36) is called characteristic equation and can be
solved by using MATLAB function

[u, v] = eig(~K, ~M), (37)

where [u] is the matrix of eigenvectors and [v] is the matrix
which has on its diagonal eigenvalues λ = Ω2. The eigenvec-
tors are determined for up to a multiple constant and therefore
are normalized. The non-normed eigenvector is denoted aν ,
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the normed eigenvector is denoted uν and has to fulfil the
condition

uνM̃uν = 1. (38)

The vectors are normed according the rule

uν =
aν√
aTν M̃aν

(39)

and than are stored in matrix U .
The solution (the ν-th solution) of the linear homogeneous

differential equations (33)

αν = uν (Bν cos(Ωνt) + Cν sin(Ωνt)) (40)

and all solutions are briefly written in the form

α = U (costB + sint C) , (41)

where B, C are the column vectors of arbitrary constants and

cost =

 cos(Ω1t) 0 . . .
0 cos(Ω2t) . . .
...

...
. . .

 ,

sint =

 sin(Ω1t) 0 . . .
0 sin(Ω2t) . . .
...

...
. . .

 . (42)

The constants B and C are found from the initial conditions.
The initial conditions α0 and α̇0 are known

α0 = pinv(~V)A0,

α̇0 = zeros(1023, 1), (43)

where MATLAB function pinv() performs a pseudoinversion
of matrix ~V and A0 is the column vector of the coefficients,
which was determined in [2] as the solution of the static
analysis. For α̇0 we have

α̇0 = U (−Ω sintB + Ω cost C) , (44)

where

Ω =

 Ω1 0 . . .
0 Ω2 . . .
...

...
. . .

 . (45)

Equations (41) and (44) give us for t = 0

α0 = UB,

α̇0 = UΩC, (46)

and using
UT M̃U = I, (47)

leads to a determinations of the arbitrary constant B, C in
(41)

UT M̃α0 = UT M̃UB

⇒ B = UT M̃α0,

UT M̃α̇0 = UT M̃UΩC

⇒ C = Ω−1UT M̃α̇0. (48)

The solution

α = U
(

cost U
T M̃α0 + sint Ω−1UT M̃α̇0

)
, (49)

and the coefficients to be determined

A = Ṽ α. (50)

If the coefficients A are known, the displacement functions uk
are determined by (4) and the deformed shape of the model
can be plotted.

B. Results of the free oscillations

The results (Fig. 3 - Fig. 8) of the free oscillations are
demonstrated for time interval t ∈ 〈0, 0.06〉 whose represents
a half period of the oscillations.
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Fig. 3. Free oscillations, t = 0.
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Fig. 4. Free oscillations, t = 0.01.
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Fig. 5. Free oscillations, t = 0.02.
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Fig. 6. Free oscillations, t = 0.03.
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Fig. 7. Free oscillations, t = 0.04.
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V. FORCED OSCILLATIONS

A. Equations of motion
Let us consider a case where the external forces themselves

are simple periodic functions of time of frequency ω. Motion
of our system on which a variable external forces act is
described

M̃α̈+ K̃α = P̃ eiωt. (51)

The general solution of this inhomogeneous linear differential
equations with constant coefficients is

α = αH + αP , (52)

where αH is the general solution of the corresponding ho-
mogeneous equation and αP is a particular integral of the
inhomogeneous equation. The general solution αH represents
the free oscillations

αH = U (costD + sintE) . (53)

The particular integral αP is estimated in the form

αP = reiωt

α̈P = −ω2reiωt. (54)

Substitution (54) in (51) gives us

−M̃ω2reiωt + K̃reiωt = P̃ reiωt,(
K̃ − M̃ω2

)
r = P̃ , (55)

r =
(
K̃ − M̃ω2

)−1

P̃ (56)

and the general solution (52) is

α = U (costD + sintE) +
(
K̃ − M̃ω2

)−1

P̃ eiωt. (57)

The arbitrary constants D and E are found from the initial
conditions again,

α̇ = U (−Ω sintD + Ω costE) +

+ iω
(
K̃ − ω2M̃−1

)
P̃ eiωt (58)

and for t = 0

α0 = UD +
(
K̃ − M̃ω2

)−1

P̃ ,

α̇0 = UΩE + iω
(
K̃ − M̃ω2

)−1

P̃ . (59)

Using (47) in (59) leads to

D = UT M̃α0 − UT M̃
(
K̃ − M̃ω2

)−1

P̃ , (60)

and

E = Ω−1UT M̃α̇0 +

+ iωΩ−1UT M̃
(
K̃ − M̃ω2

)−1

P̃ . (61)

Finally, the general solution is

α = U cost

(
UT M̃α0 − UT M̃

(
K̃ − M̃ω2

)−1

P̃

)
+

+ U sint Ω−1UT M̃α̇0 +

+ U sint

(
iωΩ−1UT M̃

(
K̃ − M̃ω2

)−1

P̃

)
+

+
(
K̃ − M̃ω2

)−1

P̃ eiωt, (62)

where

α0 = zeros(1023, 1),

α̇0 = zeros(1023, 1). (63)

The coefficients to be determined A are given by (50).

B. Results

The set of figures (Fig. 9 - Fig. 15) shows the results
of the forced oscillation when the variable force f = P̃ eiωt

acts on the model. The results are shown for time interval
t ∈ 〈0, 0.06〉.

VI. CONCLUSION

This report describes the dynamic analysis of the thick-
walled closed anisotropic model whose geometry and cross-
section are motivated by the human heart shape and presents
the results of this analysis. The equations of the motion were
derived by using the principle of the action minimum.

Free oscillations of the model are analyzed for the case
where an initial internal pressures load causes initial defor-
mations. The load is than removed and the model oscillates
without damping.

Forced oscillations are forced by external periodic forces
which represent time variable internal pressures acting in the
cardiac chambers.

We are going to improve our model using the viscoelastic
material in the next step of our planned work to perform
viscoelasto dynamic analysis of the considered model.
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Fig. 8. Free oscillations, t = 0.06.
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Fig. 9. Forced oscillations, t = 0.
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Fig. 10. Forced oscillations, t = 0.01.
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Fig. 11. Forced oscillations, t = 0.02.
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Fig. 12. Forced oscillations, t = 0.03.
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Fig. 13. Forced oscillations, t = 0.04.
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Fig. 14. Forced oscillations, t = 0.06.

y1
y2

y3

AA

A-A

y1y3

y2

Fig. 15. Forced oscillations, t = 0.06.


