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Anotace:

Prace se zabyva porovnanim metod pro vypocet ohybu kompozitnich nosniku.
Srovnavame vysledky vypocta provedenych pomoci Bernoulliho metody, metody
vypoc¢tu matice ABD a modelit MKP resenych pomoci klasické a objemové
skorepiny i1 pomoci objemového modelu. Vysledkem celé prace je porovnani
pouzitych metod a vznik programt pro vypocet ohybu v MATLABu a MKP
modelu.

Abstract:

The work presents a comparison of methods for calculating the composite beams
bending. We compare the results of calculations performed using the Bernoulli’s
method, method of calculation using ABD matrix and FEM models base on the
conventional shell, the continuum shell and on the volume model. The results of
the thesis is the comparison of the used methods and programs for calculating
the beam deflection designed in MATLAB® and the FEM models.
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Introduction

This thesis presents a comparison of methods for calculating the deflection
of composite beams. The task of this thesis is to compare several methods
of calculation of deflection composite beams. The objective is to compare of
analytical methods with calculations made by using FEM. It compares the results
of calculations performed using the Bernoulli’s method, a method of calculation
using ABD matrix and FEM models based on the conventional shell, the
continuum shell and the volume models. The results will be used to determine
the appropriate method to analyze a deformation of composite beams.

The work is created to facilitate the design of composite beams. It compares the
known methods of the analysis of the deflection of composite beams for the
different composition of the composite material. It is proved that the use of
different calculation methods for the same composite material composition and
the same geometry leads to different results. The objective of this work is to
specify, which methods lead to comparable results with the experiment.

In this work, two programs designed in MATLAB® to calculate the deflection of
any composite beams were created. Several models designed to calculate the
deflection by FEM were created too. The comparison of all the mentioned

methods yielded interesting results, which are presented in this thesis.
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1 Mathematical Description of Fibre Composite Material

1.1 Description of Anisotropic Material

For anisotropic material, with general anisotropy (there is not a single plane of
symmetry of elastic properties), both the stiffness matrix § and the compliance
matrix € has 21 independent elements. Matrices are based on Hooke’s law.

[1],[6] In system O (x4, x5, x3) the Hooke’s law is expressed as follows

[91] [511 S12 S13 S14 Sis 516] €1 (1.1)
[02] |S21 S22 S23 Saa S2s Sae| €2
[03] _|S31 S32 S3z S3a S35 Ssef |3
|g4| Sa1 Saz Saz Sas Sas Sue 24 '
laSJ l551 Ss2 Ss3 Ssa Sss SSGJ [eSJ
6 Se1 Se2 Sez Sea Ses  See 6

where S 1s a symmetric matrix. The formula can be rewritten as

o=S-¢ . (1.2)
The equation can be expressed also in the inverse form

e=Co0 . (1.3)
Matrix C is also symmetric and it has a form

[C11 Gz Gz G G5 Cie (1.4)
[C21 Ca2 Caz Caa Cos Cog

From comparison of relations (1.2) and (1.3) follows

c=s1 . (1.5)
But this work will deal mainly with orthotropic or transversely isotropic
materials; in those cases the numbers of independent variables are significantly

reduced.

1.1.1 Orthotropic Material

Orthotropic material has three mutually perpendicular planes of symmetry of
elastic properties. The stiffness matrix § (and also the compliance matrix C) of

orthotropic material contains only 9 independent elements.
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S11 S12 Si3 0 0
[512 S22 S23 0 0
_|S13 S23 Ss3 0 0
| o 0 o0 Ssa 0O
0 0 O 0 Ss;c O

0 0 O 0 0 Sg

] (1.6)

S

When elastic modules are used and substituted to the compliance matrix C, we

obtain the relation

- —V —v -
1/E1 21/E2 31/E3 0 0 0 (]. 7)
-V -V
&1 2p Vg 2/p 00 0 o
[82} —V13 —Vy3 1 0 0 O %
Is3|_ /E1 /E2 /E3 |03
84 - 1 0-4 ’
|85 | 0 0 0 /623 0 0 lGSJ
L€6J 0 0 0 0 1/013 0 Oe
vl 00 Y,
e=C-0 , (1.8)

where E; , E,, E5, are modules of elasticity in the main directions of anisotropy;

Gy, ,G,3, G5 are shear modules in the planes parallel with the respective plane of
symmetry of the elastic properties x,x3, X;X3, X1X5;

V,1,V31, V32 are Poisson’s ratio, where the first index corresponds to the direction
of the normal stress and the second direction which results in a corresponding
deformation in the transverse direction.

Because the matrix S and C are symmetric matrices, these are the equalities

between certain elements of the matrix

Va1 Viz Va1 Viz Vzp Va3 (1.9)

TR BB BB

From Hooke’s law it is clear, that components of normal deformations are
dependent only on components of normal stress and shear deformations are
dependent only on shear components of stress. In this material, therefore, these

shear and normal components are not tied. [6]

17



Xy

main direction of anisotropy
-

plane of symmetry of the

2 5 plane of symmetry of the
elastic properties xs,x3

elastic properties x1,x2

main\direction of anisotropy

y y

main direction of anisotropy

\_////_])Tane of symmetry of the elastic

X3 properties X1,X3

Figure 1.1: Orthotropic material [1]

1.1.2 Transversely Isotropic Material

It 1s a material, which has a plane of symmetry of the elastic properties. This
plane is the same as a plane of isotropy, because the elastic properties in this
plane in all directions are the same. [1] If we substitute material constants into

compliance matrix C, we get

1 -V -V -
o s e (1.10)
— _y
12 /E1 1 /E2 32 /E3 8 8 8
—v —v 1
c-| 7B Pl R
1 0 0
0 0 0 /62
0 0 0 o Y. 0
0 0 0 1
0 0 /6.,

Whereas the

E; is the modulus of elasticity in a direction perpendicular to the plane of
1sotropy;

E, = E5 are modules of elasticity in the plane of isotropy;

G,, = G5 are shear modules in direction perpendicular to the plane of isotropy;
G,3 = G3, are shear modules in the plane of isotropy;

Vi, = Vy; are Poisson’s ratios expressing the ratio shortening (elongation) in the
plane of isotropy to elongation (shortening) in the main direction of anisotropy;
V,3 = V3, are Poisson’s ratios in the plane of isotropy;

the matrix C can be written in a form

18



€11 Ciz Ci3 0 0 0 ] (1.11)
Cr1 Gy Cy3 0 0 O

0 0 O 2(C2—Cy3) O 0

00 0 0 Ces O
[ 0 0 0 0 0 Cel

From the notation of matrix € it is obvious that this matrix has only five
independent elements (C;4, Cy5, C53, Cy3, Coe), therefore the number of independent
material constants is also five (Ey, E;, G2, V12, V23)- [1]

From the Hooke’s law implies that the transversely isotropic material has no

relation between the normal and shear components of stress and strain. [1]

plane of symmetry of the elastic X2
properties = plane of isotropy

main direction of anisotropy

matrix [
X

)
W) =

X3

Figure 1.2: Transversely isotropic material [1]

Before stress application

4 R

Application of stress

Isotropic material: the axes
of the ellipsoid coincide with
the principal stress axes

Anisotropic material: the axes
of the ellipsoid are different
from the principal stress axes

Figure 1.3: Schematic of deformation [5]
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1.2 Modules of Elasticity
1.2.1 Longitudinal Modulus

2

[ / Poisson Effect
] Matrix : :_,
1 i
€1 Fiber S e €1
L AL ‘_‘
Figure 1.4: RVE subject to longitudinal uniform strain [4]

The assumption of the mathematical description of the composite material is that
the two materials are bonded together. More concretely: matrix m and fiber f
have the same longitudinal strain value noted ¢;,. The main assumption in this
formulation is that the strains in the direction of fibers are the same in the
matrix and the fiber. This implies that the fiber-matrix bond is perfect. When the
material is stretched along the fiber direction, the matrix m and the fibers f will
elongate the same way as it is shown in the figure 1.4. This basic assumption is
needed to be able to replace the heterogeneous material in the representative
volume element (RVE) by a homogenous one. [4] The following derivation is
based on this assumption.

By the definition of strains according to the figure 1.4

_AL (1.12)

& =7
Both fiber and matrix are isotropic and elastic, the Hooke’s law has a form for
fibre f

of = Erer (1.13)
and for matrix m

Om = Emém - (1.14)

20



The stress o can be expressed as the loading force F divided by the area where it
acts

_F (1.15)
o —A .

So the average stress o; in the composite material acts in the entire cross section
of the RVE with area

A=A+ A4, , (1.16)
where Af 1s the area of the cross section of the fibre and 4,, is the area of the
cross section of the matrix.

The applied total load is

F=0,A=0;Ar + 0pAm . (1.17)

Then
oy = &(EfVy + EmVy) (1.18)

where
Vi =Ar/A and Vy, = A /A (1.19)

For the equivalent homogeneous material the stress is expressed as

g1 = Elgl . (1.20)
Then, comparing (1.18) with (1.20), it gives the result

In the most cases, the modulus of the fibers is much larger than the modulus of
the matrix, so the contribution of the matrix to the composite longitudinal
modulus is negligible. This indicates that the longitudinal modulus E; is a fiber-

dominated property.
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1.2.2 Transverse Modulus

Figure 1.5: RVE subject to transverse uniform stress [4]

In the determination of the modulus in the direction transverse to the fibers, the
main assumption is that the stress is the same in the fiber and the matrix. This
assumption is needed to maintain equilibrium in the transverse direction. Once
again, the assumption implies that the fiber-matrix bond is perfect. [4] The
loaded RVE is in the figure 1.5.

The cylindrical fiber has been replaced by a rectangular one (fig. 1.5), this is for
simplicity. Even micromechanics formulations do not represent the actual
geometry of the fiber at all. Both the matrix and the fiber are assumed to be
isotropic materials.

According to the situation in the figure 1.5, the stress in the matrix m and in the

fiber f is the same

0y = 0f = Opy (1.22)
so the strain is according to the Hooke’s law for the fiber
03
o= (1.23)
and for the matrix
o
n =gt (1.24)

These strains act over a portion of RVE; & over V;W, and &, over V,,W, while the

average strain &, acts over the entire width W. [4] The total elongation is

W =g VEW + g VW . (1.25)
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Cancelling W and again using Hooke’s law for the constituents the relation is
obtained

%%y Omy (1.26)

Using the equation (1.22) it is obtained the relation for the transversal

modulus E,

N/ (1.27)

E, Ef Ep
It i1s evident from the figure 1.5 that the fibers do not contribute appreciably to
the stiffness in the transverse direction, therefore it is said that E, is a matrix-
dominated property. This is a simple equation and it can be used for qualitative

evaluation of different candidate materials but not for design calculations. [4]

1.3 Stress and Deformation of Composite Material

Fiber reinforced composite is one of the most frequently used composite
materials. Great use is mainly due to the variability of this material. The
laminates usually consist of several layers of one-dimensional composite, wherein
each layer is composed of fibers and matrix.

Stiffness of unidirectional composites is expressed by the same relationships,
which are used for conventional materials (e.g. steel). The number of material
constants i1s only increased. From the point of view of micromechanics it is
possible to monitor tension only in the fiber or in the matrix. In this case, we
compute in terms of macromechanics so we will consider tension across the whole

layer of the laminate. This is called an intermediate stress in the layer.

fibers

g L
""""""""" X
1 060,900 2000
09000
__________________________________ 06%0,% % 96040 t
e e e . Oo o o ) 00
P et e 13 0050504 °6%0 96%

Figure 1.6: An example of the unidirectional composite material [1]
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Such a composite material can be regarded as the orthotropic respectively
transversely isotropic material. One-dimensional composite is represented in the
coordinate system O(x;,x,, x3). Fibres are oriented in the direction of the axis x;.
The axis x, is perpendicular to the fibres. Often the coordinate system O(L,T,T")
1s often used, where L means the longitudinal direction, T is the transverse
direction and T'1is the direction perpendicular to the lamina plane. Because the
thickness of one lamina is much smaller than its width and length, it is possible
to express the dependence between the stress and the deformation as in the case
of the plane stress. This greatly simplifies the task and the results are close to

reality. [1],[6]

Figure 1.7: An example of the unidirectional composite in the coordinate system O(L,T,T") [1]

The relation between stress and deformation is derived from assuming that the
lamina is a linearly elastic material. Consider orthotropic lamina is loaded by
tension o in the fiber direction. Deformations are

1 vir 1.28
€L=—E_'0L; €T=—E_'UL=—VLT'€L ’ ( )
L L

where E; is the longitudinal tensile modulus and v;; is a Poisson’s ratio defined
here.

In case of transversal tension the expressions are similar

1 Vry 1.29
fT——E_T'UT; €L=—E_T'UT=—VTL'€T ) ( )

where E; is the transversal tensile modulus and v;; is the transversal Poisson’s
ratio.
For shear deformation we have

1
&t = —G_LT'ULT : (1.30)

24



where G;r 1s shear modulus in the plane LT.

The superposition principle can be used. Then the stress components have the

form
1 VrL Vir 1 1 (1.31)
- . =, : _ . 4+ —"- ; - . . .
€L E, oL E, or; €r E, oL E; or; &Lt Gir oL
Component of deformation in the direction T'1is for the case of the plane stress
Vir Vrr
STI:—E_L'O-L_E_T'O-T ’ (]'32)

where v, vy are transversal Poisson’s ratios.

The above relations can be summarized into a matrix equation

1 -V —Vm -
e e ER (133)
‘L i g T, 00 0 o
T —VLT'/ —VTT'/ 1/ 0 0 0 [GT}
er| E, E; Ep 0
ol ! 0|
0 0 0 0 /GTT' 0 0 [OJ
e, | 00 0 o Y our
00 0 1
0 0 /g
LT
The compliance matrix C for orthotropic material then has a form
[C11 Ciz2 Ci3 000 ] (1.34)
C21 Gz Cy3 0 0 O
C= C31 (3 Cs3 0 0 0
0 0 O Cyy O 0
| 0 0 o 0 Css O]

L 00 0 0 0 Cefl

Because the matrix C is symmetric, the following relations hold.
Yro _Vir, Vro_Vir, Vrr _Vrr (1.35)
Er E Eq E ' Ep E;
(Ci2 = Co1; Ci3 = (315 Co3 = C(3y)

As 1t 1s written in the introduction to this chapter, this i1s a case of the plane

stress. The tension vector has only three non-zero components. Expression (1.33)

can be rewritten as

gL Cll Clz 0 O-L (1.36)
&r|=1C1 Cz 0 |-|Or
Err 0 0 Ceel lour
(e=C-0) .
For the inverse of equation (1.36) one writes
oL S11 S1z 0 €L (1.37)
or [=1521 S22 0 [-|ér
orr 0 0 566 Lt
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(6=S5-¢ ,
where

s=c1t . (1.38)
The elements specified stiffness matrix can be expressed by material constants
E;,Er,v.r,vrp and Gir. From these expressions it follows that for computation of

stress only four independent constants E;, Er, v;, G.r are needed.

s - B B (1.39)
R T _ﬁ.vz '
E, VLT
Er Er Er
Syp = = S11 5
271 —Vir " VrL _Er 2 E, "M
E, VLT
vir - Er
S12 = 521 = T—vp vy Vir S22
Se6 = GLr

The specific property of unidirectional composites is their change of strength and
stiffness depending on the direction in the plane x;x,. It is necessary to transform

stiffness quantities in different directions.

Figure 1.8: Unidirectional composite material in the two coordinate systems [1]

Figure 1.8 shows the unidirectional composite and two coordinate systems. The
system O(L,T,T') is rotated with respect to the system 0(x;,x,,x3) by an angle 0
around the axis z=T. The formula for calculation of stress in the system
O(L,T,T") is

0=Ts 0, (1.40)
where T, is a transformation matrix for the stress vector and o is the stress
vector in the coordinate system 0 (x4, x, x3).

In 2D case the equation can be expressed in the form
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or sin%6 cos?0 —2sinfcosO
—sinfcosO sinBcosd cos?O — sin%6

g3 cos?6 sin?@ 2sinfcos6 Oxx (1.41)
= : Jyy .
Jhy Oxy

A similar relation of course is applied for the transformation of strain

£'=T£-£ , (].42)
where T, is the transformation matrix for the strain vector. In components we get
€L cos?6 sin’6 —sinfcosb €L (1.43)
ér| =1 sin%6 cos?6 sinfcos® || €| .
éLr 2sinfcos@ —2sinfcosh cos?O — sin?6l Leir

In the previous paragraph it has been shown that the magnitude of stress and
strain are dependent on the direction in which they are examined. It is seen that
the stiffness matrix § and the compliance matrix € are not only dependent on
materials constants, but also on the position of the selected coordinate system.
We are looking for formulas of the stiffness matrix and the compliance matrix for
system 0(xq,x,,x3), which is rotated relatively to the system O(L,T,T") by an
angle -6. This is illustrated in the figure 1.8. The stiffness matrix and the

compliance matrix in the system 0(xy, x,, x3) are given by relations

s=T,'-Cc' T, , (1.44)
cC=T;'S-T, . (1.45)

The Hooke’s law for this rotated system can be expressed in a matrix form
[T [S11 Sz S'13 0 0 S T &xx (1.46)

|Uyy | S21 S22 S 0 0 S Eyy
0 _ SI31 S|32 S|33 O 0 SI36 . £ZZ
07 fo 0 0 S4s S4s O 0
0
Oy
Similarly, it is possible to form the relation for the deformation
Exx1 [C11 C12 Cis 0 0 Ci6 1 [Oxx) (1.47)
Eyy Cr1 Cyp Cy3 0 0 (' | Oyy |
SZZ _ CI31 C|32 C|33 0 O CI36 . 0
017] o 0 0 Cu Cu O o[-
l 0 J 0 0 0 Cg Ce 0]]0
[C's1 Ce2 C63 O 0 Cleel 9%y

0 0 0 Sg S 0 [OJ
[S'61 S62 Se3 O 0 S

Yxy

Vxy
The assumption that the width and length of the laminates are considerably
greater than its thickness is still valid. In this case it is still possible to consider
the plane stress. The three components of the stress can be expressed using the
three components of the deformation. For example, for the first component of the

tension vector g,, the following relation is valid
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. C'13C'31 . C'13C's; . C'13C'36 1.48
Uxx=<611_ C )'gxx+(612_ C )'gyy+<cl6_ C )'ny ( )
33 33 33

In analogy the both the stress component o,, and oy, are obtained. These

relations can be written in the matrix form

Oxx Qi1 Q12 Q16 €L (1.49)
layy] = [Qm Q22 Qze] : [‘ET] ;
Oxy Qs1 Q61 Ceel léir

g=Q- ¢ .

For reduced stiffness matrix elements Q;; the following holds
C'i3C'55
C'33

(1.50)

Qij:CIij— ;Where QU:QJl , i,j:1,2,6 .
By comparing the equations (1.37) and (1.49) the difference between the stiffness
matrix S and the reduced stiffness matrix Q is apparent. The matrix Q has
generally all elements nonzero. That is, in Hooke's law (1.49) for off-axis
components of stress and deformation, the normal components of stress (with

indices xx, yy) are dependent also on the shear component (index xy), inverse is

also true.

1.3.1 The Theory of the Laminate Deflection

Figure 1.9: A part of laminate in the plane xz [1]

In the figure 1.9 there is a part of the laminate in the plane xz. The side AD,
which i1s in undeformed condition straight and perpendicular to the middle
surface of the laminate, remains even after deformation straight and
perpendicular to the middle surface. Due to the deformation arising at mid-plane

at point B displacements u,, vy, w, are corresponding to the directions of axes
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x,y,z. Taking the derivatives of displacements we get the deformation field. This

can be written in the matrix form

S xx
gyy = |&° e
Vxy

where the deformation of midplane and the curvature stands for

+z

‘ (1.51)
k )

duy F 92w, | (1.52)
o dx 0x2
goxx avo kx azVVO
duy Jvg 92w,
o T 5o 2
Ldy ~ 0Ox | |~ 9xdy.

Tension in k-th layer of the laminate can be expressed by equation for off-axis
strained layer of composite (1.49)

o=Q ¢, (1.53)
where Q 1s a reduced stiffness matrix.
Using equations (1.51) and (1.53) we obtain an expression for tension in the k-th

layer of the laminate

Oxx Q11 Q12 Q16 ‘S:xx Q11 Q12 Qi6][ Fex (1.54)
[Uyy] = [Q21 Q22 Qze] Eyy|+2z|01 Q22 Qu||ky
Oyl 1Qe1 Qo1 Cesl|V°yy Qe1 Q1 Cosl [kyy

Since the tension in the laminate thickness varies discontinuously, resulting
forces and moments acting in cross-laminate are to be solved as a sum of the

effects of all the n layers. For forces it is therefore possible to write
(1.55)
N=|N,|= [ayy] dz
ny k hi—1|0xy
and for the moments

(1.56)
]Z dz

M= law
Mxy k hi-110xy

In these relations (1.55) and (1.56) the resultants of the forces Ny, Ny, N,, have a
dimension [N:m™1] i.e. the force per unit length and M,,M,, M,, have a
dimension [N] i.e. the moment per unit length, because these are resultant forces
and moments acting on the cross section of the k-th layer of the composite

material. [1]
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On the basis of these relations a constitutive relation of the dependence of forces
and moments on deformations and curvatures can be formulated. Substituting
equations (1.55) and (1.56) into the equation (1.54) and using the expressions for
the deformation of the middle surface and the curvature of the plate (1.52). The

following equations are obtained

Ny L e [Q11 Q12 CQie SZxx ne [Q11 Q12 Qus][ Kx (1.57)
Ny | = [Qu Q22 Qze] €yy|dz +f [Qu Q22 Q|| Ky |z-dzp ,
Ney| d=1 (TM-11Qs1 Qo1 Cosl [V7y, Me-11Q61 Qo1 Cool [Kyy
M, n e [Q11 Q12 Qe Q11 Q12 Q6] Fex (1.58)
M, = [Qu Q22 Q26] €° |z dz +f Q21 Q2 Qze] ky|z?-dz;.
M,y k=1 \"M-11Q61 Q61 Cos Me-11Q61 Qo1 Ceel | kxy

It 1s obvious that multiplying the 1ntegral with elements of the reduced stiffness
matrix Qy of the individual laminas and integrating over the entire thickness of

the composite we obtain following expressions

Nx A1 Agg A16 ‘Soxx Bi1  Biz B16 k (1-59)
Ny = (A1 Az Az||€wy|+|B21 B2z Bae ky )
Nyy A1 Aez Aes Voxy Be1 Bez Beel |k
Myl [Bir Biz Bis|[xx| [Din Diz Dis][k (1.60)
My | =|By; By, Bas||€ vy |+ |D21 Daz Dog ky )
My, Bs1 Bez Bee Voxy D¢1 Dey Degl |k
where elements of the individual matrices are determined by relations
n
(1.61)
Z Qlj)k (hge — hg—1)
=1
n
1 2
By =3 ) (@), (= i)
k=1
1 n
Dy =3 (@), (i~ i) -
k=1
These relations can be expressed in a single equation
[Nx1 1A Az Ag B Bz Big -Szx"_ (1.62)
Ny [A21 Ay Aze Bz B Bze] €°yy
Ny _ A1 Asz Ase Be1 Bez Bes|({V xy
M, Bi1 Biz Big D11 Diz Digl| ki |
M, le1 Byz Bz Dp1 Doy Dzel k,
| My | lBe1 Bs; Bss De1 Dea D66J_kxy_

or
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Nl [A ¢ B

£°m] (1.63)
ml 1l : pllel’

where A is the extensional stiffness matrix, B is the bending-extension coupling
stiffness matrix and D is the bending stiffness matrix.

Constitutive equation of the laminate plate expresses forces and moments
depending on the curvature and on the mid-plane deformations. This matrix is
called the global stiffness matrix. For its notation, it is obvious that the matrix A
binds force components in the median plane. The bending-extension coupling
stiffness matrix B binds moment components and components of deformation in
the mid-plane and also components of vector of internal forces with components
of the curvature of the plate. D matrix expresses the relation between the
components of moments and the curvature. This means that normal and shear
forces acting in the median plane not only cause the strain in the median plane,
but also the bending and the twisting of the middle area. Also components of the
bending moment cause strain in the median plane. [1],[4]

The relation (1.63) is used to calculate forces and moments in the laminate. In
practice most often stress and strain caused by external load are determined. A

form, which we want to achieve, is actually the inverse equation

r°m A f B™|[N (1.64)
k B* : D*llm
where

A*=A+B'D'BT; A'=4"1, (1.65)

B*=BD"Y; B =4"'B ,
D*=D"'; D'=D-BA'B .

Matrices A*,B* and D* are called tensile, coupling and bending compliance
matrices. [1]

Ties between bend and tension or torsion and tension, and also between the
normal forces of the middle layer of the laminate and shear deformations are not
desirable in most cases. This phenomenon should be avoided during the

production of laminate’s appropriate order orientation of the layers.
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1.4 Common Laminate Types

The notation used to describe laminates has its roots in the description used to
specify the lay-up sequence for the hand lay-up using prepregl. Therefore, the
laminae are numbered starting at the bottom and the angles are given from
bottom up. For example, a two-lamina laminate may be [30/-30], a three-lamina
one [-45/45/0], etc. [4]

If the laminate is symmetric, like [30/0/0/30], an abbreviated notation is used
where only a half of the stacking sequence is given and subscript (S) is added to
specify symmetry. The last example becomes [30/0]s. If the thicknesses of the
laminae are different, they are specified for each lamina. For example: [6, /6,,]. If
the different thicknesses are multiples of a single thickness t, the notation
simplifies to [6/—6,], which indicates one lamina of thickness t and two laminae
of the same thickness t at an angle—6. Angle-ply combinations like [6/—6] can be
denoted as [+60]. If all laminae have the same thickness, the laminate is called

regular. [4]

1.4.1 Symmetric Laminate

A laminate is symmetric if laminae of the same material, thickness, and
orientation are symmetrically located with respect to the middle surface of the
laminate. For example: [30/0/0/30] is symmetric but not balanced, while
[30/—30/—30/30] is symmetric and balanced. [4]

In terms of the stress it is highly advisable to remove the coupling between the
bending and the extension and between the traction and the torsion. This
situation is obtained if the coupling stiffness matrix B is equal to zero. That is,

with respect to equations (1.61) and (1.62), must be true

n
1
By =5 (Qy), (hE —hy) =0 .
k=1

Each element of matrix B is equal to zero, if to the each contribution of the

(1.66)

lamina above the middle surface exist the contribution from the lamina of the

1 Prepreg is a preimpregnated fiber-reinforced material where the resin is partially cured or
thickened. [4]
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same properties and orientation in the same distance below the middle surface

(see figure 1.10).

) k-th layer (@) Q)i
hi
] middle surface s O P .
hn]"@
lllll
m-th layer (@) (Qi)w
z
Figure 1.10: Symmetric laminate [1]
It must be true
(Qij)k = (Qij)m; |=hx—1] = hpm, |=hgl =hpoy . (1.67)

If each layer above the middle surface will correspond to the identical layer under
the middle surface, it is the symmetrical laminate. The global stiffness matrix
from equation (1.63) will be in the form

A1 Az Age 0 00
[A21 Ay Aze 0 00
Ag1 Asr Aes 0 0 0

0 00 Dy1 D1z Dis
l 0 0 O Dy1 Dy Dzel
l 0 0 0 D¢1  De> D66J

] (1.68)

A binding between tensions and the bending, which constitutes the matrix B, is a
result of a sequence of the layers. It does not follow from the anisotropy or the
orthotropic layers. It is the result of a sequence of layers. This relation also exists
in the composites made of two different metal isotropic materials (bimetal). Due

to changes in temperature the bending of the composite is visible.

1.4.2 Antisymmetric Laminate

An antisymmetric laminate consists of an even number of layers (see figure 1.11).
It has a pairs of laminae of opposite orientation but of the same material and
thickness symmetrically located with respect to the middle surface of the
laminate. For example: [30/-30/30/-30] is an antisymmetric angle-ply laminate

and [0/90/0/90] is an antisymmetric cross-ply. [4]
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Therefore, for each two plies of the same material properties is true

hmo1=—hg, hp=—h_q;

0=-6

(1.69)

From this two conditions follows that both plies have the same thicknesses and

they are at the same distance from the middle surface.

k

i

> k-th layer (— @) Qi
: h
____________________ middle surface I
h m-1
m-th layer (+ @) Q)u

h

-

h m

X

Figure 1.11:

Antisymmetric laminate [1]

The global stiffness matrix from equation (1.63) of the antisymmetric laminates

has a form

A Ap 0 0 0
|[A2s Az 0 0 0
0 0 A66 B61 B62
0 0 B16 Dll D12
0 0 BZ6 D21 D22
Bey Bz O 0 0

Bis
st]|

0

0

0
D

Antisymmetric laminates have elements equal to zero

A16 = Ag1 = Aze = Az = D1 = Dg1 = D36 = D =0,

(1.70)

(1.71)

but they are not particularly useful nor they are easier to analyze than general

laminates because the bending extension coefficients B, = Bs; and B, = By, are

not zero for these laminates. [4]

1.4.3 Quasi-isotropic Laminate

Quasi-isotropic laminates are constructed to create a composite, which behaves

as an isotropic material. The in-plane behaviour of quasi-isotropic laminates is

similar to that of isotropic plates but the bending behaviour of quasi-isotropic

laminates is quite different than the bending behaviour of isotropic plates. [4]

In a quasi-isotropic laminate, each lamina has an orientation given by
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km

where k is the lamina number, N is the number of laminae (at least three), and 6,
1s an arbitrary indicial angle. The laminate can be ordered in any order like
[60/—60/0] or [60/0/—60] and the laminate is still quasi-isotropic.
Quasi-isotropic laminates are not symmetric, but they can be made symmetric by
doubling the number of laminae in a mirror (symmetric) fashion. For e.g. the
[60/—60/0] can be made into a [60/—60/0/0/—60/60], which is still quasi-
1sotropic. The advantage of the symmetric quasi-isotropic laminates is that they
have the coupling stiffness matrix B = 0. [4]

The tensile stiffness matrix A and the bending stiffness matrix D of isotropic
plates can be written in terms of the thickness tof the plate and only two

material properties, the modulus of elasticity E and the Poisson’s ratio v as

1 v 0 (1.73)
A= Et v 1 0
1—172 1—v
0 0
2
and
1 v 0 1.74
D - EC® |y 1 0 (.79
T 12(1 —v?) 0 1-v
2

Quasi-isotropic laminates have, like isotropic plates, A;; = 4,,, but they have
D1y # Dyy, D16 # 0 and D, # 0, which makes quasi-isotropic laminates quite

different from the isotropic materials as it is seen below

Aip Az O (1.75)
A = A12 A11 0
0 0 Ag
and
Dy1 D1z Dis (1.76)

D =|Diz; Dz Dy

Dig Dys Des

Therefore, formulas for the bending, the buckling and vibrations of isotropic
plates can be used for quasi-isotropic laminates only as an approximation. The
formulas for isotropic plates provide a reasonable approximation only if the

laminate is designed trying to approach the characteristics of isotropic plates
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with D;; = D,, and D¢, D, > 0. This can be achieved for symmetric quasi-

1sotropic laminates, which are balanced and have a large number of plies.
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2 The Theory of the Deflection

The deflection is a kind of stress, in which a straight beam is curved to a plane or
a three-dimensional curve. The beam is called a straight rod that it is loaded
mainly to the bending. The beam bending is one of the most common types of
stresses at all (e.g. all shafts are beams). The properties of the beam are
substantially dependent on the type of its support. [2]

This work deals with the encastre composite beams loaded by concentrated
force F at the end of its length. (Figure2.8) The bending of the beam will be solved
by determination of the deformation energy due to the bending moment and the
shear force. The deformation of the beam is determined using Bernoulli’s method.
Every cross-section of the bended beam transfers the bending moment M, and
the shear force T. The shear forces and the bending moments are caused by one
common cause, namely the external loading. A relation between them is shown in

the figure 2.1.
q,{x)

9(%)
Mo(x Motx) + Mo (x)
iumm | o

T A T(x) + dT(,(,)>

dx

Figure 2.1: Loaded beam and out of joint element with force effects [2]

In the right side of the figure 2.1 there is an element of the beam with the force
effects acting on it. The element of the beam has to be in equilibrium. The
equilibrium equations of this element are known as the Schwedler theorem. [2]

For the shear force we have

o) 2.1)
o — 1)
and for the bending moment
dM,(x) _ T (2.2)
dx
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As a result of those effects of the shear force T and the bending moment M, there
1s some tension. For simplicity, one considers only the case of load by bending
momentum. This case is called a pure bending. For a pure bending is proved the
validity of the Bernoulli hypothesis. This hypothesis says that the planar cuts,
which were perpendicular to the longitudinal axis of the beam before the
deformation, remain plane after deformation and are perpendicular to the
deformed longitudinal axis of the beam. [2] This is shown in the figure 2.2 and

1.9.

Before deformation:

£ £x

I
l
|
After deformation: |
I
|
l

CUTA -A ‘
adx<0
P € <0
On €=0
adx > 0
e >0
Figure 2.2: Deformation of the beam according the Bernoulli hypothesis [2]

From the figure 2.2 it is evident that an elongation Adx and a relative elongation

€ of the beam

e =Adx/dx (2.3)
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are proportional to the distance y from the neutral axis 0,,. As the Hooke’s law 1is

valid
c=E-£ ; 2.4)
one can express as
O-:-ﬂ-y ,2 (2'5)
Jz

where o is stress, M, is the bending moment, J, is the moment of inertia to the
axis z and y is the distance from the neutral axis 0, to the top or the bottom of
the section, as it is shown in the figure 2.2.

If one substitutes the relation (2.5) to the Hooke’s law (2.4), one gets

My (2.6)
E-, 0"

where ¢, is the relative elongation in a direction of the x-axis.

Ex =

0 X
(‘Ho ’Ho ‘\
. v"x)<0
b)
Figure 2.3: The part of the beam with marked extension [2]

The important characteristic of the deformation curve of the beam 1is its
curvature k. From the figure 2.3 one can express the elongation as
e =Adx/dx=vy/r . 2.7)

The curvature of the beam is possible to express as

2 The whole derivation is in the literature [2].
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(g Mo 2.8)
r y E-J,

From the equation (2.8) one derivates the differential equation of the deflection
line, if one substitutes the known relation of the analytical geometry, which
express the curvature k of the planar curve v(x), to the equation of the curvature

of the beam.
1 V" (x) (2.9)

T I

To the deflection referred in the figure 2.3 corresponds the sign minus
(@"(x) < 0). For the small values v(x) one can neglect the term (v'(x))2. So the

simplified relation is obtained

1 . Mo (2.10)
A IR
The differential equation of the elastic deflection line
i) = - Mo (2.11)
A Sy X

presented the Swiss mathematician J. Bernoulli in 1694. [2]

2.1 The Moment of Inertia

If the coordinate system is defined as in the figure 2.4, the cross section lies in

the plane y — z.

Yl
dA

Y|

X 4 <
e PR

Figure 2.4: The beam placed in coordinate system and the plane of the cross section [2]

According to the figure 2.4 one removes the element dA = dydz from the cross

section A, which has the coordinates y and z relative to the axes y and z. [2]

40



The moment of inertia to the axis y is expressed by the relation

(2.12)

(4)
Analogically the moment of inertia to the axis z can be defined

(2.13)
J. = f y*dA .

(4
For the beams with a circular cross section it is appropriate to establish the polar

coordinates as it is shown in the figure 2.5.

dA y
dy
v
0:S=T| / -
= q
ol d9
Figure 2.5: The cross section of the circular beam with the cylindrical coordinates [2]
Generally the relation
d
227 (2.14)
o nd*
J:= (p-sing)”-pde dp =
00

1s valid.

To solve the moment of inertia on the wound fibreglass pipe the additivity of the
moment of inertia is utilized. The moment of the whole pipe is computed as a
sum of the moments of individual layers

D4 . (2.15)
I, = . 6—4;(Di4 —-d}) ,i=12,..,n
l
where D; is the external diameter of the each layer, d;is the internal diameter of
the each layer and n is the number of layers.

We will use this property to computation of the bending stiffness in chapter 3.
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2.2 The Determination of the Deformation Energy

2.2.1 The Deformation Energy from the Pure Bending

The pure bending i1s the uniaxial stress; therefore, the derivation of the
deformation energy is based on the equation for density of the deformation

energy

_ o’ (2.16)
2-E

The magnitude of the stress ¢ is a function of a position. The relation is based on

A

the form of the element (figure 2.6), where the stress is regarded as a constant.
The energy of this element is determined, and then the value of the deformation

energy in the entire beam by integration is determined. [2], [6]

Y= st. Mo
VA |
N2 T 7
ARV
X
U
e dx
Figure 2.6: Cross section of the general beam [2]
The selected element has a volume
dV =dA-dx , (2.17)

where dA4 is an element of the area and dx is an element of the distance in the

direction of x- axis. In this element the energy dU is accumulated

o’ o? (2.18)
dU—ﬁdV—ﬁdA-dx .

For the bending stress the relation is valid

M, (x) (2.19)
y .
Jz
After the substitution of the equation (2.19) to the (2.18) one gets

U(x»J’) = -
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M, (x) (2.20)

J:

The total energy accumulated in the beam one can express by the integration

1 2
dU=ﬁ-[— ] -dA-dx .

with respect to x and y

LT M@P (2.21)
U= dez f f—-l— 2 l dA-dx
2E J,
(2] (ONCY
after editing
M2(0) (2.22)
_ . 2, .
U_fZE-]E y“-dA|-dx .
) 4
Because the relation for the moment of inertia is valid
(2.23)
,f yZ dA=], ,
(4)
the relation for the deformation energy of the beam 1s
M2(x) (2.24)
U= j 2EJ, dx

)
In case, that the relation E - J, = const. - the beam has a constant cross-section,
one can write

(2.25)

2.2.2 The Deformation Energy by the Shear Force

In case of the deformation energy caused by the shear stress T the relation is
generally valid

72 (2.26)
v =—-dv ,

where dU is an elementary deformation energy, G is a shear modulus and dV is
an elementary volume. [2]

The shear stress from the shear force depends on the shape of the cross-section.
The determination of the expression of the energy from the shear force we
perform on the beam with the rectangular cross-section. In this case it is valid

the expression
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TS 3 ) 2 )\2 (2.27)
t=y, b~ 2 Tnormal _<T>

and
dV=b-dx-dy ; (2.28)
where T is the shear force according to the Schwedler’s theorem (2.1), J, is the

moment of inertia with respect to the neutral axis 0,, S is a static moment of the
area (§= | ) v;dA), Tpormar 18 magnitude of shear stress which should be created

if it was spread evenly over the entire cross-section and b is the width of the

rectangular cross-section; if one used the designation from the figure 2.7.

N

N
NEN
o= 8-

hl e aad oL d) %.
h
A 2
%
b dx
Figure 2.7: The cross section of the rectangular beam loaded with shear [2]

If the beam has a length L, then the following relation is valid

45 | (2.29)
1
_ .42, ph. .
U= f f °G °-b-dy|-dx
0|_h
2
and after substitution
L ( +§ )2 ) (2.30)
U—f!i-gr f 1—(2.—)’) d &dx
- 2G 4 normal h y
0

L{% T2 2 22T ] S
o[l (-G o

After integration and editing one obtains
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6 L T2 (2.32)
U= < | 2¢a dx
0
As it is apparent from the expression of the deformation energy from the
influence of the shear force, at the beam with a rectangular cross-section due to
the nonlinear distribution of shear stresses the coefficient has been added. The
same result one obtains for beams with other shapes of the cross-section, but
with another coefficient . [2] The general relation for the deformation energy

from shear force is

Lo (2.33)

U=,Bfmdx
0

The coefficient f depends on the shape of the cross-section

=2 | 2—.da
= |
@

. . 6 . . .
For the rectangular cross-section we obtain f = = for circular cross-section is

B = ; and for eg. I-beams is f = 2,4 + 3,8. [2]

2.3 The Deflection of the Beam

The deflection of a composite beam has two components, bending and shear

vV=v,+7v; , (2.35)
where v is the total deflection, v, is the bending deflection and v, is the shear
deflection. The bending deflection v, is controlled by the bending stiffness (E -J)
and the shear deflection v, by the shear stiffness (G - A). [4]
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Figure 2.8: The model of the beam used for analysis

Shear deformations are neglected for metallic beams because the shear modulus

is high (G = E/2,5), but shear deformations are important for composites because
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the shear modulus is low (about E/10 or less). The significance of the shear
deflection v, with respect to the bending deflection varies with the span, the
larger the span the lesser the influence of the shear (compared to bending). [4]
Calculation of the beam bending is made to a cantilever beam (figure 2.8), which
1s used for the analysis of the following methods for calculating the deflection.
First, we determine the diagram of the shear force T and the diagram of the

bending moment M,. It is illustrated in the figure 2.9.
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Figure 2.9: The loaded beam with the course of shear force

and of the bending moment [3]
My(x) =F-x; T(x)=F = const. (2.36)
The deformation energy U is determined as a sum of the bending deformation

energy and the shear deformation energy. The equation (2.25) and (2.33) is used.

MEC) (AT (2.37)

L

0

Because the cross section A of the beam is constant, the moment of inertia J, is

constant too, so we can factor them out. For the respective deformation energies

we have
1 L 5 1 F2X3 L 1 F2L3 (238)
Uy = 57| | e :2E12[ 3 L:ZEJZ' 3
0
and
L
F2y (2.39)
Ur=ifF2dx=ﬁ ad IR
2GA 2GA| 1 0 2GA
0
The expression for the total energy is therefore
F?L* BF?L (2.40)

Uu=U U, = —
Mot Ur 6E]Z+ZGA
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For the calculation of the deflection at the end of the beam under the force F we

use the Castigliano’s theorems3

, _oU_ 9 F2L3+ﬁF2L _ FL®> BFL (2.41)
F™9F ~0F\6EJ,  2GA) 3EJ, GA

The same result we get if we use the Mohr’s Integral, which follows from the

Castigliano’s theorem.

_ [ M,() M) [ BT () T (x) (2.42)
v = f E,0 oF ") GA() ToF
0 0
17 g ¢ (2.43)
v (x) =E—]Zfo- 1 xdx+a F-"1"dx
0 0
The relation for the deflection at the end of the beam will have a form
=L 3N B [Fx L FL® BFL (2.44)
YR 3 O+GA 1 0_3E]Z+ GA

3 The detailed derivation of the Castigliano’s theorem can be found in the literature [2].
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3 The Methods Used for the Analysis
3.1 The Used Model of the Beam

F
od
bd
L —
A
Figure 3.1: The model of the beam used for the analysis

All computations for the analysis of the composite beam bending are designed for
the cantilever beam that is loaded with concentrated force at the end of its
length. The beam is a wound composite pipe with a circular cross section. All

data used for computations are presented in the table 3.1 below.

Input data
Geometry
length L=1m
inner diameter d=12,4,6,8 10] mm
thickness of each composite t=1mm
layer
thickness of the wound pipe  t, =3 mm
Load
concentrated force F=100N
Material
density p =1474 kg.m3
longitudinal  modulus of Ep=156.05GPa
elasticity
transversal modulus of Er=6.045 GPa
elasticity
shear modules Gur = 4.431 GPa
Grr =4.431 GPa
Grr = 4.431 GPa
Poisson’s ratio vir = 0.328
layup of composite material [90°, a, -a]
angle of fiber a = [0°,5° 15°, 25° 35° 45° 55° 65°, 75°, 85°,90°]

Table 3.1: Input data used for analysis

3.2 The Calculation of the Beam Bending by Bernoulli’s
Method

For the calculation of the bending by this method the Castigliano’s method 1is
used, which is the same method as the calculation of the bending of the isotropic
material, with an extension for shear. The validity of the Bernoulli’s hypothesis is

still assumed as it is written in the previous chapter 2.
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—l (3.1)
oF

The Castigliano’s method (3.1) is adjusted to the form (2.42) that is called Mohr’s
Integral.

J E.J,00 " oF dx+0 Gy A(X) OF

L L (3.2)
) = f M,(x) 0M(x) TP T

Shear effects cannot be ignored, because in the bending of the composite beam it
has a larger share of the total bending than in the isotropic material.

The composite theory enters this computation in the calculation of the modulus of
elasticity E. It is known, that the effect in each layer may be different so this
problem must be included in the computation. A modulus of elasticity of each
layer is calculated using the stiffness matrix § in the main coordinate system

O(L,T, T') of the composite material.

E, virEr ] (3.3)
0
| 1—vvr, 1—vpvp |
(S« =| virEr Er 0 | s k= wn
1-vgvr, 1- VLTVTL |
0 Gurl,

E;, Er are tensile modules in the direction L andT; v, and vy, are Poisson’s
ratios; G,7 1s a shear modulus; k is index of each layer; n is a number of layers.
The stiffness matrix must be transformed to the coordinate system 0(x,y,z) of

the whole beam by the transformation matrix T,

cos?0 sin?0 —sinfcosH (3.4)
(TxJ’)k =| sin%6 cos?0 sinfcosb )
2sinfcos® —2sinfcosh cos?0 — sin?61;

where 0 is a rotation angle around the z- axis. (Angle & may be different for each
layer.)
Then, we can do the transformation.

Sxy =Txy S Ty (3.5)
To express the modulus of elasticity in main coordinate system O(x,y,z) the
compliance matrix Cy, is needed. The compliance matrix is the inverse matrix to
the stiffness matrix S,,,.

_g 1 (3.6)
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From this matrix we choose the following elements to determine the modulus of

elasticity E, and the shear modulus G,, for each layer.
Cll = Ex_l (3 7)
Cos = ny_1 (3.8)

The resultant bending stiffness (EJ)., 1s obtained by adding the product of the

modulus of elasticity E, and an appropriate quadratic moment of the cross section
], for each layer

_7tD4 d\* o (3.9)
]yk—ﬁ 1—(5) k=12, ..,n

n
(3.10)
(E])eq = z Ex, ']yk )
k=1
where D is the external diameter of each layer, d is the internal diameter of each
layer, k is the index of each layer and n is the number of layers. To obtain the

resultant equivalent shear stiffness (GA)., we proceed similarly
Akzg(Dz—dZ) k=12, ..n (3.11)

n
(GAYeq = Z Gy, - Ak (3.12)
k=1

Again, D is the external diameter of each layer, d is the internal diameter of each
layer, k is the index of a layer and n is the number of layers.
The deflection is calculated from the equation (3.2). The determination of the
diagram of the shear force T and the bending moment M, is the same in the
section 2.3

My(x) =F-(L—x); T(x)=F = const. (3.13)
and the bending moment by a dummy force is

mo(x)=1-(L—x); T(x)=1 (3.14)

as it is illustrated in the figure 3.2.
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Figure 3.2: The beam loaded by the unit force with the course of the shear force
and of the bending moment [3]

Then, the Mohr’s integral is computed according to the equation (2.42)

L B L (3.15)
vp(x) = F(L—x)-1(L—x)dx + fF-ldx.
e Ex]yof 10100 des 5 5
After the integration that is
2FLx?  Fx3]" F(L— )" 3.16
Vp = '[FLZX— X N X .8 ( x) ’ ( )
E.J, 2 3 ], GryA |,

where F is the force load, Lis the length of the beam, xis the distance on the
x-axis, Bis the coefficient characterizing the unequal distribution of the shear
stress. The coefficient B depends on the geometry of the cross section
(section 2.2.2) and A is the sectional area of the beam.

After substituting x = 0 we obtain the deflection in the place under the force F.

_F-L3+F-L-,8 (3.17)
" 3EJy, Gyy-A

Vf

This computation of the bending is based on the compliance matrix C. The
resultant deflection thus represents the upper limit of the safety. The deflection
provides greater or equal values in the comparison with other methods of the
deflection. If we use the stiffness matrix S for the calculation of the deflection, we
will obtain another limit value, this time the lower limit of the beam deflection.
These values correspond to the application of the longitudinal modulus of
elasticity (the lower value of the deflection) and transversal modulus of elasticity
(the upper value of the deflection) to the computation of bending. This fully
agrees with the theory of composite materials.

For this method of the computation bending a program DP_Trubka.m in
MATLAB® was created. Program calculates the bending of the beam of the
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circular cross section for any number of layers. The structure of composite
material may also be arbitrary. With this program the data to the summary
graphs (4.1-5) of the dependence of the bending of a beam on the angle of the
direction of the fibres in the composite material have been calculated. The overall

listing of the program is presented in Annex [1.1].

3.3 The Calculation of the Bending of the Composite Beam
Using ABD Matrices

For the calculation of the beam bending with a circular cross section (figure 3.1)

£°m]
k

First, we determine all input values. These are geometrical dimensions and

by this method the equation (1.63)

N A B

(3.18)

M B D

described in the chapter 1 is used.

material constants for all layers described in the table 3.1 in the section 3.1.

Then, we can put together the stiffness matrix in the principal coordinate system

S11 S22 O (3.19)
S = 521 522 0 .
0 0 Se
Its elements are determined by these relations (1.39) in the section 1.3
S = E; _ E, _ (3.20)
Y-y 1—&-1/2 ’
E, Vir
Er Er Er
S,, = = =—-851 ;
271 —Vir'Vrr 1 Er V2 E, 1
E, VLT
virEr
S12 = S21 = =V S22

1=vir-vp

Se6 = Gir

The transformation into the global coordinate system of the beam is necessary.

This is realized according to the formula (1.44)
S'=T;'-CT, .

(3.21)

In a completely general case one needs a reduced stiffness matrix Q to compute,

but this is a planar case, so the off-axis stiffness matrix is equal to the stiffness

matrix S’ transformed to the global coordinate system.
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Q=S (3.22)
Now we can compute the elements of stiffness matrices 4;;, B;; and D;; according
to the formulas (1.61)

= (3.23)
Ajj = Z(Qij)k (hg — hy—1)
k=1

n
1
By =5 ) (@), (hE —hE-y) .
k=1

n
1
Dy =3 ) (@), (ht —hiy) -
k=1

In our case we use the matrix 4 to compute the equivalent modulus of elasticity

E.q of our beam. The strain is planar and the matrix B is zero so the equation has

a form
N, A1 A1z Al [E%1 (3.24)
0[=1421 Az Aze|-|€°%2
0 Ag1 Aez Asel L%
Then we can divide the matrix notation to the two equations
80
Ny =41+ [A12 Age]- [eoﬂ (3.25)
and
0] _ A21]_ o o [Az2 Azs] ) [502] (3.26)
[0] 461 g1t Asz Agel L€°3] °

From the second equation (3.25) we obtain a relation of deformation to the middle

area in directions y and xy

[302] __ [Azz AZG]_1 [A21] g0 (3.27)
£%3 As2  Asgs As1 L
This relation we substitute to the first equation (3.24)
Ay Alt 14 (3.28)
N, =(A4.. —[A A . [ 22 26] . 21] . g%, .
1 ( 11— [A12 Aié] Aey Aee Agy &1

As it 1s written in the section 1.3 the resultant of the force N; has a dimension
[N-m™1], so this is not an expression of a stress. The stress of the composite
material we can express using the Hooke’s law (2.4). To obtain an expression of
the stress from this relation (3.28), it is necessary to divide the entire expression
by the total thickness of the composite material. From the relation (3.28) it is
evident, that the modulus of elasticity corresponds to the expression in brackets

divided by the total thickness of the laminate t.

53



N1 Az Azt [Az o (3.29)
=TT ?<A11 Az Al [Aez Aee] . [A61] e

The equivalent modulus of elasticity E,, for this case one can express by the

formula

Ay Ayt [A 1 3.30
b = (0= 100 - [32 2] [32]) 4 (350

t
where A;; are the elements of the extensional stiffness matrix and t is the
thickness of the composite material.
The equivalent shear modulus G,, is obtained the same way from the equation

(3.18). The assumptions are similar as in the previous case. The matrix B is zero

and the pure shear stress N; is considered. The equation has a form

0 Ay; A1z Age] [€1 (3.31)
0|=[(A21 Az Aze|-|€%2] .
N3 Ag1 Az Aeesl 1€°3

Again we can divide the matrix notation to the two equations

01 _ [A11 A12] [°1] | [A16] . 0 (3.32)
[0] B [A21 Azz] [ £°%; ] + Azs] €3

and
N3 = [A¢1 Ae2]- io; + Age " €°3 - (3.33)

From the first equation (3.32) we obtain a relation of the deformation to the

middle area in directions x and y

[£°1] _ [An 1412]_1 Alﬁ] g0 (3.34)
£% Azr Ap Az 3
This relation we substitute to the second equation (3.33)
A A1 14 (3.35)
N. =14 —[A A . [ 11 12] . 16] ) .
3 ( 66 — [A61  Aez] Ay, Ay Ay &%

Once again the shear force N; has a dimension [N-m™!], so this is not an
expression of the shear stress. The shear loading we can express using the
generalized Hooke’s law

T=G'Yy . (3.36)
To obtain an expression of the shear from the relation (3.18), the entire
expression (3.35) is necessary to divide by the total thickness of the composite
material. From this relation (3.35) it is evident, that the shear modulus
corresponds to the expression in brackets divided by the total thickness of
laminate t.
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N, 1 A A1t T4 3.37
0-3273:?<A66_[A61 A62]'[Ai AZ] 'A;ZD'€°3- (.37)

The equivalent shear modulus G, for this case one can express by the formula

A A1t (A 1 3.38
Geq:<A66_[A61 Agz] - Ai AZ] 'A;Z])'? , ( )

where 4;; are elements of the extensional stiffness matrix and t is the thickness
of composite material.

The following is a substitution of E; and G, into the formula for the calculation
of bending (2.44), which is

_ P FLp (3.39)
3Beqly  Geqg A

Uf

This method is only approximate, because it includes several inaccuracies. First,
to calculate modulus of elasticity we assume the plane stress and the pure shear.
We count with the unwound circular cross-section of the beam. Second, we
assume that the bending-extension coupling stiffness matrix B is zero. This
precondition is fulfilled only for specific compositions of the composite material as
1s the symmetric laminate (section 1.4.1). This greatly reduces the possibility of
either using the method or we will admit the neglect of certain bonds in the
material. [1] Although this method is approximate, it shows that it gives
significant results. These assumptions do not bring a considerable mistake into
the calculation.

For this method of the computation of the bending a program
DP_ABD_Trubka.m in MATLAB® was created. (Annex [1.2]) The program
calculates the beam bending of the circular cross section for any number of
layers. The structure of the composite material may also be arbitrary. The output
data are summarized into graphs of the dependence of the beam deflection on the

angle of the direction of the fibres in the composite material.

3.4 The Calculation of the Beam Bending by the Finite
Elements Method

In this work all FEM models are created with Abaqus CAE. There are three
options that can be used for the modelling of the composite beam by the finite

elements method:
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e conventional shell

e continuum shell

e volume model
The specifics of each method are presented in the following sections. This is not a
tutorial to get started with the modelling in Abaqus, but there are captured
substantial differences of individual models and there are information to
reconstruct the models of the composite beam.
For each model was created a CAE file, where was specified geometry, materials,
loads and constraints. Then, it was generated a script in Python (the
programming language for Abaqus) of this CAE file. In this script variables were
edited (the cross-sectional size and the angle of the direction of the fibres) to
obtain particular data for each combination of the diameter and the angle of
fibres. The script is shown in Annexes [1.3-5]. Values of calculated deflections are
shown 1in table 4.1. For every model the same input data have been used. This is

written in the table 3.1.

3.4.1 The Calculation by Using Conventional shell

The whole geometry is represented at a reference surface. The reference surface
of the shell is defined by the shell element’s nodes and normal direction.
Thickness is defined by section property. The input data was chosen according
the table 3.1. The following is a description of the operations in Abaqus CAE to
obtain a script in Python.

The following is a description of the operations in the particular modules of CAE:

Sketch

For the modelling of the geometry of the pipe as a conventional shell one used the
Part manager —Create Part —Shell, Extrusion. Then, a sketch is made as is

shown in the figure 3.3.
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Figure 3.3: The sketch for the model of the pipe
Property
The material has to be determined. One used the Material manager — Create
and set the density of the chosen material ant its constants. For the modelling of
a composite material the type Lamina is used. The details are shown in a figure
(3.4) below. In Abaqus we have to specify the shear modules in all three
dimensions. For our task was chosen the same value in all dimensions as it is

written in the table of input values (3.1).

Name: Material-1

Description: s
Material Behaviors

Density

General Mechanical Thermal [Electrical/Magnetic  Other
Elastic

Type |Lamina H

[7] Use temperature-dependent data
Number of field variables: 0F
Moduli time scale (for viscoelasticity): | Long-tem ]
[] No compression
[T No tension
Data

E1 E2 Nul2 G12 G13 G23
1 156050000000 6045000000 0328 4431000000 4431000000 4431000000
Figure 3.4: The window for editing the material

When the material is determined, the composite layup can be defined using

Composite Layup Manager — Create —Conventional Shell. One sets the
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coordinate system for the used geometry, the normal direction, the number of
plies and their properties. The thickness of plies, the material, the rotation angle
and the coordinate system for all plies are specified (figure 3.5). There i1s also
specified the geometry area for each ply.

Assembly

If the properties of material and geometry are determined one can set the
assembly. In this case the assembly contains one part — the shell of the pipe. As
we can see in the figure (3.6) the assembly includes two coordinate systems. It is
caused by our specification of the coordinate system for the direction of fibers.
The coordinate system, which is used for the computation, has the x-axis
identical to the longitudinal axis of the pipe (in the figure (3.6) it is on the left
side). The second one is automatically generated for the assembly (it is on the

right side in the figure (3.6)).

2= Edit Composite Layup

Name: CompositeLayup-1

Flement type: Conventionsl Shell  Description:
Layup Orientation
Definition: | Coordinate system H &
Datumesys-l [y L
Normal direction: ) Axis1 @ Axis2 ) Axis 3
Additional rotation: © None ) Angle: |0 Distribution: &

Section integration: @ During analysis (7) Before anal lysis

Thickness integration rule. @ Simpson () Gauss
Ply Name Region Material  Thickness osvs Rg:‘::“ l“t;(‘f:‘;i““
1 Ply-1 (Picked) Material-1 0,001 Datum csys-1.2 90 3
2 v Ply-2 (Picked) Material-1 0,001 Datum csys-1.2 0 3
3 v Ply-3 (Picked) Material-1 0.001 Datum csys-1.2 0 3
oK Cancel
Figure 3.5: The window for editing the composite layup

Now the partition of the shell into two parts is made. It is for the better
identification of the direction of the composite material and also for the better
meshing of a part. The partition is made by the order Partition Cell: Use
Datum Plane. First one has to create the datum plane by using the order

Create Datum Plane: 3 Points.
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Figure 3.6: The assembly of the beam
Step

In the mode Step the procedure type Static, General is defined, because we are
computing the static case of the beam bending. The point of our interest is a size
of the bending at the end of the beam, so the only calculation of the translation is
needed. This we specify in the Field Output Request Manager — Cerate —
Continue — Edit Field Output Request, where we choose the possibilities as it
1s shown in the figure (3.7 b).

2 SN EETTT ——
Name:  F-Output-l
step: Step-1
Procedure: Static, General
- N
v . == R w— f Bion
NamchSiceet Frequency: | Every nincrements e
Type: Static, General
Timing: | Qutput at exact times
Basic | In ion | Other
Output Variables
Description: ] .
escription: [ @ Select from list below ) Preselected defaults © All © Edit variables
Time period: |1 UURLT,
Nigeorn © Off (This setting controls the inclusion of nonlinear effects b [ Stresses P
9EOM - on  of large displacements and affects subsequent steps.)
- P[] Strains
Automatic stabilization:  None E w [l Displacement/Velocity/Acceleration 7
U, Translations and retations
UT, Translations
[l Include adiabatic heating effects UR, Rotations
[T]V, Translational and rotational velocities
[ VT, Translational velocities
[ VR, Rotational velocities
T T o O T S R T T S T
4] (I | v
Note: Some exror indicators are not available when Damain is Whole Model or Inte
Cancel
[T Output for rebar
Output at shell, beam, and layered section points:
@ Use defaults ) Specify:
7] Include local coordinate directions when available
. . . .
Figure 3.7: a) The window to specify the calculating step
b) The window for choosing the outputs
Interaction

The beam is loaded by a concentrated force, therefore it is appropriate to place

the force into the centre of the circular cross-section at the end of the beam. The
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centre of the cross-section has to be connected with a cross-section at the end of
the beam. This we can define by the Constraint Manager — Create —
Coupling —Edit Constraint. Before that we determine the reference point
(RP-1 in the figure (3.8 a)) for a coupling by the order Create Reference Point
in the centre of the cross-section at the end of the beam.

a) b)

Mame: Constraint-1

Type:  Coupling

i Control points: m_Set-1 [y
) Surface: sSetl [y
Coupling type: @ Kinematic
(&) Continuum distributing
@ Structural distributing
Constrained degrees of freedom:

[@u @ uz [#u3 @UrRl @] UR2 [¥] UR3

Influence radius: @ To outermost point on the region
*) Specify:

[T Adjust control peints to lie on surface

CSVS Part—1-1 Datum csys-1 [3 L

X

Figure 3.8: a) The pipe with the shown coupling properties
b) The window for editing the coupling properties

Than we set a coordinate system for the coupling, we choose the same one we
have used for the determination of the composite material specification (the red
one in the figure (3.8 a)).

Load

In this module the size of the concentrated force and its location is specified as
well as fixation of the beam. The concentrated force is defined in Load Manager
— Create — Concentrated Force — Edit Load. We define a coordinate system
that we used (the red one in the figure (3.9 b) and a force in the direction of the
z -axis as it is shown in the figure (3.9 a).

The fixation of the beam is specified in Boundary Condition Manager —
Create — Symmetry/Antisymmetry/Encastre — Encastre (U1 =U2 =U3 =
UR1 = UR2 = UR3 = 0). Again the coordinate system has to be defined.
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a)

2= Edit Load =

Mame:  Load-1

Type:  Concentrated force
Step:  Step-1 (Static, General)
Region: Set-3 [y

CSVS: Part-1-1 Datum csys-1 [ L

Distribution: | Uniform o
CFL: 0
cr 0
CF 100
Amplitude: | (Ramg) B Po

[] Follow nodal rotation

Note: Force will be applied per node.

Y

X<—I

Figure 3.9: a) The window for editing the load
b) The pipe with the shown load and the fixation

2= Edit Boundary Condition =

MName: BC-1

Type  Symmetry/Antisymmetry/Encastre
Step:  Step-1 (Static, General)
Region: Set-d [y

Cs¥s: Part—1-1 Datum osys-1 [ L

() XSYMM (UL = UR2 = UR3 = 0)

©) YSYMM (U2 = URL = UR3 = 0)

@) ZSYMM (U3 = URL = UR2 = 0)

() XASYMM (U2 = U3 = URL = 0; Abaqus/Standard only)
) YASYMM (UL = U3 = UR2 = 0; Abaqus/Standard only)
() ZASYMM (UL = U2 = UR3 = 0; Abaqus/Standard only)
() PINNED (UL = U2= U3 =0)

@ ENCASTRE (UL = U2 = U2 = URL = UR2 = UR3 = 0)

Figure 3.10: The window for editing the boundary conditions

Mesh

The element type S4R has been used for the meshing of the pipe. S4R is a robust,
general-purpose element that is suitable for a wide range of applications. The
size of elements has been chosen 0,005 x 0,001. It is not an optimal choice of a
size for this type of elements, because the aspect ratio should be less than three.
But we do not review some local effects on the geometry, for calculating the
deflection of the whole beam this selection of the size of elements does not distort

the calculation.
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Figure 3.11: The meshed beam
Job

The calculation was carried out without errors. Details can be seen in the figure
(3.12).

(4 Job-0 Monitor

Job: Job-0 Status: Completed

Severe - -
" Equil Total Total Step Time/LPF
Step | Incument | Att Dl;":‘r"' Iter Iter  Time/freq  Time/LPF Inc
1 1 1 0 2 2 1 1 1

[ Log | Emors || Tiiiatmings | Output | Dats File | Message File | Status File

Whenever a translation (rotation) dof at a node is constrained by a kinematic coupling definition the translation
(rotation) dofs for that node cannot be included in any other constraint including mps, rigid bodies, etc.

MPCS (EXTERNAL or INTERNAL, including those generated from rigid body definitions), KINEMATIC
COUPLINGS, AND/OR EQUATIONS WILL ACTIVATE ADDITIONAL DEGREES OF FREEDOM

The 3-direction at one or mere points in one or more layers in 3200 elements as defined in *ORIENTATION are in
the opposite direction to the element normals. Either the 1 or 2 and the 3-direction defined in "ORIENTATION
will be reversed. The elements have been identified in element set WarnElem3DirOppElemMormalSteplined.

Search Text

Tettofing:| |[IMaichcase B Newt §f Previous
i

Figure 3.12: The listing of the calculation

Visualization
The deformation of the beam was most reflected as it has been expected in the

direction of the concentrated force. It is evident from the figure (3.13 a).
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a)

ODB: Job-0.0db  Abaqus/Standard 6.12-1  Sat Apr 25 13:39:33 GMT+02:00 2015

7 < I Step: Step-1

Increment 1: Step Time = 1.000
Primary Var: U, U2
Deformed Var: U Deformation Scale Factor: +1.352e-01

b)

c

=t
+ N
o

000e+00

NPR A ALUN G
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ODB: Job-0.0db  Abaqus/Standard 6.12-1  Sat Apr 25 13:39:33 GMT+02:00 2015

X ‘J Step: Step-1

Increment 1: Step Time = 1.000
Primary Var: U, U2
Deformed Var: U Deformation Scale Factor: +1.352e-01

Figure 3.13: a) The deformed beam shown in the yz plane
b) The deformed beam in a general perspective with the scale

The value of the deflection 1is different in individual nodes in the cross-section.
This i1s shown in the figure (3.14). So the numerical size of the bending was
calculated as the average of values of the deformation in the direction of the y-

axis of individual nodes at the end of the beam.

u, U2
+0.000e+00
-6.164e-02
-1.233e-01
-1.849e-01
-2.466e-01
-3.082e-01

-6.780e-01
-7.397e-01

ODB: Job-0.0db Abaqus/Standard 6.12-1 Sat Apr 25 13:39:33 GMT+02:00 2015

X < ]l Step: Step-1

Increment 1: Step Time = 1.000
Primary Var: U, U2
Deformed Var: U Deformation Scale Factor: +1.352e-01

Figure 3.14: The detail of the end of the deformed beam with the values of the deflection
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3.4.2 The Calculation by Using the Continuum Shell

For the calculation using the continuum shell the full 3-D geometry is specified.
The element thickness is defined by the nodal geometry. Continuum shell
captures more accurately the through-thickness response for composite laminate
structures. It has a high aspect ratio between in-plane dimensions and the
thickness. The input data were chosen according the table 3.1. The following is a
description of the operations in Abaqus CAE to obtain a script in Python.

The following is a description of the operations in the particular modules of CAE:

Sketch

For modelling the geometry of the pipe as a continuum shell one used the Part
manager — Create Part —Solid, Extrusion. Then a sketch is made by two

circles as it is shown in the figure (3.15).

x-0.008, y-0 004

Figure 3.15: The sketch for model of the pipe

Property

In the module Property the material has to be determined. One used the
Material manager — Create and set the density of the chosen material and its
constants. For the modelling of a composite material the type Lamina is used.
The details are shown in the figure (3.16) below. This part is the same as in the
section 3.4.1 (modelling of the conventional shell).

When the material is determined, the composite layup can be defined using
Composite Layup Manager — Create — Continuum Shell as it is shown in
the figure (3.17). One sets the coordinate system for the used geometry, the
normal direction, the number of plies and their properties. The thickness of plies,
the material, the rotation angle and the coordinate system for all plies are
specified. There is also specified the geometry area for properties of each ply. The
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properties specification of the model is the same as in the previous case in the

section 3.4.1.

2+ Edit Material

Description:

Density

Elastic

Type: | Lemina

[T No tension
Data

Name: Material-1

| Meaterial Behaviors

General Mechanical Thermal Electrical/Magnetic  Other

[7] Use temperature-dependent data
Number of field variables:
Moduli time scale (for viscoelasticity): | Long-term  [+]

[F] No compression

E1
1 156050000000

Ed

Nul2 G12 G13 G23
0328 4431000000 4431000000 4431000000

Cancel

Figure 3.16:

a)

2= Create Composite Layup | 2%

Mame: | CompositeLayup-1
Initial ply count: 3E
Element Type

Conventional Shell

Centinuum Shell

Solid

The window for editing the material

b)

2= Edit Composite Layy

Mame: CompositeLayup-1

Element type: Continuum Shell Description: ||
Layup Orientation Stacking Direction
Definition: | Coordinate system o & (©) Element direction 1

Datum csysl [y L, ement direction 2
ement direction 3

*) Layup orientation

Nermal direction: () Axis1 ) Axis2 @ Axis3

Additional rotation: @ Mene () Angle: |0 () Distribution: 5

Section integration: ©) During analysis () Before analysis

Thickness integration rule: @ Simpson () Gauss

Plies | Shell Parameters | Display

[7] Make calculated sections symmetric

By | By

Ply Name Region Material B () el (s
Thickness = o
1 Ply-1 (Picked) Material-1 0.001 Datum csys-1.3 90 3
2 v Ply-2 (Picked) Material-1 0.001 Datum csys-1.3 90 3
3 v Ply-3 (Picked) Material-1 0.001 Datum csys-1.3 -90 3

Figure 3.17:

Assembly

a) The window for creating the composite layup;
b) The window for editing the composite layup

The part has to be put into the assembly. In this case the assembly contains one

part —the body of the pipe. The coordinate system of the pipe is determinated as
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we can see 1n the figure (3.18). It is the coordinate system, which is used for the
determination of the direction of fibres. The coordinate system that is used for

the computation has the x-axis identical to the longitudinal axis of the pipe.

A

z X

Figure 3.18: The assembly of the beam
Now the partition of the geometry into two parts is made. It is for the better
identification of the direction of the composite material and also for the better
meshing of the part. The partition is made by order Partition Cell: Use Datum
Plane. First, one has to create the datum plane by using order Create Datum

Plane: 3 Points.

Name:  F-Output-l
Step: Step-1

Procedure: Static, General

Domain: | \yhole model [ PiEtrar oniy
Frequency: |Every n increments ERE
Timing: | Qutput at exact times
Output Varisbles
© Select from list below © Preselected defaults @ All © Editvariables

U,URUT,

P[] Stresses s
P []Strains
¥ [ Displacement/Velocity/Acceleration
U, Translations and rotations
UT, Translations
UR, Rotations
[]V, Translational and rotaticnal velocities
[T VT, Translational velacities
[T] VR, Rotational velocities
AN ARIA At e demeeee

m

P e —
Note: Some error indicators are not available when Domain is Whole Model or Inte
[7] Output for rebar
Output st shell, beam, and layered section points:
@ Use defaults ©) Specify:

Include local coordinate directions when available

Figure 3.19: The window for choosing the outputs
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Step

As it 1s written in the section 3.4.1, the procedure type Static, General is
defined. The outputs are set as in the previous case, where we choose the
possibilities of the displacement as is shown in the figure (3.19).

Interaction

Again the one end of the beam is prepared for the loading using Constraint
Manager — Create — Coupling —Edit Constraint. The reference point
(RP-1 in the figure (3.20 a)) is set. According to our model the beam is loaded by
a concentrated force, which 1s placed into the centre of the circular cross-section
at the end of the beam. The centre of the cross-section has to be connected with a
cross-section at the end of the beam by constraint. The coordinate system is

selected as in the previous case according to the specification of the composite

material.

a) b)

Mame: Constraint-1

Type:  Coupling

Ji Control points: m Set-1 [
fl Surface: sSurfl [y

nematic

inuum distributing

al distributing
Constrained deg
@l @2 U3 @ URL [ UR2 [¥] UR3

Influence radius: @ To outermost point on the region
@) Specify:

[ Adjust control points to lie on surface

CSYS Part-1-1 Datum csys-1 [3 L

Figure 3.20: a) The pipe with the shown coupling properties
b) The window for editing the coupling properties

Load

Further, the concentrated force and the fixation of the beam are determined. The
concentrated force is defined in Load Manager —Create —Concentrated
Force —Edit Load. We define a coordinate system that we have used before (the
red one in the figure (3.21 a)) and a concentrated force in the direction of the

z-axis as it 1s shown in the figure (3.21 b).
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The support of the beam is specified in Boundary Condition Manager —
Create — Symmetry/Antisymmetry/Encastre — Encastre (U1 =U2 =U3 =
UR1 = UR2 = UR3 = 0). The coordinate system has to be defined. The fixation is
accomplished in the same way as in the previous section 3.4.1.

Mesh

Continuum shell elements are 3-D stress/displacement elements for the use in
the modelling of structures that are generally slender, with a shell-like response
but the continuum element topology. They capture more accurately the through-

thickness response for composite laminate structures. The element type SC8R

a) b)
EEDD — )
Name: Load-1
Type  Concentrated force
Step:  Step-1 (Static, General)
Region: Set-2 [y
C5¥5: Part—1-1 Datum osys-1 [y L
Distribution: |Uniform [ fo
CFl1: 0
CF2: 0
CF3: 100
Amplitude: | (Ramp) H P
[7] Fellow nodal retation
Note: Force will be applied per node.
Y
ced
Figure 3.21: a) The pipe with the shown load and the fixation

b) The window for editing the load
(8-node hexahedron for a general purpose) has been used for the meshing the
geometry. The thickness direction can be ambiguous for the SC8R element. Any
of the 6-faces could be a bottom face, therefore it is important to define the
bottom side of the elements and assign the stack direction. This can be
determined by order Assign Stack Direction as it is shown in the figure (3.22).
The size of elements has been chosen 0,005m along the x-axis and the quantity

40 elements along the perimeter.
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L

Figure 3.22: The meshed beam with the layup orientation
Job

The calculation was carried out without errors. Details can be seen in the figure
(3.23).

2% Job-00 Monitor =B8] %

Job: Job-90 Status: Completed

Severe - -
" Equil Total Total Step Time/LPF
ErD | Mol | LB DI'::“:“ Tter Tter  Timeffreq  Time/LPF Inc
1 1 1 0 1 1 1 1 1

Log | Errors | !Wamnings | Output | Data File | Message File | Status File

Whenever a translation (rotation) dof st a node is constrained by a kinematic coupling definition the
translation (rotation) dofs for that node cannot be included in any other canstraint including mpcs, rigid
bodies, etc.

MPCS (EXTERNAL or INTERNAL, including those generated from rigid bedy definitions), KINEMATIC
COUPLINGS, AND/OR EQUATIONS WILL ACTIVATE ADDITIONAL DEGREES OF FREEDOM

The 3-direction at one of more points in one or mer layers in 4000 elements as defined in *ORIENTATION
are in the opposite direction to the element normals, Either the 1 or 2 and the 3-direction defined in
“ORIENTATION will be reversed. The elements have been identified in element set
WarnElem3DirOppElemNormalSteplincl.

Search Text

Textto find: [[IMatch case [l Nest i Previous

Figure 3.23: The listing of the calculation

Visualization

Deformation of the beam was most reflected as it has been expected in the
direction of the concentrated force. It is evident from the figure (3.24 a).

The value of the deflection is the same in individual nodes in the whole cross-
section. This is shown in the figure (3.25). So the numerical size of the deflection

was taken as the value of the deformation in one node at the end of the beam.
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a)

ODB: Job-90.0db Abaqus/Standard 6.12-1 Tue Mar 24 12:43:25 GMT+01:00 2015

7 < I Step: Step-1

Increment 1: Step Time = 1.000
Primary Var: U, U2

Deformed Var: U Deformation Scale Factor: +3.011e-03

b)

U, U2
+0.000e+00
-2.767e+00
-5.535e+00
-8.302e+00
-1.107e+01
-1.384e+01
-1.660e+01
-1.937e+01
-2.214e+01
-2.491e+01
-2.767e+01
-3.044e+01
-3.321e+01

ODB: Job-90.0db Abaqus/Standard 6.12-1

X < ; Step: Step-1

Increment 1: Step Time = 1.000
Primary Var: U, U2
Deformed Var: U Deformation Scale Factor: +3.011e-03

Tue Mar 24 12:43:25 GMT+01:00 2015

Figure 3.24:

a) The deformed beam shown in the yz plane

b) The deformed beam in a general perspective with the scale

U, U2
+0.000e+00
-2.767e+00
-5.535e+00
-8.302e+00
-1.107e+01
-1.384e+01
-1.660e+01
-1.937e+01
-2.214e+01
-2.491e+01
-2.767e+01
-3.044e+01
-3.321e+01

33.2078

, -33.2078

ODB: Job-90.0db Abaqus/Standard 6.12-1 Tue Mar 24 12:43:25 GMT+01:00 2015

X < It Step: Step-1

Increment 1: Step Time = 1.000
Primary Var: U, U2

Deformed Var: U Deformation Scale Factor: +3.011e-03

Figure 3.25:

The detail of the end of the deformed beam with the values of the deflection
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3.4.3 The Calculation Using the Volume Model

For the calculation using the volume model the full 3-D geometry is specified and
each ply is created separately as a separate body. The input data were chosen
according to the table 3.1 of the input data. The following is a description of the
operations in Abaqus CAE to obtain a script in Python.

The following is a description of the operations in the particular modules of CAE:
Sketch

For modelling the geometry of a pipe as a volume model one used the Part
manager —Create Part —Solid, Extrusion as by the modelling of the
continuum shell. Then, a sketch is made by two circles for each ply as it is shown

in the figure (3.26).

x:-0.013, y:-0.006

r-><
>

Figure 3.26: The sketch of the one layer for model of the pipe

Property

In this module the material and its orientation has to be determined. One used
the Material manager — Create and set the density of a chosen material and
its constants. For modeling a composite material the type Engineering
Constants is used. Poisson’s ratio in all three dimensions has to be determined
as well as the module of elasticity and the shear module. Poison’s ratio was
defined the same in all directions

Vip = Vo3 = V33 = 0,328 [—] .
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The modules of elasticity E, and E; in the direction of y-axis and z-axis were
defined equal as the transversal modulus of elasticity E,

E, = E; = E; = 6,045 GPa .
The shear modules ware defined as in previous models of composite beams

according to the table of input values 3.1. The details are shown in the figure

(3.27) below.

2 Edit Material [ = |

Mame: Material-1
Description:

Material Behaviors

Modulitime scale (for viscoelasticity): | Long-term [+
7] Mo compression
[] Ne tension
Data
E1 E2 E3 Nul2 Nul3 Nu23 G12 G13 G23
1 156050000000 6045000000 6045000000 0328 0328 0328 4431000000 4431000000 4431000000
L3
Figure 3.27: The window for editing the material

When the material is determined, the composite layup can be defined. For
modelling the composite beam using the volume model each ply must be
determinated separately, because we have a part for each ply. The material of
each ply we determine using Section Manager — Create — Solid, Composite,
and then one can set the material of the ply, the rotation angle and the element
relative thickness as it is shown in the figure (3.28 a). This operation is repeated
with each layer.

The material orientation is defined by Assign Material Orientation. It is
important for the determination of the direction of fibres in the composite
material. The direction is defined with respect to the coordinate system that has
the x-axis coincident with the longitudinal axis of the pipe (the purple one in the

figure (3.29)).
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4= Create Section bd iﬁeﬂicn Manager o |
Nome Secon2 | Name Type
Category  Type Section-1 Solid, Composite
& Section-2 Selid, Composite
@ Solid
. o Homogencous . Section-3 Solid, Composite
) Shell | Generalized plane strain
© Beam | Evlerian
- b) ) [ [Come) [Femes) (Docen) [Demss)
l @) Other
a) I—
Name: Section-2
Type:  Solid, Composite
ypramel ]
[T Symmetric layers
— Element - Integration
erial Relative Orientation Angle o Ply Name
Thickness
Material-1 0.001 55 1 Ply-2
c)
Figure 3.28: a) The window for creating the composite type of section

b) The window for choosing the section for editing its properties
¢) The window for editing the composite layup

Results | Material Library Module: [%{Property  [¢]

Model:l:ModeI-l B Part: [ Part-1 E]
P92 it Material Orientation =3

fels s
o Region: (Picked) Q
k4 Orientation

Definition: | Coordinate system E] &

CSYS: Datum csys-1 R 58

Additional Rotation Direction
@ Axis1 @ Axis2
Additional Rotation

@ None

@ Angle: \;
 Distribution: |
Stacking Direction

©) Element isoparametric direction 1
(©) Element isoparametric direction 2
@ Element isoparametric direction 3 (bottom to top)

) Normal direction of material orientation (Continuum Shell only)

sl " | 4= | X] Fill in the material orientation editor dialog

CFE EY MO VIV Rt M) L L

Figure 3.29: The window for specify the orientation of the material

Assembly
Parts have to be put into the assembly. In this case the assembly contains three
parts — one part for each ply of the pipe. The coordinate system of the pipe is

determinated as we can see in the figure (3.30). It is the coordinate system, which
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1s used for the determination of the direction of fibres. Three parts are put
together to make a model of the wound composite pipe as one can see in the

figure (3.30).

Figure 3.30: The assembly of the beam
Now the partition of the geometry into two parts of each ply is made. It is for
better identification of the direction of the composite material and also for the
better meshing of the parts. The partition is made by the order Partition Cell:
Use Datum Plane. First, one has to create the datum plane by using the order
Create Datum Plane: 3 Points.
Step
As it is written in previous sections 3.4.2, the procedure type Static, General is
defined. The outputs are set the same way as in the previous case, where we
choose the possibilities of displacement as it is shown in the figure (3.31).
Interaction
The end of the beam is prepared for the loading using Constraint Manager —
Create — Coupling — Edit Constraint. The reference point (RP-1 in the
figure (3.32 a)) is set in the centre of the cross section as it is made in previous
models. The coordinate system is selected according to the specification of the
composite material. In this case all three parts have to be connected with the

constraint as it is shown in the figure (3.32).
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r N
37 Edit Field Output [
Mame:  F-Output-1

Step: Step-1

Procedure: Static, General
Domain: | Whole model [+] 7 Exterior only
Frequency: |Every nincrements E|| n 1

Output Variables

© Select from list below () Preselected defaults () All ©) Edit variables

[uuTuR |
P[] Stresses it
P[] Strains

¥ [ Displacement/Velocity/Acceleration
Translations and rotations

m

Translations

R, Rotations

[T] V, Translational and rotational velocities

[] VT, Translational velocities

[] ¥R, Rotational velocities i
lnnasin foo.ie P

< n »

Note: Some error indicators are not available when Domain is Whele Model or Inte
[] Output for rebar

Output at shell, beam, and layered section paints:

@ Use defaults O Specify: |:|

[¥] Include local coordinate directions when available

=

Figure 3.31: The window for choosing the outputs

a) b)

2% Edit Constraint (=

Name: Constraint-1

Type:  Coupling

fl Control points: m_Set-1 [y
f§ Surface: sSurfl [y
Coupling type: @ Kinematic
(©) Continuum distributing
(©) Structural distributing
Constrained degrees of freedom:

[@u @ u2 [#u3 ¥ URL [¥] UR2 [#] UR3

Influence radius: @ To outermest point on the region
O specity: ||

l [7] Adjust control points to lie on surface

CSYS Datunm csys-2 3 L

Figure 3.32: a) The pipe with the shown coupling properties
b) The window for editing the coupling properties
Load

The concentrated force is defined in Load Manager — Create — Concentrated
Force — Edit Load. We define a coordinate system that we used before (the red

one in the figure (3.33 a)) and a concentrated force in the direction of the z-axis.

This is shown in the figure (3.33 b).
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a) b)

2 Edit Load =]
Name: Load-1
Type  Concentrated force
Step:  Step-1 (Static, General)
Region: Set-2 [y
Cs¥s: Datum csys—2 [3 L
Distribution: Unifarm ] f
CFl: 0
CF2: 0
CF3: 100
Amplitude: | (Ramp) Bz
[”] Follow nodal rotation
Note: Force will be applied per node.
¥
«od
Figure 3.33: a) The pipe with the shown load and the fixation

b) The window for editing the load
The support of the beam is once again specified in Boundary Condition
Manager — Create — Symmetry/Antisymmetry/Encastre — Encastre (U1 =
U2 = U3 = UR1 = UR2 = UR3 = 0). The coordinate system has to be defined. The
fixation is accomplished in the same way as in previous sections, but there have

to be fixed all three parts. This is illustrated in the figure (3.34 a).

a) b)
(& o

Name: BC-1
Type:  Symmetry/Antisymmetry/Encastre

Step:  Initial
Region: Set-3 [y

CSVS: Datum csys-2 [ L

©) XSYMM (UL = UR2 = UR3 = 0)

() VSYMM (U2 = URL = UR3 = 0)

(©) ZSYMM (U3 = URL = URZ = 0)

(©) XASYMM (U2 = U3 = URL = 0; Abagus/Standard only)
() VASYMM (UL = U3 = UR2 = 0; Abaqus/Standard only)
(©) ZASYMM (UL = U2 = UR3 = 0; Abagus/Standard only)
(©) PINNED (UL = U2 = U3 =0)

@) ENCASTRE (U = U2= U3 = URL = UR2 = UR3 = 0)

G

Figure 3.34: a) The beam with shown the fixation
b)The window for editing the boundary condition

Mesh

The element type C3D8R (three-dimensional hexahedral element) has been used
for meshing the pipe. These elements are linear, reduced-integration elements. A
good mesh of C3D8R elements usually provides a solution of accuracy at less cost.

Quadrilateral and brick elements are preferred when such meshing 1is

76



reasonable. The size of elements has been chosen 0,005m along the x-axis,
quantity 40 elements along the perimeter as in the continuum shell model and
five elements across each layer. It is not an optimal choice of size for this type of
elements, because the aspect ratio should be less than three. But we do not
review some local effects on the geometry, for calculating the deflection of the
whole beam this selection of size of elements does not distort the calculation in

the general scale.

Figure 3.35: The meshed beam
Job

The calculation was carried out without errors. Details can be seen in the figure
(3.36).

2 Job-2 Monitor L. 9 N - == = |

Job: Job-2 Status: Completed

Severe ] )
2 Euil  Total Total Step Time/LPF
Step. | Increment | - Att Dl'::‘:" Iter Iter  Time/freq  Time/LPF nc
1 1 1 0 1 1 1 1 1
1 1 1 0 1 1 1 1 1

Log | Errors | !'Warnings | Output | Data File | Message File | Status File

Whenever a translation (rotation) dof at @ node is constrained by a kinematic coupling definition the
translation (rotation) dofs for that node cannot be included in any other constraint including mpcs, rigid
bodies, etc.

MPCS (EXTERNAL or INTERMAL, including those generated from rigid body definitions), KINEMATIC
COUPLINGS, AND/OR EQUATIONS WILL ACTIVATE ADDITIONAL DEGREES OF FREEDOM

Whenever a translation (rotation) dof st a node is constrained by a kinematic coupling definition the
translation (rotation) dofs for that node cannot be included in any other constraint including mpcs, rigid

bodies, etc.

MPCS (EXTERNAL or INTERNAL, including those generated from rigid body definitions), KINEMATIC

COUPLINGS, AND/OR EQUATIONS WILL ACTIVATE ADDITIONAL DEGREES OF FREEDOM |
Search Text
o) |

Figure 3.36: The listing of the calculation
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Visualization

Deformation of the beam was most reflected as it had been expected in the
direction of the concentrated force. It is evident from the figure (3.37 a).

The value of the deflection is different in individual nodes in the whole cross-
section. This is shown in the figure (3.38). So the numerical size of the bending
was calculated as the average of values of the deformation in the direction of the

y-axis of individual nodes at the end of the beam.

a)

ODB: Job-55.0db  Abaqus/Standard 6.12-1 Sat Apr 25 12:13:19 GMT+02:00 2015
2o

Step: Step-1

Increment 1: Step Time = 1.000

Primary Var: U, U2

Deformed Var: U Deformation Scale Factor: +6.572e-02

b)

U, U2
+0.000e+00
-1.268e-01
-2.536e-01
-3.804e-01
-5.072e-01
-6.340e-01
-7.608e-01
-8.876e-01
-1.014e+00
-1.141e+00
-1.268e+00
-1.395e+00
-1.522e+00

ODB: Job-55.0db Abaqus/Standard 6.12-1

X < Jl Step: Step-1

Increment 1: Step Time = 1.000
Primary Var: U, U2
Deformed Var: U Deformation Scale Factor: +6.572e-02

Fri Mar 27 09:06:25 GMT+01:00 2015

Figure 3.37: a) The deformed beam shown in the yz plane
b) The deformed beam in a general perspective with the scale
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U, U2
+0.000e+00
-1.268e-01
-2.536e-01
-3.804e-01
-5.072e-01
-6.340e-01
-7.608e-01
-8.876e-01
-1.014e+00
-1.141e+00
-1.268e+00
-1.395e+00
-1.522e+00

Increment

-1.52056

ODB: Job-55.0db  Abaqus/Standard 6.12-1  Fri Mar 27 09:06:25 GMT+01:00 2015

X 1[ Step: Step-1

1: Step Time = 1.000

Primary Var: U, U2
Deformed Var: U Deformation Scale Factor: +6.572e-02

Figure 3.38:

The detail of the end of the deformed beam with the values of the deflection

79



4 Results

The beam bending has been calculated by methods mentioned in the previous

chapter. For all analyzed methods was used the same model of the beam and the

same properties of a material, which they are specified in the table of Input data

3.1. All obtained values of the deflection are listed in the table 4.1 below.

Deflection (m)

Angles of fibers (°)

d (mm)

0

5

15

25

35

45

55

65

75

85

90

1,13096

1,40923

3,53913

7,32757

12,00693

16,76582

20,95840

24,20021

26,34762

27,40277

27,53341

1,13048

1,40875

3,53867

7,32714

12,00653

16,76543

20,95800

24,19978

26,34716

27,40230

27,53293

3,25266

3,31299

3,69472

4,29963

5,10820

6,15034

7,51986

9,46172

12,94770

20,79490

22,20870

1,46525

1,51444

1,86764

2,65495

4,28955

7,44343

12,89239

20,64141

28,39480

32,72279

33,20780

1,14427

1,34350

2,90620

5,96703

10,29213

15,28243

20,06958

23,90649

26,45070

27,68670

27,83870

1,56441

1,58724

1,79391

2,35681

3,68736

6,67597

12,49878

20,26116

25,64641

27,38751

27,53341

1,56393

1,58676

1,79343

2,35633

3,68688

6,67549

12,49830

20,26068

25,64593

27,38703

27,53293

0,49799

0,62015

1,55082

3,18738

5,17623

7,16287

8,88379

10,19605

11,05663

11,47698

11,52891

0,49765

0,61981

1,55049

3,18707

5,17594

7,16259

8,88350

10,19574

11,05630

11,47664

11,52857

0,87850

0,89110

0,97658

1,11916

1,31141

1,55444

1,86219

2,27442

2,95759

4,28350

4,49091

0,52150

0,61073

0,72800

1,00380

1,57880

2,71441

4,76785

7,82428

10,93090

12,61133

12,79300

0,50392

0,58797

1,25272

2,55538

4,38779

6,48629

8,47878

10,05701

11,09211

11,59113

11,65230

0,65519

0,66475

0,75129

0,98698

1,54411

2,79550

5,23362

8,48388

10,73878

11,46782

11,52891

0,65485

0,66441

0,75094

0,98664

1,54377

2,79516

5,23328

8,48354

10,73844

11,46748

11,52857

0,26008

0,32371

0,80656

1,64748

2,65569

3,64805

4,49602

5,13549

5,55155

5,75384

5,77878

0,25982

0,32345

0,80630

1,64724

2,65546

3,64783

4,49579

5,13525

5,55130

5,75357

5,77852

0,36338

0,36733

0,39642

0,44870

0,52163

0,61385

0,72847

0,87695

1,11126

1,53335

1,59487

0,29824

0,30421

0,35502

0,47876

0,73609

1,24947

2,20933

3,70184

5,25468

6,07535

6,16102

0,26329

0,30615

0,64649

1,31198

2,24176

3,29670

4,28747

5,06371

5,56819

5,80997

5,83954

0,32850

0,33329

0,37666

0,49480

0,77406

1,40129

2,62337

4,25251

5,38274

5,74816

5,77878

0,32823

0,33302

0,37640

0,49454

0,77379

1,40103

2,62310

4,25224

5,38248

5,74790

5,77852

0,15213

0,18927

0,47015

0,95559

1,53139

2,09165

2,56538

2,91960

3,14870

3,25969

3,27336

0,15192

0,18905

0,46994

0,95539

1,53121

2,09147

2,56519

2,91941

3,14849

3,25948

3,27315

0,18496

0,18653

0,19888

0,22281

0,25752

0,30181

0,35645

0,42580

0,53167

0,71419

0,73967

0,16994

0,17288

0,19891

0,26393

0,39897

0,66936

1,18597

2,01830

2,90580

3,36802

3,41484

0,15411

0,17880

0,37532

0,75858

1,29067

1,88934

2,44636

2,87889

3,15801

3,29119

3,30745

0,18614

0,18885

0,21342

0,28034

0,43852

0,79381

1,48603

2,40883

3,04903

3,25602

3,27336

0,18592

0,18864

0,21320

0,28012

0,43830

0,79359

1,48581

2,40861

3,04882

3,25580

3,27315
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0,09642

0,11991

0,29713

0,60153

0,95954

1,30475

1,59425

1,80932

1,94778

2,01468

2,02291

0,09624

0,11973

0,29695

0,60136

0,95938

1,30459

1,59409

1,80916

1,94760

2,01450

2,02273

0,10686

0,10759

0,11371

0,12634

0,14530

0,16976

0,19990

0,23770

0,29409

0,38860

0,40141

0,10585

0,10750

0,12245

0,16051

0,23960

0,39822

0,70552

1,21414

1,76855

2,05482

2,08116

0,09775

0,11324

0,23664

0,47675

0,80829

1,17870

1,52069

1,78437

1,95359

2,03406

2,04387

0,11508

0,11676

0,13194

0,17329

0,27104

0,49060

0,91838

1,48865

1,88428

2,01220

2,02291

0,11490

0,11657

0,13176

0,17311

0,27086

0,49042

0,91820

1,48847

1,88410

2,01201

2,02273

Bernoulli's method

Bernoulli's method without the shear

conventional shell

continuum shell

volume model

ABD matrix

ABD matrix without the shear

Table 4.1: The numerical results of the analysis of the methods for calculation the deflection

For both analytical methods (Bernoulli’s method and the method using ABD

matrix) the deflection was computed with the shear effect as it is written in the
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chapter 2 and the bending without considering the shear effect. The values
without consideration of the shear effect are in both cases lower but still very
close to the values, where the shear is included. In the graphical results only the
cases that they include the shear effect are mentioned.

All obtained data are put into the graphs in figures (4.1-5) to compare the
individual methods of the deflection calculation. In the figures are compared the
methods that are presented in this thesis with other existing methods used for
calculation of the deflection.

The curves vC ( —e—vc ) and vE ( =%=vE) are computed using the longitudinal
modulus of elasticity E; (for vE) and the transversal modulus of elasticityE; (for
vC) of composite material.[7] They operate with the highest and the lowest
possible values of the modulus of elasticity so these methods give the upper and
the lower bounds of the deflection in all cases. The assumption is that all other
methods should give the results, which values will be between the mentioned
curves. This assumption is the most fulfilled as is seen in the figures (4.1-5). The
curves vSE ( —) and vK ( =m=) are computed in programs according the
methods described in literature [7]. These are other methods to calculation of the
deflection to comparison.

The results from the Bernoulli’s method ( ) are very close to the calculations
using the transversal modulus of elasticity E;. This corresponds to the use of
compliance matrix € to obtain the equivalent modulus of elasticity E,, as it is
written in the section 3.2. The results from calculation of bending using ABD
matrix ( ) are fully consistent with the control calculation using the same
method. Generally, this method is closer to the model with the higher values of
equivalent modulus of elasticity, which corresponds to a lower deflection.

From the models using FEM gives the best results the classical volume model
(=*—). It gives in all cases the results that are close to the Bernoulli’s method
and the vC curve. The model of the continuum shell (=) seems to approximate
the calculation using ABD matrix; but this method, when it used the higher angle
of direction of fibres, gives much greater values than all other methods. This is
shown mainly in the cases with the smaller inner diameter. With the increasing

inner diameter of the pipe this variation is narrowing. This is seen from the
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comparing of the figures below. The deflection obtained using the conventional
shell model (=#—) gives the data, which can be considered unlikely. In the case of
the pipe with 2mm inner diameter the data of the deflection are approximate to
the other methods but in other cases this method gives much lower values of the
deflection than the other methods. The cause of such unsatisfactory results
should be subjected to the further research. But at present we do not believe that

the reason is in the wrong compilation of the model.

®2mm
Bernoulli's method
35
=== conventional shell
30
==é&= continuum shell
25 ¢—volume model
— ABD
E 20
s
2 == VK [7]
]
% 15
° === VE [7]
10 —e—vC[7]
—=—VSE [7
5 [7]
Semianalytical
0 method -L.Jiran
0 20 40 60 80 100
angle of fibres ta [°]
Figure 4.1: The graph of the deflection of the pipe with 2mm inner diameter
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¢ 4mm Bernoulli's method
14
=X == conventional shell
12
==4=continuum shell
/
10 ==¢==volume model
E 3 ABD
c
2
k5] // ==K [7]
9 6 s
@
3 // / —H—E [7]
4 4 = —o—\C[7]
2 —=—VSE [7]
Semianalytical method -
(VR LJiran
0 20 40 60 80 100
angle of fibres ta [°]
Figure 4.2: The graph of the deflection of the pipe with 4mm inner diameter
@ 6mm
7 Bernoulli's method
se=X === conventional shell
6
7 === continuum shell
5 S
=4—volume model
E 4 / ABD
c 4
.0
5 —8—\K [7]
%3 /
©
=je=VE [7]
2
// / e
—=—VSE [7
1 r g VSE [7]
. R J—
_4_ —— Semianalytical method
0 | -LJiran
0 20 40 60 80 100
angle of fibres ta [°]
Figure 4.3: The graph of the deflection of the pipe with 6mm inner diameter
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% 8Smm

4 Bernoulli's method
35 === conventional shell
3 === continuum shell
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Figure 4.4: The graph of the deflection of the pipe with 8mm inner diameter
¢ 10mm Bernoulli's method
2 === conventional shell
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Figure 4.5: The graph of the deflection of the pipe with 10mm inner diameter

84




5 Conclusion

The aim of this study was to compare the analytical methods of calculation of the
deflection of the beam with the results of the modelling of the same by using
FEM. In this thesis were compared the Bernoulli’s methods with the calculation
using ABD matrix and with the FEM models of the conventional shell, the
continuum shell and the volume model. The analytical models were performed in
MATLAB® and the FEM models were implemented in Abaqus®.

All discussed methods were applied to several beams of a circular cross section
with a different diameter and with the various layup of the composite material.
The analytical methods give the results that were expected and show a material
behaviour predicted by other theories. The FEM models give more interesting
results. Results calculated using a volume model are the closest to the results of
analytical methods. The continuum shell model gives the comparable results, but
In some cases considerably deviates from the solution calculated by analytical
methods. The conventional shell model provides the completely different
outcomes from the other methods. It is recommended for a further research.

All results were presented both graphically and in the tabular form. The
calculation methods with specific comments on the creation of individual
programs and FEM models are described in detail in this thesis. The codes in
MATLAB® and scripts of the models, which are created in Abaqus®, including
the input files are attached in the annexes.

The analysis made in this thesis does not include all the existing methods for the
calculation of the deflection of the composite materials; it would be appropriate
the extension by another methods and the concrete comparison with an

experiment would be appropriate.
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1.1 Program designed in MATLAB® using Bernoulli’s method:
DP_Trubka.m

clear all

close all

clc

%Vektor uhlu viaken

Alfa=[0 5 15 25 35 45 55 65 75 85 90];

%Vektor prumeru
D=(1:20)*1e-3;

%Pocet promennych
K=size(D);
K=K(2);

Q=size(Alfa);
Q=Q(2);

%Pole pro vysledky
V_vysledky=zeros(K,Q);
W_vysledky=zeros(K,Q);

for k=1:K
for g=1.Q

%VSTUPY
%sila F [N]
F=100;

%GEOMETRIE

%delka | [m]

=1;

%polomery - vnitrni, vnejsi [m]
r1=D(k)/2;

%r2=(30e-3)/2;

%EL, Et, Glt, vlt, alfa, tfm] v tabulce/ matici - poradi je zavazne
V=[156.05e9 6.045e9 4.431e9 0.328 90 1le-3;

156.05e9 6.045e9 4.431e9 0.328 Alfa(q) le-3;

156.05e9 6.045e9 4.431e9 0.328 -Alfa(q) 1e-3;]; %- V jako vstupy

%N- pocet vrstev
N=size(V,1);
%soucinitel beta
beta=1 ;
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%pole pro ulozeni dat pro jdn. vrstvy - mozna nadbytecne
E=zeros(3,3,N);

T=zeros(3,3,N);

%J=zeros(N,1);

%Ex=zeros(N,1);

Cxy=zeros(3,3,N);

Gxy=zeros(N,1);

A=zeros(N,1);

%vsechny potrebne prumery
d=zeros(N+1,1);
d(1)=2*r1;

for i=1:N

%sestaveni Ci
ell1=V(i,1)/(1-(V(i,2)/V(i,1))*V(i,4)"2);
e22=el11*(V(i,2)/V(i,1));
el2=V(i,4)*e22;

e2l=el2;

e66=V(i,3);

E(,:i)=[ell el20;
e21 e220;
0 0 e66]

%sestaveni Ti
alfa=V(i,5)/180*pi;

T(:,:,0)=[ (cos(alfa))2 (sin(alfa))"2 -2*sin(alfa)*cos(alfa);
(sin(alfa))"2 (cos(alfa))"2 2*sin(alfa)*cos(alfa);
sin(alfa)*cos(alfa) -sin(alfa)*cos(alfa) (cos(alfa))*2-(sin(alfa))"2];

%sestaveni Ji
d(i+1)=d(i)+2*V(i,6);
J()=(pi*(d(i+1)"4/64))*(1-(d(i)/d(i+1))"4);

%transformace Ei do systemu xy
Exy(,:,)=T(C,,)*ECG,,D*TC,:,D,

%Matice poddajnosti
Cxy(:,:D)=inv(Exy(:,:,i));

%Vektor hodnot modulu pruznosti v tahu Exi =[Ex1 Ex2 ....EXN]
exi=1/Cxy(1,1,i);
Ex(i)=exi;



%plocha pro Gxy*A
A®)=(pi(/4)*(d(i+1)"2-d(i)"2);

%modul pruznosti ve smyku
gxyi=1/Cxy(3,3,i);
Gxy(i)=gxyi;

end

%Ohybova tuhost
EJ=Ex*J' ;%vychazim z toho, ze fce zeros generuje radkove vektory(?)

%Soucin Gxy*A
GxyA=Gxy"™*A,

%beta/Gxy*A
betaGA=Dbeta./GxyA,

%PRUHYB
x=0:1/10:1;

%vypocet Mohr. integral
v=(L/EJ)*((F*1"2*X)-(F*I*x."2)-(F*x."3)/3);

%vypocet se zahrnutim smyku
W=(L/EJI)*((FH12*x)-(F*1*x."2)-(F*x."3)/3)+betaGA*F*x;

%Tabulky vysledku - matice

V_vysledky(k,q)=v(1);
W_vysledky(k,q)=w(1);
end
end
%save ('DP_Trubka_uhly_prumery', 'V_vysledky', 'W_vysledky' )
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1.2 Program designed in MATLAB® using ABD matrices:
DP_ABD_Trubka.m

clc

clear all

close all

%% Vstupy

%\Vektor uhlu vlaken

Alfa=[0 5 15 25 35 45 55 65 75 85 90];

%Vektor prumeru
P=(1:10)*1e-3;

%Pocet promennych
K=size(P);
K=K(2);

U=size(Alfa);
U=U(2);

%Pole pro vysledky
V_vysledky=zeros(K,U);
W_vysledky=zeros(K,U);

for s=1:K
for t=1:U

%VSTUPZ
%Sila
F=100;

%GEOMETRIE

%delka | [m]

1=1;

%polomery - vnitrni, vnejsi [m]
r1=P(s)/2;

%r2=(30e-3)/2;

% Matice vstupu pro jdntl. vrstvy
% 1 2 3 4 5 6
% EL ET GLT vLT alfa(®’) t(m)
V=[156.05e9 6.045e9 4.431e9 0.328 90 1le-3;
156.05e9 6.045e9 4.431e9 0.328 Alfa(t) 1le-3;
156.05e9 6.045e9 4.431e9 0.328 -Alfa(t) 1le-3;]; %- V jako vstupy

%pocet vrstev k
xx=size(V);
k=xx(1);



%pole pro ukladani mezivypoctu
Tvx=zeros(6,6,k);
c=zeros(6,6,k);

C=zeros(3,3,k);
Cxy=zeros(3,3,k);
Q=zeros(3,3,k);

g=zeros(6,6,k);

A=zeros(3,3);

B=zeros(3,3);

D=zeros(3,3);

%% Matice tuhosti
for i=1:k

c(1,1,)=V(I,1)/(1-((V(1,2)/V(i,1)*V(i,4)"2));
c(2,2,)=V(i,2)/V(i,1)*c(1,1,i);
c(1,2,)=V(i,4)*c(2,2,);

c(2,1,i)=c(1,2,i);

c(6,6,)=V(i,3);

C(,:,)=[c(1,1,) c(1,2,i) O;
c(2,1,i) ¢(2,2,i) O;
0 0 c¢(6,6,);];

%% Transformace matice tuhosti

% Transformacni matice ze systemu LTt do systemu xyz
alfa=V/(i,5)/180*pi;

Ts(:,:,)=[ (cos(alfa))"2 (sin(alfa))*2 2*sin(alfa)*cos(alfa);
(sin(alfa))"2 (cos(alfa))"2 -2*sin(alfa)*cos(alfa);
-sin(alfa)*cos(alfa) sin(alfa)*cos(alfa) (cos(alfa))"2-(sin(alfa))"2];

Te(:,;,)=[ (cos(alfa))"2 (sin(alfa))"2 sin(alfa)*cos(alfa);
(sin(alfa))"2 (cos(alfa))"2 -sin(alfa)*cos(alfa);
-2*sin(alfa)*cos(alfa) 2*sin(alfa)*cos(alfa) (cos(alfa))"2-(sin(alfa))"2];

Cxy(:,:,)=Inv(Ts(:,:,D))*C(:,0Li)*Te(:,:Li); % (Tvx)N-1*C*Tux' 22222 \Tvux =

rovinnou napjatost

end

%% Matice ABD
h(1)=-sum(V(:,6))/2;%h0

for n=1:k;
for m=1:k;
for i=1:k;

%Vsechna h
h(i+1)=(h(1)+sum(V(1:i,6)));

pro
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a(i)=(Cxy(n,m,i)*(h(i+1)-h(i)));

b(i)=((1/2)*Cxy(n,m,i)*(h(i+1)"2-h(i)"2));

d(i)=((1/3)*Cxy(n,m,i)*(h(i+1)"3-h()"3));
end

A(n,m)=sum(a);

B(n,m)=sum(b);

D(n,m)=sum(d);
end

end

%Modul pruznosti v tahu
E=(A(1,1)-A(1,2:3)*(A(2:3,2:3)"(-1)*A(2:3,1)))/sum(V(:,6));

%Modul pruznosti ve smyku
G=(A(3,3)-A(3,1:2)*(A(1:2,1:2)(-1)*A(1:2,3)))/sum(V(:,6));

%vsechny potrebne prumery
dd=zeros(k+1,1);
dd(1)=2*r1,

%sestaveni Ji a GA
for i=1:k
dd(i+1)=dd(i)+2*V/(i,6);
j()=(pi*(dd(i+1)"4/64))*(1-(dd(i)/dd(i+1))"4);

%plocha pro G*A
S(i)=(pi/4)*(dd(i+1)"2-dd(i)"2);

%modul pruznosti ve smyku
%  gxyi=1/Cxy(6,6,);
% Gxy()=gxyi;

end

J=sum(j);
S _celk=sum(S);

%PRUHYB
x=0:1/10:1;

%vypocet Mohr. integral
v=(1/(E*2)*((F*I"3)/3-(F*1"2*x)/2-(F*x."3)/3+(F*x."3)/2);

%vypocet se zahrnutim smyku

%soucinitel beta
beta=1:
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%Soucin Gxy*A
GxyA=G*S_celk;

%beta/Gxy*A
betaGA=Dbeta/GxyA,

w=(1/(E*J))*((F*1"3)/3-(F*I"2*X)/2-(F*x."3)/3+(F*x."3)/2)+betaGA*F*(I-X);
%Tabulky vysledku - matice
V_vysledky G(s,t)=v(1);
W_vysledky G(s,t)=w(1);

end
end

save('DP_ABD_Trubka_ uhly prumery', 'V_vysledky G', 'W_vysledky G')
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1.3 Script for FEM model using conventional shell

#prumer
d=0.008
x=d*0.1
r=d/2
#uhel
a=0

# -*- coding: mbcs -*-

from part import *

from material import *
from section import *

from assembly import *
from step import *

from interaction import *
from load import *

from mesh import *

from optimization import *
from job import *

from sketch import *

from visualization import *
from connectorBehavior import *

mdb.models['Model-1'].ConstrainedSketch(name='__profile_ ', sheetSize=2.0)

mdb.models['Model-1'"].sketches['__profile_ '].CircleByCenterPerimeter(center=(
0.0, 0.0), point1=(-0.1, 0.0))

mdb.models['Model-1'"].sketches['__profile_ '].RadialDimension(curve=
mdb.models['Model-1"].sketches['__profile_ '].geometry[2], radius=0.005,
textPoint=(0.0, 0.0))

mdb.models['Model-1'"].sketches['__profile_ '].delete(objectList=(
mdb.models['Model-1'"].sketches['__profile_ '].dimensions[0], ))

mdb.models['Model-1'"].sketches['__profile_ '].RadialDimension(curve=
mdb.models['Model-1"].sketches['__profile_ '].geometry[2], radius=r,
textPoint=(0.0, 0.0))

mdb.models['Model-1"].Part(dimensionality=THREE_D, name="Part-1', type=
DEFORMABLE_BODY)

mdb.models['Model-1"].parts['Part-1'].BaseShell Extrude(depth=1.0, sketch=
mdb.models['Model-1'"].sketches['__profile_ ")

del mdb.models['Model-1'].sketches['__profile_ ']

mdb.models['Model-1'"].parts['Part-1'].DatumCsysByThreePoints(coordSysType=
CARTESIAN, name='"Datum csys-1', origin=
mdb.models['Model-1'"].parts['Part-1'].InterestingPoint(
mdb.models['Model-1"].parts['Part-1'].edges[0], CENTER), point1=
mdb.models['Model-1'"].parts['Part-1'].InterestingPoint(
mdb.models['Model-1'"].parts['Part-1'].edges[1], CENTER), point2=
mdb.models['Model-1'"].parts['Part-1'].InterestingPoint(
mdb.models['Model-1'"].parts['Part-1'].edges[0], MIDDLE))
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mdb.models['Model-1'].Material(name='"Material-1")
mdb.models['Model-1'].materials[Material-1'].Density(table=((1474.0, ), ))
mdb.models['Model-1'].materials['Material-1']. Elastic(table=((156050000000.0,

6045000000.0, 0.328, 4431000000.0, 4431000000.0, 4431000000.0), ), type=

LAMINA)
mdb.models['Model-1"].parts['Part-1'].DatumPlaneByThreePoints(point1=

mdb.models['Model-1'"].parts['Part-1'].vertices[0], point2=

mdb.models['Model-1'"].parts['Part-1'].InterestingPoint(

mdb.models['Model-1'"].parts['Part-1'].edges[0], MIDDLE), point3=

mdb.models['Model-1'"].parts['Part-1'].InterestingPoint(

mdb.models['Model-1'"].parts['Part-1'].edges[1], MIDDLE))
mdb.models['Model-1"].parts['Part-1'].PartitionFaceByDatumPlane(datumPlane=

mdb.models['Model-1'"].parts['Part-1'].datums[3], faces=

mdb.models['Model-1'"].parts['Part-1'].faces.getSequenceFromMask(('[#1 ]', ),
)
mdb.models['Model-1'"].parts['Part-1'].CompositeLayup(description=",

elementType=SHELL, name='CompositeLayup-1',
offsetType=BOTTOM_SURFACE,

symmetric=False, thicknessAssignment=FROM_SECTION)
mdb.models['Model-1'"].parts['Part-1'].compositeLayups['CompositeLayup-
1'].Section(

integrationRule=SIMPSON, poissonDefinition=DEFAULT, prelntegrate=OFF,

temperature=GRADIENT, thicknessType=UNIFORM, useDensity=OFF)
mdb.models['Model-1'"].parts['Part-1'].compositeLayups['CompositeLayup-
1'].ReferenceOrientation(

additionalRotationField=", additionalRotationType=ROTATION_NONE,
angle=0.0

, axis=AXIS_2, fieldName=", localCsys=

mdb.models['Model-1"].parts['Part-1'].datums[2], orientationType=SYSTEM)
mdb.models['Model-1'"].parts['Part-1'].compositeLayups['CompositeLayup-
1'].CompositePly(

additionalRotationField=", additionalRotationType=ROTATION_ANGLE,
angle=

90.0, axis=AXIS_2, material='"Material-1', numIntPoints=3, orientation=

mdb.models['Model-1'"].parts['Part-1'].datums[2], orientationType=CSYS,

plyName='Ply-1', region=Region(

faces=mdb.models[Model-1'].parts['Part-1'].faces.getSequenceFromMask(

mask=([#3]',), )), suppressed=False, thickness=0.001, thicknessType=

SPECIFY_THICKNESS)
mdb.models['Model-1'"].parts['Part-1'].compositeLayups['CompositeLayup-
1'].CompositePly(

additionalRotationField=", additionalRotationType=ROTATION_NONE,
angle=a

, axis=AXIS_2, material='Material-1', numIntPoints=3, orientation=
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mdb.models['Model-1".parts['Part-1'.datums[2], orientationType=CSYS,
plyName='Ply-2', region=Region(
faces=mdb.models['Model-1'].parts['Part-1'].faces.getSequenceFromMask(
mask=([#3]', ), )), suppressed=False, thickness=0.001, thicknessType=
SPECIFY_THICKNESS)
mdb.models['Model-1'"].parts['Part-1'].compositeLayups['CompositeLayup-
1'].CompositePly(
additionalRotationField=", additionalRotationType=ROTATION_NONE,
angle=-a
, axis=AXIS_2, material='"Material-1', numIntPoints=3, orientation=
mdb.models['Model-1"].parts['Part-1'].datums[2], orientationType=CSYS,
plyName='Ply-3', region=Region(
faces=mdb.models['Model-1'].parts['Part-1'].faces.getSequence FromMask(
mask=([#31]', ), )), suppressed=False, thickness=0.001, thicknessType=
SPECIFY_THICKNESS)
mdb.models['Model-1'].rootAssembly.DatumCsysByDefault(CARTESIAN)
mdb.models['Model-1'].rootAssembly.Instance(dependent=OFF, name='Part-1-1',
part=mdb.models['Model-1'].parts['Part-1'])
mdb.models['Model-1'].StaticStep(name='Step-1', previous='Initial")
mdb.models['Model-1'"].rootAssembly.ReferencePoint(point=
mdb.models['Model-1"].rootAssembly.instances['Part-1-1'].InterestingPoint(
mdb.models['Model-1"].rootAssembly.instances['Part-1-1'].edges[3], CENTER))
mdb.models['Model-1'"].rootAssembly.Set(name="m_Set-1', referencePoints=(
mdb.models['Model-1"].rootAssembly.referencePoints[4], ))
mdb.models['Model-1'"].rootAssembly.Set(edges=
mdb.models['Model-1"].rootAssembly.instances['Part-1-
1'].edges.getSequenceFromMask(
('[#1817',), ), name='s_Set-1")
mdb.models['Model-1'].Coupling(controlPoint=
mdb.models['Model-1"].rootAssembly.sets['m_Set-1'],
couplingType=KINEMATIC,
influenceRadius=WHOLE_SURFACE, localCsys=
mdb.models['Model-1"].rootAssembly.instances['Part-1-1'].datums[2], name=
'Constraint-1', surface=mdb.models[Model-1"].rootAssembly.sets['s_Set-1'],
ul=0N, u2=0N, u3=0N, ur1=0N, ur2=0N, ur3=0N)
mdb.models['Model-1"].fieldOutputRequests['F-Output-1'].setValues(variables=(
U, 'UT", 'UR"))
mdb.models['Model-1"].rootAssembly.Set(name="Set-3', referencePoints=(
mdb.models['Model-1'"].rootAssembly.referencePoints[4], ))
mdb.models['Model-1'].ConcentratedForce(cf3=100.0, createStepName='Step-1',
distributionType=UNIFORM, field=", localCsys=
mdb.models['Model-1"].rootAssembly.instances['Part-1-1'].datums|[2], name=
'Load-1', region=mdb.models['Model-1'].rootAssembly.sets['Set-3'])
mdb.models['Model-1'"].rootAssembly.Set(edges=
mdb.models[Model-1"].rootAssembly.instances['Part-1-
1'].edges.getSequenceFromMask(
('[#221]',), ), name="Set-4")
mdb.models['Model-1'].EncastreBC(createStepName="'Step-1', localCsys=
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mdb.models['Model-1"].rootAssembly.instances['Part-1-1'].datums|[2], name=

'BC-1', region=mdb.models['Model-1'].rootAssembly.sets['Set-4'])
mdb.models['Model-1'].rootAssembly.setElementType(elemTypes=(ElemType(

elemCode=S4R, elemLibrary=STANDARD, secondOrderAccuracy=OFF,

hourglassControl=DEFAULT), ElemType(elemCode=S3,
elemLibrary=STANDARD)),

regions=(

mdb.models['Model-1"].rootAssembly.instances['Part-1-
1'].faces.getSequenceFromMask(

(#31,),),)
mdb.models['Model-1"].rootAssembly.setMeshControls(regions=

mdb.models['Model-1'"].rootAssembly.instances['Part-1-
1'].faces.getSequenceFromMask(

([#31",),), technique=STRUCTURED)
mdb.models['Model-1'"].rootAssembly.seedPartInstance(deviationFactor=0.1,

minSizeFactor=0.1, regions=(

mdb.models['Model-1"].rootAssembly.instances['Part-1-1'], ), size=0.005)
mdb.models['Model-1"].rootAssembly.seedEdgeBySize(constraint=FINER,

deviationFactor=0.1, edges=

mdb.models['Model-1"].rootAssembly.instances['Part-1-
1'].edges.getSequenceFromMask(

('[#3a]', ), ), minSizeFactor=0.1, size=x)
mdb.models['Model-1'"].rootAssembly.generateMesh(regions=(

mdb.models['Model-1"].rootAssembly.instances['Part-1-1'], ))
mdb.Job(atTime=None, contactPrint=0OFF, description=", echoPrint=OFF,

explicitPrecision=SINGLE, getMemoryFromAnalysis=True, historyPrint=OFF,

memory=50, memoryUnits=EPERCENTAGE, model="Model-1',
modelPrint=0OFF,
multiprocessingMode=DEFAULT, name="Job-0',

nodalOutputPrecision=SINGLE,

numCpus=1, numGPUs=0, queue=None, scratch=", type=ANALYSIS,

userSubroutine=", waitHours=0, waitMinutes=0)
mdb.jobs['Job-0"].submit(consistencyChecking=OFF)
mdb.jobs['Job-0']._Message(STARTED, {'phase': BATCHPRE_PHASE,

'clientHost": mtb-HPPB4310s', 'handle'": 0, 'JjobName': 'Job-0'})
mdb.jobs['Job-0']._Message(WARNING, {'phase': BATCHPRE_PHASE,

'message: ' WHENEVER A TRANSLATION (ROTATION) DOF AT A NODE IS
CONSTRAINED BY A KINEMATIC COUPLING DEFINITION THE
TRANSLATION (ROTATION) DOFS FOR THAT NODE CANNOT BE
INCLUDED IN ANY OTHER CONSTRAINT INCLUDING MPCS, RIGID
BODIES, ETC.',

'JobName': 'Job-0"})
mdb.jobs['Job-0']._Message(WARNING, {'phase': BATCHPRE_PHASE,

'message’: 'MPCS (EXTERNAL or INTERNAL, including those generated from
rigid body definitions), KINEMATIC COUPLINGS, AND/OR EQUATIONS WILL
ACTIVATE ADDITIONAL DEGREES OF FREEDOM',

'JobName'": 'Job-0'})
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mdb.jobs['Job-0']._Message(ODB_FILE, {'phase': BATCHPRE_PHASE,

'file': 'C:\\Temp\\Job-0.0db’, 'JobName': 'Job-0"})
mdb.jobs['Job-0']._Message(COMPLETED, {'phase': BATCHPRE_PHASE,

'message": 'Analysis phase complete', JobName': 'Job-0'})
mdb.jobs['Job-0']._Message(STARTED, {'phase': STANDARD_PHASE,

'clientHost": mtb-HPPB4310s', 'handle": 5316, 'JobName'": 'Job-0'})
mdb.jobs['Job-0']._Message(STEP, {'phase': STANDARD_PHASE, 'stepld" 1,

'JobName': 'Job-0"})
mdb.jobs['Job-0']._Message(WARNING, {'phase': STANDARD_PHASE,

'message'": "The 3-direction at one or more points in one or more layers in 3200
elements as defined in *ORIENTATION are in the opposite direction to the
element normals. EKEither the 1 or 2 and the 3-direction defined in
*ORIENTATION will be reversed. The elements have been identified in element
set WarnElem3DirOppElemNormalSteplIncl.',

'JobName'": 'Job-0'})
mdb.jobs['Job-0']._Message(ODB_FRAME, {phase': STANDARD_PHASE, 'step"
0,

'frame': 0, 'JobName': 'Job-0'})
mdb.jobs['Job-0']._Message(STATUS, {'totalTime": 0.0, 'attempts": 0,

'timelncrement': 1.0, 'increment': 0, 'stepTime'": 0.0, 'step": 1,

'JobName'": 'Job-0', 'severe”: 0, 'iterations": 0, 'phase': STANDARD_PHASE,

'equilibrium’': 0})
mdb.jobs['Job-0']._Message(MEMORY_ESTIMATE, {'phase"
STANDARD_PHASE,

'JobName'": 'Job-0', 'memory": 132.121262550354})
mdb.jobs['Job-0']._Message(ODB_FRAME, {phase': STANDARD_PHASE, 'step"
0,

'frame'": 1, 'JobName': 'Job-0'})
mdb.jobs['Job-0']._Message(STATUS, {'totalTime": 1.0, 'attempts": 1,

'‘timelncrement'": 1.0, 'increment': 1, 'stepTime'": 1.0, 'step": 1,

'JobName': 'Job-0', 'severe': 0, 'iterations": 2, 'phase': STANDARD_PHASE,

'equilibrium’: 2})
mdb.jobs['Job-0']._Message(END_STEP, {'phase: STANDARD_PHASE, 'stepld"
1,

'JobName'": 'Job-0'})
mdb.jobs['Job-0']._Message(COMPLETED, {'phase': STANDARD_PHASE,

'message'": 'Analysis phase complete', 'jobName': 'Job-0'"})
mdb.jobs['Job-0"]._Message(JOB_COMPLETED, {'time" 'Thu Mar 12 16:21:06
2015/,

'JobName': 'Job-0"})

# Save by user on 2015_03_12-16.23.10; build 6.12-1 2012_03_13-20.44.39 119612
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1.4 Script for FEM model using continuum shell

#prumer
d=0.002
r=d/2
k=r+0.003
#uhel
a=90

# Save by user on 2015_03_11-14.24.50; build 6.12-1 2012_03_13-20.44.39 119612

from part import *

from material import *
from section import *

from optimization import *
from assembly import *
from step import *

from interaction import *
from load import *

from mesh import *

from job import *

from sketch import *

from visualization import *
from connectorBehavior import *

mdb.models['Model-1'].ConstrainedSketch(name='__profile_ ', sheetSize=2.0)

mdb.models['Model-1'"].sketches['__profile_ '].CircleByCenterPerimeter(center=(

0.0, 0.0), point1=(-2.5, 0.0))

mdb.models['Model-1'"].sketches['__profile_ '].CircleByCenterPerimeter(center=(

0.0, 0.0), point1=(-1.25, 0.0))

mdb.models['Model-1'"].sketches['__profile_ '].RadialDimension(curve=
mdb.models['Model-1'"].sketches['__profile_ '].geometry[2], radius=r,
textPoint=(0.0, 0.0))

mdb.models['Model-1'"].sketches['__profile_ '].RadialDimension(curve=
mdb.models['Model-1"].sketches['__profile_ '].geometry[3], radius=Kk,
textPoint=(0.0, 0.0))

mdb.models['Model-1"].Part(dimensionality=THREE_D, name="Part-1', type=
DEFORMABLE_BODY)

mdb.models['Model-1'"].parts['Part-1'].BaseSolidExtrude(depth=1.0, sketch=
mdb.models['Model-1'"].sketches['__profile_ ")

del mdb.models['Model-1'].sketches['__profile_ ']

mdb.models['Model-1'].Material(name="Material-1")

mdb.models['Model-1'].materials['Material-1'].Density(table=((1474.0, ), ))

mdb.models['Model-1'].materials['Material-1'].Elastic(table=((156050000000.0,
6045000000.0, 0.328, 4431000000.0, 4431000000.0, 4431000000.0), ), type=
LAMINA)
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mdb.models['Model-1"].parts['Part-1'].DatumPlaneByThreePoints(point1=
mdb.models['Model-1'"].parts['Part-1'].vertices[2], point2=
mdb.models['Model-1'"].parts['Part-1'].InterestingPoint(
mdb.models['Model-1"].parts['Part-1'].edges[2], MIDDLE), point3=
mdb.models['Model-1'"].parts['Part-1'].InterestingPoint(
mdb.models['Model-1'"].parts['Part-1'].edges[3], MIDDLE))
mdb.models['Model-1"].parts['Part-1'].PartitionCellByDatumPlane(cells=
mdb.models['Model-1".parts['Part-1"].cells.getSequenceFromMask(('[#1 |',
), ), datumPlane=mdb.models['Model-1"].parts['Part-1'].datums[2])
mdb.models['Model-1'"].parts['Part-1'].DatumCsysByThreePoints(coordSysType=
CARTESIAN, name="Datum csys-1', origin=
mdb.models['Model-1'"].parts['Part-1'].InterestingPoint(
mdb.models['Model-1'"].parts['Part-1'].edges[10], CENTER), point1=
mdb.models['Model-1'"].parts['Part-1'].InterestingPoint(
mdb.models['Model-1'"].parts['Part-1'].edges[8], CENTER), point2=
mdb.models['Model-1'"].parts['Part-1'].InterestingPoint(
mdb.models['Model-1'"].parts['Part-1'].edges[11], MIDDLE))
mdb.models['Model-1'"].parts['Part-1'].CompositeLayup(description=",
elementType=CONTINUUM_SHELL, name='CompositeLayup-1',
symmetric=False)
mdb.models['Model-1'"].parts['Part-1'].compositeLayups['CompositeLayup-
1'].Section(
integrationRule=SIMPSON, poissonDefinition=DEFAULT, prelntegrate=OFF,
temperature=GRADIENT, thicknessModulus=None, useDensity=OFF)
mdb.models['Model-1'"].parts['Part-1'].compositeLayups['CompositeLayup-
1'].ReferenceOrientation(
additionalRotationField=", additionalRotationType=ROTATION_NONE,
angle=0.0
, axis=AXIS_2, fieldName=", localCsys=
mdb.models['Model-1'"].parts['Part-1'].datums[4], orientationType=SYSTEM,
stackDirection=STACK_3)
mdb.models['Model-1'"].parts['Part-1'].compositeLayups['CompositeLayup-
1'].CompositePly(
additionalRotationField=", additionalRotationType=ROTATION_NONE,
angle=0.0
, axis=AXIS_2, material='Material-1', numIntPoints=3, orientation=
mdb.models['Model-1'"].parts['Part-1'].datums[4], orientationType=CSYS,
plyName='Ply-1', region=Region(
cells=mdb.models['Model-1'"].parts['Part-1'].cells.getSequenceFromMask(
mask=([#3]',), )), suppressed=False, thickness=0.001, thicknessType=
SPECIFY_THICKNESS)
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mdb.models['Model-1"].parts['Part-1'].compositeLayups['CompositeLayup-
1'].CompositePly(
additionalRotationField=", additionalRotationType=ROTATION_NONE,
angle=0.0
, axis=AXIS_2, material="Material-1', numIntPoints=3, orientation=
mdb.models['Model-1'"].parts['Part-1'].datums[4], orientationType=CSYS,
plyName='Ply-2', region=Region(
cellssmdb.models['Model-1'].parts['Part-1'].cells.getSequence FromMask(
mask=([#3]',), )), suppressed=False, thickness=0.001, thicknessType=
SPECIFY_THICKNESS)
mdb.models['Model-1'"].parts['Part-1'].compositeLayups['CompositeLayup-
1'].CompositePly(
additionalRotationField=", additionalRotationType=ROTATION_NONE,
angle=0.0
, axis=AXIS_2, material="Material-1', numIntPoints=3, orientation=
mdb.models['Model-1'"].parts['Part-1'].datums[4], orientationType=CSYS,
plyName='Ply-3', region=Region(
cells=mdb.models['Model-1'"].parts['Part-1'].cells.getSequenceFromMask(
mask=([#3]', ), )), suppressed=False, thickness=0.001, thicknessType=
SPECIFY_THICKNESS)
mdb.models['Model-1'].rootAssembly.DatumCsysByDefault(CARTESIAN)
mdb.models['Model-1'].rootAssembly.Instance(dependent=OFF, name="Part-1-1',
part=mdb.models['Model-1'].parts['Part-1'])
mdb.models['Model-1'].StaticStep(name='Step-1', previous="Initial’)
mdb.models['Model-1'"].fieldOutputRequests['F-Output-1'].setValues(variables=(
U, 'UT, 'UR', 'RF', 'CF"))
mdb.models['Model-1"].rootAssembly.ReferencePoint(point=
mdb.models['Model-1"].rootAssembly.instances['Part-1-1'].InterestingPoint(
mdb.models['Model-1"].rootAssembly.instances|['Part-1-1'].edges[8], CENTER))
mdb.models['Model-1'].rootAssembly.Set(name="m_Set-1', referencePoints=(
mdb.models['Model-1'"].rootAssembly.referencePoints[4], ))
mdb.models['Model-1'].rootAssembly.Surface(name='s_Surf-1', sidelFaces=
mdb.models['Model-1"].rootAssembly.instances['Part-1-
1'].faces.getSequenceFromMask(
([#20417,),))
mdb.models['Model-1"].Coupling(controlPoint=
mdb.models['Model-1"].rootAssembly.sets['m_Set-1",
couplingType=KINEMATIC,
influenceRadius=WHOLE_SURFACE, localCsys=
mdb.models['Model-1"].rootAssembly.instances['Part-1-1'].datums[4], name=
'Constraint-1', surface=
mdb.models['Model-1"].rootAssembly.surfaces['s_Surf-1'], ul=ON, u2=0N, u3=
ON, ur1=0ON, ur2=0N, ur3=0N)
mdb.models['Model-1"].rootAssembly.Set(faces=
mdb.models[Model-1"].rootAssembly.instances['Part-1-
1'].faces.getSequenceFromMask(
('[#1107,), ), name="Set-2")
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mdb.models['Model-1'].EncastreBC(createStepName="'Step-1', localCsys=
mdb.models['Model-1'"].rootAssembly.instances['Part-1-1'].datums[4], name=
'BC-1', region=mdb.models['Model-1'].rootAssembly.sets['Set-2'])
mdb.models['Model-1'].rootAssembly.Set(name='Set-3', referencePoints=(
mdb.models['Model-1'"].rootAssembly.referencePoints[4], ))
mdb.models['Model-1'].ConcentratedForce(cf2=100.0, createStepName="'Step-1',
distributionType=UNIFORM, field=", localCsys=
mdb.models['Model-1"].rootAssembly.instances['Part-1-1'].datums[4], name=
'Load-1', region=mdb.models['Model-1"].rootAssembly.sets['Set-3")
mdb.models['Model-1"].rootAssembly.setElementType(elemTypes=(ElemType(
elemCode=SC8R, elemLibrary=STANDARD, secondOrderAccuracy=OFF,

hourglassControl=DEFAULT), ElemType(elemCode=SC6R,
elemLibrary=STANDARD),

ElemType(elemCode=UNKNOWN_TET, elemLibrary=STANDARD)),
regions=(

mdb.models['Model-1"].rootAssembly.instances['Part-1-
1'].cells.getSequenceFromMask(

(#31,),),)
mdb.models['Model-1'].rootAssembly.seedPartInstance(deviationFactor=0.1,

minSizeFactor=0.1, regions=(

mdb.models['Model-1'"].rootAssembly.instances['Part-1-1'], ), size=0.05)
mdb.models['Model-1'"].rootAssembly.seedPartInstance(deviationFactor=0.1,

minSizeFactor=0.1, regions=(

mdb.models['Model-1"].rootAssembly.instances['Part-1-1'], ), size=0.005)
mdb.models['Model-1"].rootAssembly.seedEdgeBySize(constraint=FINER,

deviationFactor=0.1, edges=

mdb.models['Model-1"].rootAssembly.instances['Part-1-
1'].edges.getSequenceFromMask(

('[#3ff00]', ), ), minSizeFactor=0.1, size=0.001)
mdb.models['Model-1"].rootAssembly.seedEdgeBySize(constraint=FINER,

deviationFactor=0.1, edges=

mdb.models['Model-1"].rootAssembly.instances['Part-1-
1'].edges.getSequenceFromMask(

('[#3ff00]', ), ), minSizeFactor=0.1, size=0.01)
mdb.models['Model-1"].rootAssembly.seedEdgeBySize(constraint=FINER,

deviationFactor=0.1, edges=

mdb.models['Model-1"].rootAssembly.instances['Part-1-
1'].edges.getSequenceFromMask(

('[#3ff00 ]', ), ), minSizeFactor=0.1, size=0.005)
mdb.models['Model-1"].rootAssembly.seedEdgeBySize(constraint=FINER,

deviationFactor=0.1, edges=

mdb.models['Model-1"].rootAssembly.instances['Part-1-
1'].edges.getSequenceFromMask(

('[#3ff00]', ), ), minSizeFactor=0.1, size=0.0005)
mdb.models['Model-1"].rootAssembly.seedEdgeBySize(constraint=FINER,

deviationFactor=0.1, edges=
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mdb.models['Model-1"].rootAssembly.instances['Part-1-
1'].edges.getSequenceFromMask(

('[#3ff00 ]', ), ), minSizeFactor=0.1, size=0.001)
mdb.models['Model-1'"].rootAssembly.generateMesh(regions=(

mdb.models['Model-1"].rootAssembly.instances['Part-1-1'], ))
mdb.models['Model-1'"].parts['Part-1'].compositeLayups['CompositeLayup-
1'].deletePlies( )
mdb.models['Model-1"].parts['Part-1'].compositeLayups['CompositeLayup-
1'].CompositePly(

additionalRotationField=", additionalRotationType=ROTATION_ANGLE,
angle=

90.0, axis=AXIS_2, material='"Material-1', numIntPoints=3, orientation=

mdb.models['Model-1"].parts['Part-1'].datums[4], orientationType=CSYS,

plyName='Ply-1', region=Region(

cells=mdb.models['Model-1'"].parts['Part-1'].cells.getSequenceFromMask(

mask=([#3]', ), )), suppressed=False, thickness=0.001, thicknessType=

SPECIFY_THICKNESS)
mdb.models['Model-1'"].parts['Part-1'].compositeLayups['CompositeLayup-
1'].CompositePly(

additionalRotationField=", additionalRotationType=ROTATION_NONE,
angle=a

, axis=AXIS_2, material="Material-1', numIntPoints=3, orientation=

mdb.models['Model-1"].parts['Part-1'].datums[4], orientationType=CSYS,

plyName='Ply-2', region=Region(

cells=mdb.models['Model-1'"].parts['Part-1'].cells.getSequenceFromMask(

mask=([#3]', ), )), suppressed=False, thickness=0.001, thicknessType=

SPECIFY_THICKNESS)
mdb.models['Model-1'"].parts['Part-1'].compositeLayups['CompositeLayup-
1'].CompositePly(

additionalRotationField=", additionalRotationType=ROTATION_NONE,
angle=-a

, axis=AXIS_2, material='"Material-1', numIntPoints=3, orientation=

mdb.models['Model-1'"].parts['Part-1'].datums[4], orientationType=CSYS,

plyName='Ply-3', region=Region(

cells=mdb.models['Model-1'].parts['Part-1'].cells.getSequence FromMask(

mask=([#3]',), )), suppressed=False, thickness=0.001, thicknessType=

SPECIFY_THICKNESS)
mdb.models['Model-1'].rootAssembly.regenerate()
mdb.Job(atTime=None, contactPrint=OFF, description=", echoPrint=0FF,

explicitPrecision=SINGLE, getMemoryFromAnalysis=True, historyPrint=OFF,

memory=50, memoryUnitssEPERCENTAGE, model="Model-1',
modelPrint=OFF,
multiprocessingMode=DEFAULT, name='Job-e',

nodalOutputPrecision=SINGLE,
numCpus=1, numGPUs=0, queue=None, scratch=", type=ANALYSIS,
userSubroutine=", waitHours=0, waitMinutes=0)
mdb.jobs['Job-e'l.submit(consistencyChecking=0OFF)
mdb.jobs['Job-e']._Message(STARTED, {'‘phase': BATCHPRE_PHASE,
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'clientHost": 'ntb-HPPB4310s', 'handle': 0, 'jobName": 'Job-e'})
mdb.jobs['Job-e']._Message(WARNING, {'phase': BATCHPRE_PHASE,

'message: "' WHENEVER A TRANSLATION (ROTATION) DOF AT A NODE IS
CONSTRAINED BY A KINEMATIC COUPLING DEFINITION THE
TRANSLATION (ROTATION) DOFS FOR THAT NODE CANNOT BE
INCLUDED IN ANY OTHER CONSTRAINT INCLUDING MPCS, RIGID
BODIES, ETC.',

'JobName': 'Job-e'})
mdb.jobs['Job-e']._Message(WARNING, {'phase': BATCHPRE_PHASE,

'message': 'MPCS (EXTERNAL or INTERNAL, including those generated from
rigid body definitions), KINEMATIC COUPLINGS, AND/OR EQUATIONS WILL
ACTIVATE ADDITIONAL DEGREES OF FREEDOM',

'JobName'": 'Job-e'})
mdb.jobs['Job-e']._Message(ODB_FILE, {'phase': BATCHPRE_PHASE,

'file': 'C:\\Temp\\dJob-e.odb', 'jobName': 'Job-e'})
mdb.jobs['Job-e']._Message(COMPLETED, {'‘phase': BATCHPRE_PHASE,

'message': 'Analysis phase complete', 'jobName': 'Job-e'})
mdb.jobs['Job-e']._Message(STARTED, {'phase': STANDARD_PHASE,

'clientHost": 'ntb-HPPB4310s', 'handle': 3840, 'jobName': 'Job-e'})
mdb.jobs['Job-e']._Message(STEP, {'phase': STANDARD_PHASE, 'stepld" 1,

'JobName'": 'Job-e'})
mdb.jobs['Job-e']._Message(WARNING, {'phase': STANDARD_PHASE,

'message": "The 3-direction at one or more points in one or more layers in 8200
elements as defined in *ORIENTATION are in the opposite direction to the
element normals. Either the 1 or 2 and the 3-direction defined in
*ORIENTATION will be reversed. The elements have been identified in element
set WarnElem3DirOppElemNormalSteplIncl.',

'JobName'": 'Job-e'})
mdb.jobs['Job-e']._Message(ODB_FRAME, {'phase: STANDARD_PHASE, 'step"
0,

'frame': 0, 'JobName': 'Job-e'})
mdb.jobs['Job-e']._Message(STATUS, {'totalTime'": 0.0, 'attempts": 0,

'‘timelncrement': 1.0, 'increment': 0, 'stepTime'": 0.0, 'step": 1,

'JobName': 'Job-e', 'severe": 0, 'iterations': 0, 'phase': STANDARD_PHASE,

'equilibrium': 0})
mdb.jobs['Job-e']._Message(MEMORY_ESTIMATE, {'phase"
STANDARD_PHASE,

'JobName'": 'Job-e', 'memory': 348.168928146362})
mdb.jobs['Job-e']._Message(ODB_FRAME, {'phase: STANDARD_PHASE, 'step"
0,

'frame': 1, 'JobName'": 'Job-e'})
mdb.jobs['Job-e'l._Message(STATUS, {'totalTime": 1.0, 'attempts": 1,

'timelncrement': 1.0, 'increment': 1, 'stepTime'": 1.0, 'step": 1,

JobName': 'Job-e', 'severe": 0, 'iterations': 1, 'phase': STANDARD_PHASE,

'equilibrium': 1})
mdb.jobs['Job-e']._Message(END_STEP, {'phase: STANDARD_PHASE, 'stepld"
1,

jobName': 'Job-e'})
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mdb.jobs['Job-e']._Message(COMPLETED, {'phase': STANDARD_PHASE,
'message": 'Analysis phase complete', JobName': 'Job-e'})
mdb.jobs['Job-e']._Message(JOB_COMPLETED, {'time: 'Wed Mar 11 14:48:04
2015',
'JobName'": 'Job-e'})
# Save by user on 2015_03_11-14.50.17; build 6.12-1 2012_03_13-20.44.39 119612
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1.5 Script for FEM model using volume model

#prumer
d=0.01

#uhel
a=b5

#polomery
r1=d/2
r2=r1+0.001
r3=r2+0.001
r4=r3+0.001

x1=d*0.1

# -*- coding: mbcs -*-

from part import *

from material import *
from section import *

from assembly import *
from step import *

from interaction import *
from load import *

from mesh import *

from optimization import *
from job import *

from sketch import *

from visualization import *
from connectorBehavior import *

mdb.models['Model-1'].ConstrainedSketch(name='__profile_ ', sheetSize=0.2)

mdb.models['Model-1'"].sketches['__profile_ '].sketchOptions.setValues(
decimalPlaces=3)

mdb.models['Model-1'"].sketches['__profile_ '].CircleByCenterPerimeter(center=(
0.0, 0.0), point1=(-0.005, 0.0))

mdb.models['Model-1'"].sketches['__profile_ '].CircleByCenterPerimeter(center=(
0.0, 0.0), point1=(-0.01, 0.0))

mdb.models['Model-1"].sketches['__profile_ '].RadialDimension(curve=
mdb.models['Model-1"].sketches['__profile_ '].geometry[2], radius=r1,
textPoint=(0.0, 0.0))

mdb.models['Model-1'"].sketches['__profile_ '].RadialDimension(curve=
mdb.models['Model-1"].sketches['__profile_ '].geometry[3], radius=r2,
textPoint=(0.0, 0.0))

mdb.models['Model-1"].Part(dimensionality=THREE_D, name="Part-1', type=
DEFORMABLE_BODY)

mdb.models['Model-1'"].parts['Part-1'].BaseSolidExtrude(depth=1.0, sketch=
mdb.models['Model-1'"].sketches['__profile_ ")
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del mdb.models['Model-1'].sketches['__profile_ ']

mdb.models['Model-1'].ConstrainedSketch(name='__profile_ ', sheetSize=0.2)

mdb.models['Model-1'"].sketches['__profile_ '].sketchOptions.setValues(
decimalPlaces=3)

mdb.models['Model-1'"].sketches['__profile_ '].CircleByCenterPerimeter(center=(
0.0, 0.0), point1=(-0.005, 0.0))

mdb.models['Model-1"].sketches['__profile_ '].CircleByCenterPerimeter(center=(
0.0, 0.0), point1=(-0.01, 0.0))

mdb.models['Model-1'"].sketches['__profile_ '].RadialDimension(curve=
mdb.models['Model-1".sketches['__profile_ '].geometry[2], radius=r2,
textPoint=(0.0, 0.0))

mdb.models['Model-1'"].sketches['__profile_ '|.RadialDimension(curve=
mdb.models['Model-1"].sketches['__profile_ '].geometry[3], radius=r3,
textPoint=(0.0, 0.0))

mdb.models['Model-1'].Part(dimensionality=THREE_D, name="Part-2', type=
DEFORMABLE_BODY)

mdb.models['Model-1'"].parts['Part-2'].BaseSolid Extrude(depth=1.0, sketch=
mdb.models['Model-1'"].sketches['__profile_ ")

del mdb.models['Model-1'].sketches['__profile_ ']

mdb.models['Model-1'].ConstrainedSketch(name='__profile_ ', sheetSize=0.2)

mdb.models['Model-1'"].sketches['__profile_ '].sketchOptions.setValues(
decimalPlaces=3)

mdb.models['Model-1'"].sketches['__profile_ '].CircleByCenterPerimeter(center=(
0.0, 0.0), point1=(-0.005, 0.0))

mdb.models['Model-1'"].sketches['__profile_ '].CircleByCenterPerimeter(center=(
0.0, 0.0), point1=(-0.01, 0.0))

mdb.models['Model-1'"].sketches['__profile_ '].RadialDimension(curve=
mdb.models['Model-1"].sketches['__profile_ '].geometry[2], radius=r3,
textPoint=(0.0, 0.0))

mdb.models['Model-1'"].sketches['__profile_ '].RadialDimension(curve=
mdb.models['Model-1"].sketches['__profile_ '].geometry[3], radius=r4,
textPoint=(0.0, 0.0))

mdb.models['Model-1'].Part(dimensionality=THREE_D, name="Part-3', type=
DEFORMABLE_BODY)

mdb.models['Model-1'"].parts['Part-3'].BaseSolidExtrude(depth=1.0, sketch=
mdb.models['Model-1'"].sketches['__profile_ ")

del mdb.models['Model-1'].sketches['__profile_ ']

mdb.models['Model-1'].Material(name="Material-1")

mdb.models['Model-1'].materials['Material-1'].Density(table=((1474.0, ), ))

mdb.models['Model-1'].materials['Material-1'].Elastic(table=((156050000000.0,
6045000000.0, 6045000000.0, 0.328, 0.328, 0.328, 4431000000.0,
4431000000.0, 4431000000.0), ), type=ENGINEERING_CONSTANTS)

mdb.models['Model-1'].CompositeSolidSection(layup=(SectionLayer(
thickness=0.001, orientAngle=90.0, numIntPts=1, material="Material-1',
plyName='Ply-1"), ), layupName=", name='Section-1', symmetric=False)

mdb.models['Model-1'].CompositeSolidSection(layup=(SectionLayer(
thickness=0.001, orientAngle=a, numIntPts=1, material="Material-1',
plyName='Ply-2"), ), layupName=", name='Section-2', symmetric=False)
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mdb.models['Model-1'].CompositeSolidSection(layup=(SectionLayer(
thickness=0.001, orientAngle=-a, numIntPts=1, material="Material-1',
plyName='Ply-3"), ), layupName=", name='Section-3', symmetric=False)
mdb.models['Model-1"].parts['Part-1'].DatumCsysByThreePoints(coordSysType=
CARTESIAN, name="Datum csys-1', origin=
mdb.models['Model-1'"].parts['Part-1'].InterestingPoint(
mdb.models['Model-1".parts['Part-1'].edges[0], CENTER), point1=
mdb.models['Model-1".parts['Part-1"].InterestingPoint(
mdb.models['Model-1".parts['Part-1'].edges[1], CENTER), point2=
mdb.models['Model-1"].parts['Part-1'].InterestingPoint(
mdb.models['Model-1'"].parts['Part-1'].edges[0], MIDDLE))
mdb.models['Model-1'"].parts['Part-2'].DatumCsysByThreePoints(coordSysType=
CARTESIAN, name='Datum csys-1', origin=
mdb.models['Model-1'"].parts['Part-2'].InterestingPoint(
mdb.models['Model-1'"].parts['Part-2'].edges[0], CENTER), point1=
mdb.models['Model-1'"].parts['Part-2'].InterestingPoint(
mdb.models['Model-1'"].parts['Part-2'].edges[1], CENTER), point2=
mdb.models['Model-1'"].parts['Part-2'].InterestingPoint(
mdb.models['Model-1'"].parts['Part-2'].edges[0], MIDDLE))
mdb.models['Model-1'"].parts['Part-3'].DatumCsysByThreePoints(coordSysType=
CARTESIAN, name='Datum csys-1', origin=
mdb.models['Model-1'"].parts['Part-3'].InterestingPoint(
mdb.models['Model-1'"].parts['Part-3'].edges[0], CENTER), point1=
mdb.models['Model-1'"].parts['Part-3'].InterestingPoint(
mdb.models['Model-1"].parts['Part-3'].edges[1], CENTER), point2=
mdb.models['Model-1'"].parts['Part-3'].InterestingPoint(
mdb.models['Model-1"].parts['Part-3'].edges[0], MIDDLE))
mdb.models['Model-1'"].parts['Part-1'].MaterialOrientation(
additionalRotationField=", additionalRotationType=ROTATION_NONE,
angle=0.0
, axis=AXIS_3, fieldName=", localCsys=
mdb.models['Model-1"].parts['Part-1'].datums[2], orientationType=SYSTEM,
region=Region(
cells=mdb.models['Model-1'"].parts['Part-1'].cells.getSequenceFromMask(
mask=('[#11]'", ), )), stackDirection=STACK_3)
mdb.models['Model-1"].parts['Part-2'].MaterialOrientation(
additionalRotationField=", additionalRotationType=ROTATION_NONE,
angle=0.0
, axis=AXIS_3, fieldName=", localCsys=
mdb.models['Model-1"].parts['Part-2'].datums[2], orientationType=SYSTEM,
region=Region(
cells=mdb.models['Model-1'"].parts['Part-2'].cells.getSequenceFromMask(
mask=([#11]",), )), stackDirection=STACK_3)
mdb.models['Model-1"].parts['Part-3'].MaterialOrientation(
additionalRotationField=", additionalRotationType=ROTATION_NONE,
angle=0.0
, axis=AXIS_3, fieldName=", localCsys=
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mdb.models['Model-1"].parts['Part-3'].datums[2], orientationType=SYSTEM,
region=Region(
cells=mdb.models['Model-1'].parts['Part-3'].cells.getSequence FromMask(
mask=([#1]",), )), stackDirection=STACK_3)
mdb.models['Model-1"].parts['Part-1'].Set(cells=
mdb.models['Model-1'"].parts['Part-1'].cells.getSequenceFromMask(('[#1 ]',
), ), name='Set-2")
mdb.models['Model-1"].parts['Part-1'].SectionAssignment(offset=0.0,
offsetField=", offsetType=MIDDLE_SURFACE, region=
mdb.models['Model-1"].parts['Part-1'].sets['Set-2'], sectionName=
'Section-1', thicknessAssignment=FROM_SECTION)
mdb.models['Model-1"].parts['Part-2'].Set(cells=
mdb.models['Model-1'"].parts['Part-2"].cells.getSequenceFromMask(('[#1 ],
), ), name='Set-2")
mdb.models['Model-1'"].parts['Part-2'].SectionAssignment(offset=0.0,
offsetField=", offsetType=MIDDLE_SURFACE, region=
mdb.models['Model-1"].parts['Part-2'].sets['Set-2'], sectionName=
'Section-2', thicknessAssignment=FROM_SECTION)
mdb.models['Model-1'"].parts['Part-3'].Set(cells=
mdb.models['Model-1'"].parts['Part-3"].cells.getSequenceFromMask(('[#1 ],
), ), name='Set-2")
mdb.models['Model-1'"].parts['Part-3'].SectionAssignment(offset=0.0,
offsetField=", offsetType=MIDDLE_SURFACE, region=
mdb.models['Model-1'"].parts['Part-3'].sets['Set-2'], sectionName=
'Section-3', thicknessAssignment=FROM_SECTION)
mdb.models['Model-1"].rootAssembly.DatumCsysByDefault(CARTESIAN)
mdb.models['Model-1'"].rootAssembly.Instance(dependent=OFF, name='Part-1-1',
part=mdb.models['Model-1"].parts['Part-1'])
mdb.models['Model-1'"].rootAssembly.Instance(dependent=OFF, name='Part-2-1',
part=mdb.models['Model-1"].parts['Part-2'])
mdb.models['Model-1'].rootAssembly.Instance(dependent=OFF, name="Part-3-1',
part=mdb.models['Model-1'].parts['Part-3'])
mdb.models['Model-1'].rootAssembly.Coaxial(fixedAxis=
mdb.models['Model-1"].rootAssembly.instances['Part-2-1'].faces[1], flip=OFF
, movableAxis=
mdb.models['Model-1"].rootAssembly.instances['Part-1-1'].faces[1])
mdb.models['Model-1'].rootAssembly.Coaxial(fixedAxis=
mdb.models['Model-1"].rootAssembly.instances['Part-3-1'].faces[1], flip=OFF
, movableAxis=
mdb.models['Model-1'"].rootAssembly.instances['Part-2-1'].faces[1])
mdb.models['Model-1'].rootAssembly.Coaxial(fixedAxis=
mdb.models['Model-1"].rootAssembly.instances['Part-3-1'].faces[0], flip=OFF
, movableAxis=
mdb.models['Model-1"].rootAssembly.instances['Part-2-1'].faces[1])
mdb.models['Model-1"].rootAssembly.Parallel Face(fixed Plane=
mdb.models['Model-1"].rootAssembly.instances['Part-2-1'].faces[2], flip=OFF
, movablePlane=
mdb.models['Model-1'"].rootAssembly.instances['Part-1-1'].faces[2])
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mdb.models['Model-1"].rootAssembly.Parallel Face(fixed Plane=

mdb.models['Model-1"].rootAssembly.instances['Part-3-1'].faces[2], flip=OFF

, movablePlane=

mdb.models['Model-1'"].rootAssembly.instances['Part-2-1'].faces[2])
mdb.models['Model-1"].rootAssembly.DatumPlaneByThreePoints(point1=

mdb.models['Model-1"].rootAssembly.instances['Part-3-1'].vertices[0],

point2=

mdb.models['Model-1"].rootAssembly.instances['Part-3-1'].InterestingPoint(

mdb.models['Model-1".rootAssembly.instances['Part-3-1'].edges[0], MIDDLE),

point3=

mdb.models['Model-1'"].rootAssembly.instances['Part-3-1'].InterestingPoint(

mdb.models['Model-1"].rootAssembly.instances['Part-3-1'].edges[1], MIDDLE))
mdb.models['Model-1'"].rootAssembly.PartitionCellByDatumPlane(cells=

mdb.models['Model-1'"].rootAssembly.instances['Part-3-
1'].cells.getSequenceFromMask(

mask=(C[#1]",), )+\

mdb.models['Model-1"].rootAssembly.instances['Part-2-
1'].cells.getSequenceFromMask(

mask=([#1]",), )+\

mdb.models['Model-1"].rootAssembly.instances['Part-1-
1'].cells.getSequenceFromMask(

mask=([#11]',), ), datumPlane=

mdb.models['Model-1'"].rootAssembly.datums[13])
mdb.models['Model-1'].rootAssembly.DatumCsysByThreePoints(coordSysType=

CARTESIAN, name='Datum csys-2', origin=

mdb.models['Model-1"].rootAssembly.instances['Part-3-1'].InterestingPoint(

mdb.models['Model-1"].rootAssembly.instances['Part-3-1'].edges[10], CENTER)

, point1=

mdb.models['Model-1"].rootAssembly.instances['Part-3-1'].InterestingPoint(

mdb.models['Model-1"].rootAssembly.instances['Part-3-1'].edges[8], CENTER),

point2=

mdb.models['Model-1"].rootAssembly.instances['Part-3-1'].vertices[0])
mdb.models['Model-1'].StaticStep(name='Step-1', previous="Initial’)
mdb.models['Model-1'"].fieldOutputRequests['F-Output-1'].setValues(variables=(

'U',))
mdb.models['Model-1'"].rootAssembly.ReferencePoint(point=

mdb.models['Model-1"].rootAssembly.instances['Part-1-1'].InterestingPoint(

mdb.models['Model-1"].rootAssembly.instances['Part-1-1'].edges[8], CENTER))
mdb.models['Model-1"].rootAssembly.Set(name="m_Set-1', referencePoints=(

mdb.models['Model-1'"].rootAssembly.referencePoints[16], ))
mdb.models['Model-1'].rootAssembly.Surface(name='s_Surf-1', sidelFaces=

mdb.models['Model-1"].rootAssembly.instances['Part-1-
1'].faces.getSequenceFromMask(

mask=([#204 1", ), )+\

mdb.models[Model-1"].rootAssembly.instances['Part-2-
1'].faces.getSequenceFromMask(

mask=([#2041', ), )+\
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mdb.models['Model-1"].rootAssembly.instances['Part-3-
1'].faces.getSequenceFromMask(
mask=('[#2041',),))
mdb.models['Model-1'].Coupling(control Point=
mdb.models['Model-1'"].rootAssembly.sets['m_Set-1",
couplingType=KINEMATIC,
influenceRadius=WHOLE_SURFACE, localCsys=
mdb.models['Model-1".rootAssembly.datums[15], name='Constraint-1',
surface=mdb.models['Model-1'].rootAssembly.surfaces['s_Surf-1'], ul=ON, u2=
ON, u3=0N, ur1l=0ON, ur2=0N, ur3=0N)
mdb.models['Model-1'].rootAssembly.Set(name='Set-2', referencePoints=(
mdb.models['Model-1'"].rootAssembly.referencePoints[16], ))
mdb.models['Model-1'].ConcentratedForce(cf3=100.0, createStepName="Step-1',
distributionType=UNIFORM, field=", localCsys=
mdb.models['Model-1"].rootAssembly.datums[15], name='Load-1', region=
mdb.models['Model-1'].rootAssembly.sets['Set-2'])
mdb.models['Model-1'].rootAssembly.Set(faces=
mdb.models['Model-1"].rootAssembly.instances['Part-1-
1'].faces.getSequenceFromMask(
mask=([#1101]",), )+\
mdb.models['Model-1"].rootAssembly.instances['Part-2-
1'].faces.getSequenceFromMask(
mask=([#1101]', ), )+\
mdb.models['Model-1"].rootAssembly.instances['Part-3-
1'].faces.getSequenceFromMask(
mask=('[#1101]', ), ), name="Set-3'")
mdb.models['Model-1'].EncastreBC(createStepName='Initial', localCsys=
mdb.models['Model-1'"].rootAssembly.datums[15], name='BC-1', region=
mdb.models['Model-1'].rootAssembly.sets['Set-3"])
mdb.models['Model-1'].rootAssembly.seedPartInstance(deviationFactor=0.1,
minSizeFactor=0.1, regions=(
mdb.models['Model-1"].rootAssembly.instances['Part-3-1'],
mdb.models['Model-1"].rootAssembly.instances['Part-2-1'],
mdb.models['Model-1"].rootAssembly.instances['Part-1-1']), size=0.005)
mdb.models['Model-1"].rootAssembly.seedEdgeBySize(constraint=FINER,
deviationFactor=0.1, edges=
mdb.models['Model-1"].rootAssembly.instances['Part-3-
1'].edges.getSequenceFromMask(
mask=([#aa ]',), )+\
mdb.models['Model-1"].rootAssembly.instances['Part-2-
1'].edges.getSequenceFromMask(
mask=([#aa ]',), )+\
mdb.models['Model-1"].rootAssembly.instances['Part-1-
1'].edges.getSequenceFromMask(
mask=("[#aa |', ), ), minSizeFactor=0.1, size=0.0002)
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mdb.models['Model-1"].rootAssembly.seedEdgeByNumber(constraint=FINER,
edges=

mdb.models['Model-1'"].rootAssembly.instances['Part-1-
1'].edges.getSequenceFromMask(

('[#a900 ]', ), ), number=20)
mdb.models['Model-1'].rootAssembly.seed EdgeByNumber(constraint=FINER,
edges=

mdb.models['Model-1"].rootAssembly.instances['Part-2-
1'].edges.getSequenceFromMask(

('[#a9001]', ), ), number=20)
mdb.models['Model-1"].rootAssembly.seed EdgeByNumber(constraint=FINER,
edges=

mdb.models['Model-1'"].rootAssembly.instances['Part-3-
1'].edges.getSequenceFromMask(

('[#a900 ]', ), ), number=20)
mdb.models['Model-1"].rootAssembly.seedEdgeByNumber(constraint=FINER,
edges=

mdb.models['Model-1"].rootAssembly.instances['Part-3-
1'].edges.getSequenceFromMask(

('[#5600 ]', ), ), number=20)
mdb.models['Model-1'].rootAssembly.generateMesh(regions=(

mdb.models['Model-1'"].rootAssembly.instances['Part-3-1'],

mdb.models['Model-1'"].rootAssembly.instances['Part-2-1'],

mdb.models['Model-1'].rootAssembly.instances['Part-1-1']))
mdb.Job(atTime=None, contactPrint=0OFF, description=", echoPrint=OFF,

explicitPrecision=SINGLE, getMemoryFromAnalysis=True, historyPrint=OFF,

memory=50, memoryUnits=EPERCENTAGE, model="Model-1',
modelPrint=0OFF,
multiprocessingMode=DEFAULT, name='Job-55',

nodalOutputPrecision=SINGLE,
numCpus=1, numGPUs=0, queue=None, scratch=", type=ANALYSIS,
userSubroutine=", waitHours=0, waitMinutes=0)
mdb.jobs['Job-55'].submit(consistencyChecking=OFF)
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