Analysis of **Curved-Fibre Composites**

Tomáš Mareš

Department of Mechanics, Biomechanics and Mechatronics

Faculty of Mechanical Engineering

CTU in Prague

UNIVERZITA **V PLZNI**

A

Contents:

- 1. Analysis
- 2. Stress and deformation
- 3. Tensor calculus
- 4. Deformation tensor and Energy minimum principles
- 5. The illustrating problems
- 6. Stiffness maximization

Analysis of deformation

Analysis =
$$A\nu\dot{\alpha}\lambda\upsilon\sigma\iota\varsigma$$

in Greek

The action of taking something apart in order to study it

Strain is a measure of the change of shape and dimensions

CAUCHY, A.L. (Exercices de Mathematiques, 1827) Sur la condensation et la dilatation des corps solides

We are used to connect deformation with an action of forces

SIR WILLIAM PETTY (London, 1674) ...a new Hypothesis of Springing or Elastique Motions ROBERT HOOKE (London, 1678/1660) De Potentiâ Restitutiva

This leads us to the concept of Elastic body

 $9 \in 63$

Covariant derivative, transformation rules

SYNGE, J. L. and SCHILD, A. (1978) LOVELOCK, D. and RUND, H. (1989)

Diferencial operator grad $\varphi = \nabla_a \varphi \, \boldsymbol{g}^a = \partial_a \varphi \, \boldsymbol{g}^a$ div $\boldsymbol{v} = \nabla \boldsymbol{v} = \nabla_a v^a$ rot $\boldsymbol{A} = \nabla \times \boldsymbol{A} = \epsilon^{abc} \nabla_a A_b \, \boldsymbol{g}^c$ $\nabla^2 \varphi = \text{div grad } \varphi$

pper index Definition: $g^{ab} = (g_{ab})^{-1}$ $a_a g^a = a^a g_a$ Multiplying by g_b leads at $a_a g^a \cdot g_b = a^a g_a \cdot g_b$ and $a_a \delta^a_b = a^a g_{ab}$ Multiply by g^{bd} and the definition $g^{bd} a_b = a^d$ Covariant derivative $\frac{\partial a}{\partial x^a} = \frac{\partial}{\partial x^a} (a^b g_b) = (\partial_a a^b) g_b + a^b \frac{\partial g_b}{\partial x^a}$

We seek linear combination of the base vectors $\frac{\partial \boldsymbol{a}}{\partial x^{a}} = (\partial_{a}a^{b} + \Gamma_{ac}^{b}a^{c})\boldsymbol{g}_{b}$ $\nabla_{a}a^{b} = \partial_{a}a^{b} + \Gamma_{ac}^{b}a^{c}$ Sign it as $\frac{\partial \boldsymbol{a}}{\partial x^{a}} = \nabla_{a}a^{b}\boldsymbol{g}_{b}$ $\nabla_{a}a^{b} = \partial_{a}a^{b} + \Gamma_{ac}^{b}a^{c}$ The Γ_{ab}^{c} (Christoffel symbol of the 2nd kind) exists: $\Gamma_{ab}^{d} = g^{dc}\frac{1}{2}(g_{ac,b} + g_{cb,a} - g_{ab,c})$

 $\begin{array}{l} \mbox{Transformation rule for } x^a = x^a(\xi^b) \\ \mbox{Transformation rule for covectors} \\ (\mbox{covariant}) & \frac{\partial \phi}{\partial x^a} = \frac{\partial \xi^b}{\partial x^a} \frac{\partial \phi}{\partial \xi^b} \end{array}$

Transformation rule for vectors (contravariant) $dx^{a} = \frac{\partial x^{a}}{\partial \xi^{b}} d\xi^{b}$

The distance of points on the surface

LOVE, A. E. H. (1927) Small deformation tensor and energy minimum principles WASHIZU, K. (1975) Green-Lagrange-St. Venantova deformation is linearized CIARLET, P. G. (2005) Small deformation tensor $E_{ab}^{\xi} = \frac{1}{2} \left(g_{ab}^{\xi} - g_{ab}^{o} \right) \left| = \frac{1}{2} \left(\partial_a u_b + \partial_b u_a + \partial_a u_b \right) \right| = \frac{1}{2} \left(\partial_a u_b + \partial_b u_a \right) \Rightarrow \quad \varepsilon_{ab} = \frac{1}{2} \left(\partial_a u_b + \partial_b u_a \right) = \frac{1}{2} \left(\partial_a u_b + \partial_b u$ passing into curvilinear coordinates $\partial_a \Rightarrow \nabla_a \quad (WALD, R. M., 1984)$ Generally for small deformation $\varepsilon_{ab} = \frac{1}{2} \left(g_{ab}^{\xi} - g_{ab}^{o} \right) \Big|_{\mathcal{V}} = \frac{1}{2} \left(\nabla_{\!a} u_b + \nabla_{\!b} u_a \right) \quad \text{and check tensor transformation}$ The min principle of complementary energy Principle of the total potential energy minimum \Rightarrow (MAUPERTUIS, 1746) $\hat{\sigma}_{ab} = \arg\min_{\sigma^{ab} \subset} \Pi_c(\sigma^{ab})$ $\hat{u}_a = \arg\min_{u, \in} \Pi(u_c)$ (EULER, 1744)(LAGRANGE, 1788)The real state of a deformed body, \hat{u}_a , minimizes the total potential energy The equilibrium stress state, $\hat{\sigma}_{ab}$, minimizes the c.e. (on a set of admitted stress states) (on a set of admissible states,) $= \left\{ \sigma^{ab} \mid \nabla_a \sigma^{ab} + p^b = 0 \text{ na } \Omega \\ \sigma^{ab} \ell_b = t^a \text{ na } \partial_t \Omega \right\}, \ \Pi_c(\sigma^{ab}) = c(\sigma^{ab}) - l_u(\sigma^{ab})$ $\Pi(u_a) = a(u_a) - l(u_a)$ The complementary energy The elastic strain energy $a(u_a) = \frac{1}{2} \int E^{abcd} \varepsilon_{ab}(u_a) \varepsilon_{cd}(u_a) \mathrm{d}\Omega$ $c(\sigma^{ab}) = \frac{1}{2} \int C_{abcd} \sigma^{ab} \sigma^{cd} \mathrm{d}\Omega$ The potential energy of the applied forces $p^a(\frac{N}{mm^3}), t^a(\frac{N}{mm^2})$ The work done through kinematic boundary conditions $l(u_a) = \int p^a u_a \mathrm{d}\Omega + \int t^a u_a \mathrm{d}\Gamma$ $l_u(\sigma^{ab}) = \int \sigma^{ab} \tilde{u}_a \ell_b \mathrm{d}\Gamma$ Elasticity tensor E^{abcd} and compliance tensor C_{abcd} 14 \in 63

Compliance tensor C_{abcd}

in Cartesian coordinate system ν^a

alined with the principal material axes of the orthotropic material

Elasticity tensor E^{abcd} CIARLET, P. G. (2005) $\sigma^{ij} = E^{ijkl} \varepsilon^{\nu}_{kl}$ MAREŠ, T. (2006) in Cartesian coordinate system ν^a by inversion of the previous expression $\left\{E_{ijkl}^{\nu}\right\}_{\{ij\lceil kl\}} = \begin{pmatrix} \Phi_{1111} & 0 & 0 & 0 & \Phi_{1122} & 0 & 0 & 0 & \Phi_{1133} \\ 0 & G_{12} & 0 & G_{12} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & G_{13} & 0 & 0 & 0 & G_{13} & 0 & 0 \\ 0 & G_{12} & 0 & G_{12} & 0 & 0 & 0 & 0 & 0 \\ \Phi_{2211} & 0 & 0 & 0 & \Phi_{2222} & 0 & 0 & 0 & \Phi_{2233} \\ 0 & 0 & 0 & 0 & 0 & G_{23} & 0 & G_{23} & 0 \\ 0 & 0 & G_{13} & 0 & 0 & 0 & G_{13} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & G_{23} & 0 & G_{23} & 0 \\ \Phi_{3311} & 0 & 0 & 0 & \Phi_{3322} & 0 & 0 & 0 & \Phi_{3333} \end{pmatrix}$ $\Phi_{1111} = \frac{1 - \nu_{23}\nu_{32}}{N} E_{11}, \quad \Phi_{1122} = \frac{\nu_{21} + \nu_{23}\nu_{31}}{N} E_{11}, \quad \Phi_{1133} = \frac{\nu_{31} + \nu_{32}\nu_{21}}{N} E_{11}$ $\Phi_{2211} = \frac{\nu_{12} + \nu_{13}\nu_{32}}{N} E_{22}, \quad \Phi_{2222} = \frac{1 - \nu_{13}\nu_{31}}{N} E_{22}, \quad \Phi_{2233} = \frac{\nu_{32} + \nu_{31}\nu_{12}}{N} E_{22}$ $\Phi_{3311} = \frac{\nu_{13} + \nu_{12}\nu_{23}}{N}E_{33}, \quad \Phi_{3322} = \frac{\nu_{23} + \nu_{21}\nu_{13}}{N}E_{33}, \quad \Phi_{3333} = \frac{1 - \nu_{12}\nu_{21}}{N}E_{33}$ $N = 1 - \nu_{12}\nu_{21} - \nu_{23}\nu_{32} - \nu_{31}\nu_{13} - \nu_{12}\nu_{23}\nu_{31} - \nu_{13}\nu_{32}\nu_{21}$ Energy $(E^{abcd} = E^{cdab}) \Rightarrow \Phi_{1122} = \Phi_{2211} \Rightarrow \nu_{21}E_{11} = \nu_{12}E_{22}$, etc. A problem (anisotropic elliptic tube)... $17 \in 63$

Metric tensor for integration

Mareš, T. (2006)

$$g_{ab}^{x} = \frac{\partial b^{c}}{\partial x^{a}} \frac{\partial b^{d}}{\partial x^{b}} \delta_{cd} \qquad \frac{\partial b^{a}}{\partial x^{b}} = \begin{pmatrix} \cos x^{2} & -(a+x^{1})\sin x^{2} & 0\\ \sin x^{2} & (b+x^{1})\cos x^{2} & 0\\ 0 & 0 & 1 \end{pmatrix}_{a[b]}$$
$$g_{ab}^{x} = \begin{pmatrix} 1 & (b-a)\sin x^{2}\cos x^{2} & 0\\ (b-a)\sin x^{2}\cos x^{2} & (a+x^{1})^{2}\sin^{2}x^{2} + (b+x^{1})^{2}\cos^{2}x^{2} & 0\\ 0 & 0 & 1 \end{pmatrix}$$

 $E^{abcd} = \frac{\partial x^a}{\partial u^i} \frac{\partial x^b}{\partial u^j} \frac{\partial x^c}{\partial u^k} \frac{\partial x^d}{\partial u^l} E^{\nu}_{ijkl}$ Elasticity tensor transformation $\frac{\partial x^a}{\partial \nu^b} = \frac{\partial x^a}{\partial b^c} \frac{\partial b^c}{\partial \xi^d} \frac{\partial \xi^a}{\partial \nu^b} \qquad \frac{\partial x^a}{\partial b^b} = \left(\frac{\partial b^a}{\partial x^b}\right)^{-1} =$ $=\frac{1}{a\sin^2 x^2 + b\cos^2 x^2 + x^1} \begin{pmatrix} (b+x^1)\cos x^2 & (a+x^1)\sin x^2 & 0\\ -\sin x^2 & \cos x^2 & 0\\ 0 & 0 & a\sin^2 x^2 + b\cos^2 x^2 + x^1 \end{pmatrix}$ $\frac{\partial b^a}{\partial \xi^b} = \begin{pmatrix} \cos \gamma_A & -\sin \gamma_A & 0\\ \sin \gamma_A & \cos \gamma_A & 0\\ 0 & 0 & 1 \end{pmatrix} \qquad \qquad \frac{\partial \xi^a}{\partial \nu^b} = \begin{pmatrix} 1 & 0 & 0\\ 0 & \cos \alpha & -\sin \alpha\\ 0 & \sin \alpha & \cos \alpha \end{pmatrix}$ $\gamma_A = ? \dots 24 \in 63$

Total potential energy of the tube

Principle of the total potential energy minimum \hat{u}_{a}

$$u_{a} = \arg\min_{u_{b}\in\mathbb{U}}\Pi(u_{c})$$

The real state of a deformed body minimizes the (on a set of admissible states, \mathbb{U})

$$\Pi(u_a) = a(u_a) - l(u_a)$$

The elastic strain energy

$$a(u_a) = \frac{1}{2} \int_{\Omega} E^{abcd} \varepsilon_{ab}(u_a) \varepsilon_{cd}(u_a) \mathrm{d}\Omega$$

The potential energy of the applied forces $p^a(\frac{1}{m})$ $l(u_a) = \int_{\Omega} p^a u_a d\Omega + \int_{\partial_t \Omega} t^a u_a d\Gamma$ $\varepsilon^x_{ab} = \frac{1}{2}$ $\Gamma^c_{ab} \overset{x}{u_c} =$

 $J = (b-a)\cos^2 x^2 + x^1 + a$

$$\varepsilon_{ab} = \frac{1}{2} (\nabla_a u_b + \nabla_b u_a)$$

SYNGE, J. L. and SCHILD, A. (1978) LOVELOCK, D. and RUND, H. (1989) CIARLET, P. G. (2005) GNU MAXIMA gama.mac

The real state of a deformed body minimizes the total potential energy
$$\nabla_a u_b = \partial_a u_b - \Gamma_{ab}^c u_c$$
Christoffel symbol of the 2nd kind
$$\Pi(u_a) = a(u_a) - l(u_a)$$
The elastic strain energy
$$a(u_a) = \frac{1}{2} \int_{\Omega} E^{abcd} \varepsilon_{ab}(u_a) \varepsilon_{cd}(u_a) d\Omega$$
The potential energy of the applied forces $p^a(\frac{N}{mm^2}), t^a(\frac{N}{mm^2})$)
$$l(u_a) = \int_{\Omega} p^a u_a d\Omega + \int_{\partial_l \Omega} t^a u_a d\Gamma$$

$$\varepsilon_{ab}^x = \frac{1}{2} (\partial_a \frac{x}{u_b} + \partial_b \frac{x}{u_a} - 2 \Gamma_{ab}^c \frac{x}{u_a})$$

$$\Gamma_{12}^2 = \Gamma_{21}^2 = \frac{(a-b)\cos x^2 \sin x^2}{(b-a)\cos^2 x^2 + x^1 + a}$$

$$\Gamma_{ab}^c \frac{x}{u_c} = \Gamma_{ab}^1 \frac{x}{u_1} + \Gamma_{ab}^2 \frac{x}{u_2} + \Gamma_{ab}^3 \frac{x}{u_3}$$

$$\Gamma_{22}^2 = \frac{(a-b)\cos x^2 \sin x^2}{(b-a)\cos^2 x^2 + x^1 + a}$$

$$\Gamma_{ab}^2 = \frac{1}{J} \left((a-b)\cos x^2 \sin x^2 - ((x^{1})^2 + x^1(a+b) + ab) \frac{0}{0} \right)$$

$$\Gamma_{ab}^2 = \frac{1}{J} \left(\begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & (a-b)\cos x^2 \sin x^2 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\Gamma_{ab}^2 = \frac{1}{J} \left(\begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & (a-b)\cos x^2 \sin x^2 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\Gamma_{ab}^2 = \frac{1}{J} \left(\begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & (a-b)\cos x^2 \sin x^2 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\Gamma_{ab}^2 = \frac{1}{J} \left(\begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & (a-b)\cos x^2 \sin x^2 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\Gamma_{ab}^2 = \frac{1}{J} \left(\begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & (a-b)\cos x^2 \sin x^2 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\Gamma_{ab}^2 = \frac{1}{J} \left(\begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & (a-b)\cos x^2 \sin x^2 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\Gamma_{ab}^2 = \frac{1}{J} \left(\begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & (a-b)\cos x^2 \sin x^2 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\Gamma_{ab}^2 = \frac{1}{J} \left(\begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & (a-b)\cos x^2 \sin x^2 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\Gamma_{ab}^2 = \frac{1}{J} \left(\begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & (a-b)\cos x^2 \sin x^2 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\Gamma_{ab}^2 = \frac{1}{J} \left(\begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & (a-b)\cos x^2 \sin x^2 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\Gamma_{ab}^2 = \frac{1}{J} \left(\begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\Gamma_{ab}^2 = \frac{1}{J} \left(\begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \right)$$

$$\Gamma_{ab}^2 = \frac{1}{J} \left(\begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\Gamma_{ab}^2 = \frac{1}{J} \left(\begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \right)$$

$$\Gamma_{ab}^2 = \frac{1}{J} \left(\begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \right)$$

The solution is sought in the form of Fourier series

Mareš, T. (2006) GNU Octave energy.m

Boundary condition $\overset{x}{u}_{1} = \sum_{i=1}^{N} a_{1}^{jkm} x^{3} e^{i\left(jx^{1}\frac{2\pi}{t} + kx^{2} + mx^{3}\frac{2\pi}{\ell}\right)} \quad K = \infty$ (3) $x_{x}^{3} = 0 : u_{1} = 0$ $\tilde{u}_2 = 0, \ \tilde{u}_3 = 0$ j,k,m=-KThe potential energy of the F_x $l(u_a) = \int \frac{F}{S} \overset{x}{u_3} \, \mathrm{d}S \qquad \overset{x}{u_2} = \sum_{j,k,m=-K}^{K} a_2^{jkm} x^3 e^{i\left(jx^1\frac{2\pi}{t} + kx^2 + mx^3\frac{2\pi}{\ell}\right)} \quad \overset{x}{u_3} = \sum a_3 \varphi$ $\min_{\text{BC fulfilled}} (a-l) \qquad \qquad \text{Sign } \overset{x}{u}_{1,2} = \Sigma \, a_{1,2} \, \varphi \quad (\varphi = x^3 \phi), \text{ pak}$ $\frac{\partial a}{\partial a_{1,2}^{jkm}} = 0, \quad \frac{\partial (a-l)}{\partial \bar{u}} = 0 \qquad \frac{\partial \tilde{u}_a}{\partial x^b} = \begin{pmatrix} \sum a_1 \varphi i j \frac{2\pi}{t} & \sum a_1 \varphi i k & \sum a_1 (\varphi i m \frac{2\pi}{\ell} + \phi) \\ \sum a_2 \varphi i j \frac{2\pi}{t} & \sum a_2 \varphi i k & \sum a_2 (\varphi i m \frac{2\pi}{\ell} + \phi) \\ \sum a_3 \varphi i j \frac{2\pi}{t} & \sum a_3 \varphi i k & \sum a_3 (\varphi i m \frac{2\pi}{\ell} + \phi) \end{pmatrix}$ $a(u_a) = \frac{1}{2} \int E^{abcd} \varepsilon_{ab}(u_a) \varepsilon_{cd}(u_a) d\Omega$ Transformation $E^{abcd} = \frac{\partial x^a}{\partial u^i} \frac{\partial x^b}{\partial u^j} \frac{\partial x^c}{\partial u^k} \frac{\partial x^d}{\partial u^l} E^{ijkl}$ $E^{abcd} = E^{bacd} \implies \varepsilon^x_{ab} \rightarrow \partial_a \overset{x}{u}_b - \Gamma^c_{ab} \overset{x}{u}_c$ is performed in GNU OCTAVE syntax simply xnu=xb*bxi*xinu $a = \frac{1}{2} \int \left(\partial_a \overset{x}{u}_b - \Gamma^p_{ab} \overset{x}{u}_p \right) E^{abcd} \left(\partial_c \overset{x}{u}_d - \Gamma^p_{cd} \overset{x}{u}_p \right) \left| g^x_{ab} \right|^{\frac{1}{2}} \mathrm{d}^3 x \; \mathrm{Ex=kron(xnu,xnu)*Enu*kron(xnu',xnu')}$ Derivatives... $27 \in 63$ Derivatives

Mareš, T. (2006) GNU Octave energy.m

$$\frac{\partial l}{\partial \bar{u}} = F \frac{\partial a}{\partial u, a_{1,2}} =?$$

$$We have chosen$$

$$\frac{x}{u_{1,2}} = \sum_{j,k,m=-K}^{K} a_{1,2}^{jkm} \varphi^{jkm} = x^3 e^{ijx^1 \frac{2\pi}{t}} \cdot e^{ikx^2} \cdot e^{imx^3 \frac{2\pi}{\ell}}$$

$$\frac{\mathsf{V} \text{ GNU OCTAVE}}{\mathsf{j}=(-3:1:3); \ \mathbf{k}=(-3:1:3); \ \mathbf{m}=(-3:1:3);$$

$$phi=x3*kron(kron(exp(i*j*x1*2*pi/t), exp(i*k*x2)), exp(i*m*x3*2*pi/ell))$$

$$= ux=[phi, zeros(1,686); zeros(1,343), phi, zeros(1,343); zeros(1,686), phi]*A$$

$$A \text{ is a vector of coefficients}$$

$$\left\{\frac{\partial \overset{x}{u_a}}{\partial x^b}\right\}_{ab} = \mathbf{B} * \mathbf{A}$$

B=[i*2*pi/t*phi.*kron(kron(j,jedna),jedna),zeros(1,343),zeros(1,343); i*phi.*kron(kron(jedna,k),jedna),zeros(1,343),zeros(1,343); i*2*pi/ell*phi.*kron(kron(jedna,jedna),m)+\$\phi\$*ones(1,343),zeros(1,686); zeros(1,343),i*2*pi/t*phi.*kron(kron(j,jedna),jedna),zeros(1,343); zeros(1,343),i*phi.*kron(kron(jedna,m),jedna),zeros(1,343); zeros(1,343),i*2*pi/ell*phi.*kron(kron(je,je),m)+\$\phi\$*ones(1,343),zeros(1,343); zeros(1,343),zeros(1,343),i*2*pi/t*phi.*kron(kron(j,jedna),jedna); zeros(1,343),zeros(1,343),i*phi.*kron(kron(jedna,k),jedna); zeros(1,686),i*2*pi/ell*phi.*kron(kron(jedna,jedna),m)+\$\phi\$*ones(1,343)] Integration of the elastic energy

Mareš, T. (2006) GNU Octave energy.m

Elasticity energy

 $a = \frac{1}{2} \mathbf{A}^T K \mathbf{A}$ Stiffness matrix $K = \int_{0}^{\ell} \int_{0}^{2\pi} \int_{0}^{t} (\mathbf{B}-\mathbf{Gam}) \cdot \mathbf{Ex} \cdot (\mathbf{B}-\mathbf{Gam}) \cdot \mathbf{sqrt}(\det(\mathbf{gx})) dx^1 dx^2 dx^3$ $gx = (xb \cdot (-1)) \cdot xb \cdot (-1)$

Integrand is expressed in GNU OCTAVE, integrate it numerically (energy.m)

Computational models

1. Small deformations, elastic nucleus pulposus

Isotropic elastic Nucleus pulposus (soft, incompressible)

 $E_{\rm polpus}^{abcd} = \lambda g^{ab} g^{cd} + \mu g^{ac} g^{bd} + \mu g^{ad} g^{bc}$

 $\mathsf{Minimum}\ \Pi$

2. Small deformations, viscoelastic nucleus pulposus

Isotropic viscoelastic Nucleus pulposus

 $\dot{\sigma}^{ab} + A^{ab}_{\ cd} \sigma^{cd} = B^{abcd} \dot{\varepsilon}_{cd} + D^{abcd} \varepsilon_{cd}$

3. Large deformations, elastic nucleus pulposus $2E_{ab} = \nabla_a u_b + \nabla_b u_a + \nabla_a u^c \nabla_b u_c$ $E^{abcd}_{polpus} = \lambda g^{ab} g^{cd} + \mu g^{ac} g^{bd} + \mu g^{ad} g^{bc}$ Galerkin method, base (BC) $\nabla_a \sigma^{ab} = 0, 2\varepsilon_{ab} = \nabla_a u_b + \nabla_b u_a$ $f(\sigma^{ab}, \sigma^{ab}, \varepsilon^{ab}, \varepsilon^{ab}) = 0$

Minimum Π

4. Large deformations, viscoelastic nucleus pulposus $2E_{ab} = \nabla_a u_b + \nabla_b u_a + \nabla_a u^c \nabla_b u_c$ Nucleus: $\dot{\Sigma}^{ab} + A^{ab}_{\ cd} \Sigma^{cd} = B^{abcd} \dot{E}_{cd} + D^{abcd} E_{cd}$ Galerkin method, base (BC) $\nabla_a \Sigma^{ab} = 0$

1. Small deformations, elastic nucleus pulposus

Principle of the total potential energy minimum

$$\hat{u}_a = \arg\min_{u_b \in} \Pi(u_c)$$

The real state of a deformed body minimizes the total potential energy (on a set of admissible states,)

$$\Pi(u_a) = a(u_a) - l(u_a)$$

The elastic strain energy

$$a(u_a) = \frac{1}{2} \int_{\Omega} E^{abcd} \varepsilon_{ab}(u_a) \varepsilon_{cd}(u_a) \mathrm{d}\Omega$$

The potential energy of the applied forces $p^a(\frac{N}{mm^3}), t^a(\frac{N}{mm^2})$)

$$l(u_a) = \int_{\Omega} p^a u_a d\Omega + \int_{\partial_t \Omega} t^a u_a d\Gamma$$

$$\varepsilon_{ab} = \frac{1}{2} (\nabla_a u_b + \nabla_b u_a)$$

$$\nabla_a u_b = \partial_a u_b - \Gamma^c_{ab} u_c$$

Christoffel symbol of the $2^{\rm nd}$ kind

SYNGE, J. L. and SCHILD, A. (1978) LOVELOCK, D. and RUND, H. (1989)

CIARLET, P. G. (2005)

GNU MAXIMA *.mac

$$\Gamma^{d}_{ab} = g^{dc} \frac{1}{2} (g_{ac,b} + g_{cb,a} - g_{ab,c})$$

$$\varepsilon_{ab}^{x} = \frac{1}{2} \left(\partial_{a} \overset{x}{u}_{b} + \partial_{b} \overset{x}{u}_{a} - 2 \Gamma_{ab}^{c} \overset{x}{u}_{c} \right)$$
$$\Gamma_{ab}^{c} \overset{x}{u}_{c} - \Gamma_{ab}^{1} \overset{x}{u}_{c} + \Gamma_{ab}^{2} \overset{x}{u}_{c} + \Gamma_{ab}^{3} \overset{x}{u}_{c} \right)$$

$$\Gamma^c_{ab} \ \ddot{u}_c = \Gamma^1_{ab} \ \ddot{u}_1 + \Gamma^2_{ab} \ \ddot{u}_2 + \Gamma^3_{ab} \ \ddot{u}_3$$

In the coordinate system
$$\boldsymbol{x}$$
:

$$\Gamma_{22}^{1} = -\frac{(2d_{x}r_{y} + 4d_{y}r_{x})\sin x^{2}\sin 2x^{2} + (4d_{x}r_{y} + 2d_{y}r_{x})\cos x^{2}\cos 2x^{2} - 2r_{x}r_{y} - 4d_{x}d_{y}}{(2d_{x}r_{y} + d_{y}r_{x})\sin x^{2}\sin 2x^{2} + (d_{x}r_{y} + 2d_{y}r_{x})\cos x^{2}\cos 2x^{2} - 2r_{x}r_{y} - d_{x}d_{y}} x^{1}$$

$$\Gamma_{12}^{2} = \Gamma_{21}^{2} = \frac{1}{x^{1}}$$

$$\Gamma_{22}^{2} = -\frac{3d_{y}r_{x}\cos x^{2}\sin 2x^{2} - 3d_{x}r_{y}\sin x^{2}\cos 2x^{2}}{(2d_{x}r_{y} + d_{y}r_{x})\sin x^{2}\sin 2x^{2} + (d_{x}r_{y} + 2d_{y}r_{x})\cos x^{2}\cos 2x^{2} - 2r_{x}r_{y} - d_{x}d_{y}}$$

$$\Gamma_{22}^{1} = -\frac{3d_{y}r_{x}\cos x^{2}\sin 2x^{2} - 3d_{x}r_{y}\sin x^{2}\cos 2x^{2}}{(2d_{x}r_{y} + d_{y}r_{x})\sin x^{2}\sin 2x^{2} + (d_{x}r_{y} + 2d_{y}r_{x})\cos x^{2}\cos 2x^{2} - 2r_{x}r_{y} - d_{x}d_{y}}$$

$$\Gamma_{21}^{1} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & \Gamma_{12}^{2} & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\Gamma_{ab}^{2} = \begin{pmatrix} 0 & \Gamma_{12}^{2} & 0 \\ \Gamma_{21}^{2} & \Gamma_{22}^{2} & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\Gamma_{ab}^{3} = 0$$
Fourier series expansion $9 \in 63$

Fourier series expansion **MARES 2007** BC b^{3} $u_a^b = u_a^o + \alpha^a b^1 + \beta^a b^2$ $u_{a}^{x} = \sum_{n=1}^{\infty} \sum_{k=1}^{\infty} U_{a}^{klm} \left(e^{i2\pi kx^{1}} e^{ilx^{2}} x^{1} + 1 \right) \sin \frac{\pi mx^{3}}{h} + u_{a}^{h} \frac{x^{3}}{h}$ $k.l = -\infty m = 1$ where $u^a = 0$ $u_a^h = \frac{\partial b^b}{\partial x^a} u_b^h$ Small deformation: $\varphi_1, \varphi_2, \varphi_3 \longrightarrow 0$ The upper vertebra moves as a rigid body u_{h}^{h} : $u_1^h = u_1^o - b^2 \varphi_3$ $u_{2}^{b} = u_{2}^{o} + b^{1}\varphi_{3}$ $u_a^x = ux = N * U$ $u_{3}^{h} = u_{3}^{o} - b^{1}\varphi_{2} + b^{2}\varphi_{1}$ U – unknown coefficients of the F. series φ_1 – rotation around axis b^1 φ_2 – rotation around axis b^2 φ_3 – rotation around axis b^3 u_a^o – displacement of the point $b^{1,2} = 0, b^3 = h$ GNU OCTAVE B=B(x1, x2, x3)B=kron(kron(e.^(i*k*2*pi*x1),x1*e.^(i*l*x2)+1),sin(pi*m*x3/h)) bc=[0,0,-b(2); 0,0,b(1); b(2),-b(1),0]; U =N=[[B, zeros(1, K), zeros(1, K); zeros(1, K), B, zeros(1, K); φ_1 zeros(1,K),zeros(1,K),B],bx*x3/h,bx*bc*x3/h]; ## size(U)=3*K+6 φ_2

Elastic energy $10 \in 63$

Elastic energy

CIARLET, P. G. (2005) LOVELOCK, D. and RUND, H. (1989) GNU OCTAVE *.m GNU MAXIMA *.mac

$$a(u_{a}) = \frac{1}{2} \int_{\Omega} E^{abcd} \varepsilon_{ab}(u_{a}) \varepsilon_{cd}(u_{a}) d\Omega \qquad \varepsilon_{ab} = \frac{1}{2} (\nabla_{a} u_{b} + \nabla_{b} u_{a}) \qquad \text{GNU MAXIMA *.mac}$$

$$E^{abcd} = E^{bacd} \Rightarrow \varepsilon_{ab}^{x} \Rightarrow \partial_{a} \overset{x}{u_{b}} - \Gamma_{ab}^{c} \overset{x}{u_{c}} \qquad \nabla_{a} u_{b} = \partial_{a} u_{b} - \Gamma_{ab}^{c} u_{c}$$

$$a = \frac{1}{2} \int_{\Omega} \left(\partial_{a} \overset{x}{u_{b}} - \Gamma_{ab}^{p} \overset{x}{u_{b}} \right) E^{abcd} \left(\partial_{c} \overset{x}{u_{d}} - \Gamma_{ca}^{p} \overset{x}{u_{b}} \right) \left| g_{ab}^{x} \right|^{\frac{1}{2}} d^{3}x \qquad \left\{ \partial_{a} \overset{x}{u_{b}} \right\}_{ab} = \text{DG*U} \\ BG... \text{ GNU OCTAVE *.m}$$

$$a = \frac{1}{2} \mathbf{U}^{*} * \mathbf{K} * \mathbf{U} \qquad \left\{ \Gamma_{ab}^{p} \overset{x}{u_{b}} \right\}_{ab} = \text{Gamma*U} \\ Gamma=\text{vec}(G1^{*}) * N(1, :) + \text{vec}(G2^{*}) * N(2, :) \\ G1 = \left\{ \Gamma_{ab}^{1} \right\}_{a[b]} \qquad G2 = \left\{ \Gamma_{ab}^{2} \right\}_{a[b]} \qquad G2 = \left\{ \Gamma_{ab}^{2} \right\}_{a[b]}$$

Right hand side

GNU OCTAVE *.m Mares, T. (2007)

$$\begin{split} l(u_a) &= \int_{\Omega} p^a u_a \mathrm{d}\Omega + \int_{\partial_t \Omega} t^a u_a \mathrm{d}\Gamma \\ l &= \mathbf{F} * \mathbf{U} \\ \mathbf{F} = [\operatorname{zeros}(3 * \mathbf{K}, 1); \mathbf{Vs}; \mathbf{V1}; - \mathbf{N}; \mathbf{M1}; \mathbf{Mr}] \end{split} \qquad \mathbf{U} = \begin{pmatrix} \bar{\mathbf{U}} \\ b \\ u_1^0 \\ b \\ u_2^0 \\ b \\ u_2^0 \\ b \\ u_3^0 \\ \varphi_1 \\ \varphi_2 \\ \varphi_3 \end{pmatrix}$$

Necessary condition of minimum

$$\frac{\partial \Pi}{\partial U} = 0 \qquad \Pi = \frac{1}{2} U' * K * U - F * U K * U = F U = K^{-1} * F \qquad u_a^x = ux = real (N(x) * U) b u_a = \frac{\partial x^b}{\partial b^a} u_b^x ub = xb' * ux Deformed shape 12 \in 63$$

 V_L 15 \in 63

 b^1

 b^1

full set of the loads

Mares (2007)

N = 2250 N $M_F = 2700 \text{ Nm}$ $V_S = 100 \text{ N}$ $M_R = 0 \text{ Nm}$ $V_L = 100 \text{ N}$ $M_L = 1700 \text{ Nm}$

Cortical bone $19 \in 63$

Cortical bone (compact bone), the shaft of a long bone, as a fibre composite

Internal structure of the right femur

There are several models of the cortical bone				Model of cortical bone				
amongst them the		2		(e_{11})	$e_{12} e_{12}$	13 0	0	0
• homogeneous isotropic model $\mathbf{F} = \begin{bmatrix} e_{12} & e_{22} & e_{23} & 0 & 0 & 0 \\ e_{13} & e_{23} & e_{33} & 0 & 0 & 0 \end{bmatrix}$								
\odot homogeneous transversely isotropic $\begin{bmatrix} D & 0 & 0 & 0 & e_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & e_{55} & 0 \end{bmatrix}$								
\odot homogeneous cylindrically othotropic e_{11} 0 0 0 0 e_{66}								
(axis, r, t)	5	• ↓ <i>e</i> ₃	3	0	0			
		$\begin{pmatrix} e_{11} & 0 \\ 0 & G \end{pmatrix}$	12 0	$\begin{array}{ccc} 0 & e_{12} \\ G_{12} & 0 \end{array}$	0	0 0	е ₁₃ 0	
[1] - (GOLDMANN, 2006)			$\begin{array}{ccc} & G_{13} \\ & & 12 \end{array}$	$\begin{array}{ccc} 0 & 0 \\ G_{12} & 0 \end{array}$	0 G 0		0 0	
[2] - (Orías, 2005)	$\left\{ \mathcal{E}^{ij}_{\ kl} \right\} =$	$= e_{12} (0)$	$\hat{\boldsymbol{D}}$ \boldsymbol{O}		$ 0 $ $ G_{22} $	$\begin{array}{ccc} 0 & 0 \\ 0 & G_{2} \end{array}$		
[3] - (YOON, KATZ, 1976)	$\begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \\$		G_{13}		0^{23} G	$V_{13} = 0$	0	
$[4] - (RA12 \ et \ at., 1984)$ $[5] - (ASHMAN \ et \ al., 1984)$		e_{13}) ()) ()	$ \begin{array}{ccc} 0 & 0 \\ 0 & e_{23} \end{array} $	0	0 G ₂₃ 0 0	e ₃₃	
[6] - (RHO, 1996)	 -					. 1		
[7] – (TAYLOR <i>et al.</i> , 2002) I he average material characteristics of these models								
$\begin{bmatrix} 8 \\ 9 \end{bmatrix} - (BUSKIRK \ et \ al., 1981) $ are determined experimentally (mechanical, using acoustic waves)								
[9] - (MAHARIDGE, 1984) [0] - (LANG, 1970)	The optrie	(ORÍA	s, 200	5), (GOLDN)	AANN, 2	006)		
		s or the s				dry/fre	sh bovine	e/human)
$\begin{array}{c c} [GPd] & [1] & [2] \\ \hline e_{11} & 27.4 \pm 1.6 & 16.75 \pm 2.27 \\ \hline \end{array}$	[3] 23.4+0.0031	[4] 21 2+0 5	[5] 18.0	[0] 19.4+1.3	24.89	[8] 14 1	[9] 	[U] 19.7
e_{22} 30.3±2.8 19.66±2.09	24.1±0.0035	21.2 ± 0.0 21.0 ± 1.4	20.2	20.0 ± 1.4	26.16	18.4	25.0	19.7
$e_{33}^{}$ 34.1±1.7 27.33±1.64	32.5±0.0044	$29.0{\pm}1.0$	27.6	30.9 ± 1.9	33.20	25.0	35.0	32.0
e_{44} 9.3 \pm 0.9 6.22 \pm 0.31	8.7±0.0013	6.3±0.4	6.23	5.7 ± 0.5	7.11	7.0	8.2	5.4
e_{55} 7.0± 0.4 5.65±0.53	6.9 ± 0.0012	6.3 ± 0.2	5.6	5.2 ± 0.6	6.58	6.3	7.1	5.4
e_{66} 0.9± 0.5 4.64±0.43	1.2 ± 0.0011	5.4 ± 0.2	4.5	4.1 ± 0.5 11 2 ±0.1	5./L 11 10	5.28		3.8 12.1
e ₁₂ 9.1 e ₁₃ 8.3+5.3	9.1 ± 0.0038 9.1 ±0.0055	11.7 ± 0.7 11.1 ± 0.8	10.0	12.5 ± 0.1	13.59	4.84	15.8	12.1
e ₂₃ 8.5	9.2 ± 0.0055	12.7 ± 0.8	10.7	12.6 ± 0.1	13.84	6.94	13.6	12.6

Let us build up Heterogeneous locally orthotropic model of cortical bone a methodology of another model of cortical bone, say Heterogeneous locally orthotropic model of cortical bone (because of the locality of the othotropy the model is in essence anisotropic)

to another lamella

Osteon, the global coordinate systyem

CIARLET, P. G. (2005) Elasticity tensor E^{abcd} in the c.s. of the local orthotropy MAREŠ, T. (2006) in Cartesian coordinate system ν^a $\sigma^{ij} = E^{ijkl} \varepsilon^{\nu}_{kl}$ $\left\{E_{ijkl}^{\nu}\right\}_{\{ij\lceil kl\}} = \begin{pmatrix} \Phi_{1111} & 0 & 0 & 0 & \Phi_{1122} & 0 & 0 & 0 & \Phi_{1133} \\ 0 & G_{12} & 0 & G_{12} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & G_{13} & 0 & 0 & 0 & G_{13} & 0 & 0 \\ 0 & G_{12} & 0 & G_{12} & 0 & 0 & 0 & 0 & 0 \\ \Phi_{2211} & 0 & 0 & 0 & \Phi_{2222} & 0 & 0 & 0 & \Phi_{2233} \\ 0 & 0 & 0 & 0 & 0 & G_{23} & 0 & G_{23} & 0 \\ 0 & 0 & G_{13} & 0 & 0 & 0 & G_{23} & 0 & G_{23} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & G_{23} & 0 & G_{23} & 0 \\ \Phi_{3311} & 0 & 0 & 0 & \Phi_{3322} & 0 & 0 & 0 & \Phi_{3333} \end{pmatrix}$ $\Phi_{1111} = \frac{1 - \nu_{23}\nu_{32}}{N} E_{11}, \quad \Phi_{1122} = \frac{\nu_{21} + \nu_{23}\nu_{31}}{N} E_{11}, \quad \Phi_{1133} = \frac{\nu_{31} + \nu_{32}\nu_{21}}{N} E_{11}$ $\Phi_{2211} = \frac{\nu_{12} + \nu_{13}\nu_{32}}{N} E_{22}, \quad \Phi_{2222} = \frac{1 - \nu_{13}\nu_{31}}{N} E_{22}, \quad \Phi_{2233} = \frac{\nu_{32} + \nu_{31}\nu_{12}}{N} E_{22}$ $\Phi_{3311} = \frac{\nu_{13} + \nu_{12}\nu_{23}}{N}E_{33}, \quad \Phi_{3322} = \frac{\nu_{23} + \nu_{21}\nu_{13}}{N}E_{33}, \quad \Phi_{3333} = \frac{1 - \nu_{12}\nu_{21}}{N}E_{33}$ $N = 1 - \nu_{12}\nu_{21} - \nu_{23}\nu_{32} - \nu_{31}\nu_{13} - \nu_{12}\nu_{23}\nu_{31} - \nu_{13}\nu_{32}\nu_{21}$ Energy $(E^{abcd} = E^{cdab}) \Rightarrow \Phi_{1122} = \Phi_{2211} \Rightarrow \nu_{21}E_{11} = \nu_{12}E_{22}$, etc. The concept of locally orthotropic material... $24 \in 63$ To build up the potential energy we will use the concept of locally orthotropic material Everything follows from the used coordinate systems

- 1. Local coordinate system of the orthotropy (ν^a)
- 2. Global coordinate system (z^a) that is common for the whole model
- 3. A sequence of working coordinates

The global transformation rule is given by the sequence of transformation rules

$$E^{abcd} = \frac{\partial z^a}{\partial \nu^i} \frac{\partial z^b}{\partial \nu^j} E^{ijkl} \frac{\partial z^c}{\partial \nu^k} \frac{\partial z^d}{\partial \nu^l}$$

The principle of minimum total potential energy $\hat{\boldsymbol{u}} = \arg \min_{\boldsymbol{u} \in} \Pi(\boldsymbol{u}), \text{ kde}$ $\Pi(\boldsymbol{u}) = a(\boldsymbol{u}, \boldsymbol{u}) - l(\boldsymbol{u})$ $a = \int_{\Omega} \varepsilon_{ab} \varepsilon_{cd} E^{abcd} d\Omega, \ l(\boldsymbol{u}) = \int_{\Omega} p^{i} u_{i} d\Omega + \int_{\partial_{t}\Omega} t^{i} u_{i} d\Gamma$ $d\Omega = \left|g_{ab}^{\beta}\right|^{\frac{1}{2}} d^{3}\beta, \ d\Gamma = \left|h_{\alpha\beta}^{\phi}\right|^{\frac{1}{2}} d^{2}\phi \quad \text{The concept of local orthotropy is}$ $\operatorname{very suitable for the detailed description of}$ (LOVELOCK, 1989), (SYNGE, 1978), and (MAREŠ, 2005) \quad \text{the bone behaviour} \quad 25 \in 63

The computational frames of one osteon lamella

Metrics and Transformation rules Via derivative of the relations between the coordinate systems we obtain a range of transformation matrices for the components $\frac{\partial b^a}{\partial x^b} = \frac{\partial b^a}{\partial \beta^c} \frac{\partial \beta^c}{\partial x^b} = \begin{pmatrix} \cos \beta^2 & -\frac{\beta^1}{r_o} \sin \beta^2 & 0\\ \sin \beta^2 & \frac{\beta^1}{r_o} \cos \beta^2 & 0\\ 0 & 0 & 1 \end{pmatrix}$ of the tensors and range of matrics $\frac{\partial b^a}{\partial \beta^b} = \begin{pmatrix} \cos \beta^2 & -\beta^1 \sin \beta^2 & 0\\ \sin \beta^2 & \beta^1 \cos \beta^2 & 0\\ 0 & 0 & 1 \end{pmatrix}, \quad \frac{\partial x^a}{\partial \beta^b} = \begin{pmatrix} 1 & 0 & 0\\ 0 & r_o & 0\\ 0 & 0 & 1 \end{pmatrix}$ (LOVELOCK, 1989) (SYNGE, 1978)metrics $ds^2 = g_{ab}^x dx^a dx^b = g_{ab}^\beta d\beta^a d\beta^b = g_{ab}^b db^a db^b = \delta_{ab} db^a db^b$ $\delta_{ab} = g_{ab}^{\xi} = \frac{\partial x^c}{\partial \xi^a} \frac{\partial x^d}{\partial \xi^b} g_{cd}^x \qquad \text{Inversely,} \\ \text{from a known} \qquad g_{ab}^x = \frac{\partial b^c}{\partial x^a} \frac{\partial b^c}{\partial x^d} \delta_{cd} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \left(\frac{\beta^1}{r_o}\right)^2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ $\Rightarrow \frac{\partial x^{a}}{\partial \xi^{b}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{r_{o}}{\beta^{1}} & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad \begin{array}{c} \text{can obtain the} \\ \text{transformation rule} \\ g_{ab}^{\beta} = \frac{\partial b^{c}}{\partial \beta^{a}} \frac{\partial b^{d}}{\partial \beta^{b}} \delta_{cd} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \left(\beta^{1}\right)^{2} & 0 \\ 0 & 0 & 1 \end{pmatrix} \end{array}$ metric we $\frac{\partial \nu^a}{\partial \xi^b} = \begin{pmatrix} 1 & 0 & 0\\ 0 & \cos \alpha_\nu & \sin \alpha_\nu\\ 0 & -\sin \alpha_\nu & \cos \alpha_\nu \end{pmatrix}$ For the principal directions of an locally orthotropic block $27 \in 63$

Analysis of a cortical bone means analysis Assemblage of the osteons of the assemblage of the osteons embedded in isotropic interstitial matrix

to subtract

$$\hat{\boldsymbol{u}} = \arg \min_{\boldsymbol{u} \in \boldsymbol{z} \\ \boldsymbol{z}} \Pi(\boldsymbol{u}), \text{ kde } \Pi(\boldsymbol{u}) = a(\boldsymbol{u}, \boldsymbol{u}) - l(\boldsymbol{u}) \qquad \text{to add}$$

$$a = \int_{\Omega} \varepsilon_{ab} \varepsilon^{cd} \mathcal{E}^{ab}_{cd} \ d\Omega + \sum_{\ell=1}^{n} \int_{\Omega_{\ell}} \varepsilon_{ab} \varepsilon^{cd} \mathcal{E}^{ab}_{cd} \ d\Omega - \sum_{\ell=1}^{n} \int_{\Omega_{\ell}} \varepsilon_{ab} \varepsilon^{cd} \mathcal{E}^{ab}_{cd} \ d\Omega$$
(WASHIZU, 1975)
$$l(\boldsymbol{u}) = \int_{\Omega} p^{i} u_{i} \ d\Omega + \int_{\partial_{t}\Omega} t^{i} u_{i} \ d\Gamma$$

$$d\Omega = \left| g_{ab}^{\beta} \right|^{\frac{1}{2}} d^{3}\beta, \ d\Gamma = \left| h_{\alpha\beta}^{\phi} \right|^{\frac{1}{2}} d^{2}\phi$$
Then the procedure is a similar one as in the previous examples

Shape analysis of lipid membranes with intrinsic (anisotropic) curvature

 $30 \in 63$

Stress variant of the stiffness maximization problem

Bendsøe, M. P. (2003) Mareš, T. (2006) Allaire, G. (2002)

Maximization under uncertain conditions

$$\{\hat{\boldsymbol{C}}, \hat{\boldsymbol{t}}, \hat{\boldsymbol{\sigma}}\} = \arg\min_{\boldsymbol{C}\in} \max_{\boldsymbol{t}\in} \min_{\boldsymbol{\sigma}\in} \int_{\Omega} C_{ijkl} \sigma_{ij} \sigma_{kl} \,\mathrm{d}\Omega$$

— the set of possible loading states

The curvilinear elastic analysis. . . $4 \in 63$

The simplest (illustrating) problem of fibre composite stiffness maximization

Mareš, T. (2009)

$$\begin{array}{l} \begin{array}{l} \begin{array}{l} \text{The transformation of the compliance tensor and results} \\ C_{abcd}^{x} = \frac{\partial \nu^{i}}{\partial x^{a}} \frac{\partial \nu^{j}}{\partial x^{b}} \frac{\partial \nu^{k}}{\partial x^{d}} C_{ijkl}^{\nu} \\ C_{1111}^{x} = \frac{\partial \nu^{i}}{\partial x^{1}} \frac{\partial \nu^{j}}{\partial x^{1}} \frac{\partial \nu^{j}}{\partial x^{1}} \frac{\partial \nu^{i}}{\partial x^{1}} C_{ijkl}^{\nu} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} \frac{\partial \nu^{i}}{\partial x^{a}} = \begin{pmatrix} \cos \alpha & 0 & -\sin \alpha \\ 0 & 1 & 0 \\ \sin \alpha & 0 & \cos \alpha \end{pmatrix} \\ c = \sigma^{ab} C_{abcd}^{x} \frac{\sigma^{cd}}{\sigma^{cd}} = \sigma C_{1111}^{x} \sigma \\ \end{array} \\ \begin{array}{l} \frac{\partial \nu^{i}}{\partial x^{a}} \frac{\partial \nu^{j}}{\partial x^{1}} \frac{\partial \nu^{j}}{\partial x^{1}} \frac{\partial \nu^{j}}{\partial x^{1}} C_{ijkl}^{\nu} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} \frac{\partial \nu^{i}}{\partial x^{a}} = \begin{pmatrix} \cos \alpha & 0 & -\sin \alpha \\ 0 & 1 & 0 \\ \sin \alpha & 0 & \cos \alpha \end{pmatrix} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \frac{\partial \nu^{i}}{\partial x^{a}} \frac{\partial \nu^{j}}{\partial x^{1}} \frac{\partial \nu^{j}}{\partial x^{1}} \frac{\partial \nu^{j}}{\partial x^{1}} C_{ijkl}^{\nu} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \frac{\partial \nu^{i}}{\partial x^{a}} \frac{\partial \nu^{j}}{\partial x^{1}} \frac{\partial \nu^{j}}{\partial x^{1}} \frac{\partial \nu^{j}}{\partial x^{1}} C_{ijkl}^{\nu} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \frac{\partial \nu^{i}}{\partial x^{a}} \frac{\partial \nu^{j}}{\partial x^{1}} \frac{\partial \nu^{j}}{\partial x^{1}} \frac{\partial \nu^{j}}{\partial x^{1}} C_{ijkl}^{\nu} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \frac{\partial \nu^{i}}{\partial x^{a}} \frac{\partial \nu^{j}}{\partial x^{1}} \frac{\partial \nu^{j}}{\partial x^{1}} \frac{\partial \nu^{j}}{\partial x^{1}} C_{ijkl}^{\nu} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \frac{\partial \nu^{i}}{\partial x^{a}} \frac{\partial \nu^{j}}{\partial x^{1}} \frac{\partial \nu^{j}}{\partial x^{1}$$

Stiffness maximization of plates

 $20 \in 63$

The elasticity problem

$$P^{abcd}w_{cd} = q^{ab}$$

The necessary condition of optimum

 $w_{ab}w_{cd}R^{abcd}(\alpha_{\nu}) = 0$

Laminated multilayer Kirchhoff plates of symetric layout

 $R^{abcd}(\alpha_{\nu})$ functions of the design parameters

 α_{ν} stands for the layer orientation

 w_{ab} Fourier series expansion coefficients of the perpendicular displacement

 q^{ab} Fourier series expansion coefficients of the load

The layout maximizing the stiffness

Any permutation of the layout is possible

Rectangular plate (1:2) of four layers loaded by $q = q_o xy$

Square plate of six layers loaded by $q = q_o \sin \frac{2\pi x}{a} \sin \frac{2\pi y}{b}$ α_1 x α_1 x $\alpha_1 = -45^{\circ}$ $\alpha_2 = 45^{\circ}$ $\alpha_3 = 45^{\circ}$

The alternative fulfilment of the necessary condition

Alternative fulfilment of the necessary condition of SM

0. Choose an angle α

1. The problem of elaticity as already solved

 $\mathbf{A} = \mathbf{K}^{-1} \mathbf{P}$

2. The stiffness maximum condition,

$$\begin{aligned} \frac{\partial \Pi}{\partial \alpha} &= 0, \text{ i.e., } \frac{1}{2} \mathbf{A}^T \frac{\partial \mathbf{K}}{\partial \alpha} \mathbf{A} = 0 \\ & \frac{\partial \mathbf{K}}{\partial \alpha} = \int_{0}^{t} \int_{0}^{2\pi} \int_{0}^{t} (\mathbf{B}\text{-}\mathbf{Gam})^* \frac{\partial \mathbf{Ex}}{\partial \alpha} * (\mathbf{B}\text{-}\mathbf{Gam})^* \text{sqrt}(\det(\mathbf{gx})) d^3x \\ & \frac{\partial \mathbf{Ex}}{\partial \alpha} = \left\{ \frac{\partial E^{abcd}}{\partial \alpha} \right\}_{ab[cd} \\ & \frac{\partial E^{abcd}}{\partial \alpha} = \left(\alpha_i^a \frac{\partial x^b}{\partial \nu^i} \frac{\partial x^c}{\partial \nu^i} + \frac{\partial x^a}{\partial \nu^i} \alpha_j^b \frac{\partial x^c}{\partial \nu^i} \frac{\partial x^d}{\partial \nu^j} + \frac{\partial x^a}{\partial \nu^i} \frac{\partial x^b}{\partial \nu^j} \alpha_k^c \frac{\partial x^d}{\partial \nu^j} + \frac{\partial x^a}{\partial \nu^i} \frac{\partial x^b}{\partial \nu^i} \alpha_{j\nu}^b \frac{\partial x^c}{\partial \nu^j} \alpha_{k}^b \frac{\partial x^c}{\partial \nu^j} \alpha_{k}^c \frac{\partial x^c}{\partial \nu^j} \alpha_{k}^b \frac{\partial x^c}{\partial \nu^j} \alpha_{k}^b \frac{\partial x^c}{\partial \nu^j} \alpha_{k}^b \frac{\partial x^c}{\partial \nu^j} \alpha_{k}^c \frac{\partial x^c}{\partial \nu^j} \alpha_{k}^b \frac{\partial x^c}{\partial \nu^j} \alpha_{k}^c \frac{\partial x^c$$

Bendsøe, M. P. (2003) Mareš, T. (2006) Allaire, G. (2002)

Thank you for your attention!

References

CAUCHY, A. L. (1823): De la pression ou tension dans un corps solide, http://gallica.bnf.fr/ark:/12148/bpt6k901990/f63n19

LOVE, A. E. H. (1927): Treatise on the Mathematical Theory of Elasticity. Cambridge university press, Cambridge.

- HAMILTON, W. R. (1854, 1855): On some extensions of quaternions. The London Philosophical Magazine (4th Series) vii-ix http://www.emis.de/classics/Hamilton/ExtQuat.pdf
- SOBOTKA, Z. (1981): Reologie hmot a konstrukcí. Academia, Praha.
- MAREŠ, T. (2006): Locally orthotropic material—the foundation of tissue mechanics, Bulletin of Applied Mechanics 7, 151–157 SYNGE, J. L. and SCHILD, A. (1978): Tensor Calculus. Dover Publications, Inc., New York.

LOVELOCK, D. and RUND, H. (1989): Tensors, Differential Forms, and Variational Principles. Dover Publications, NY.

CIARLET, P. G. (2005): An introduction to differential geometry with applications to elasticity. Springer-Verlag, Berlin.

MAREŠ, T. (2006): Mathematical model of the cortical bone osteon, Bulletin of Applied Mechanics 7 (2006), 159–165

MAREŠ, T. (2009): Fibre composite optimization, Bulletin of Applied Mechanics 18

GREEN, A. E. and ZERNA, W. (1954): Theoretical Elasticity. Clarendon Press, Oxford.

PAVLIC, J., MAREŠ, T. et al. (2009): Encapsulation of Small Spherical Liposome into Larger Flaccid Liposome...

LUKEŠ, J., MAREŠ, T., OTAHAL, S. (2008): Nanoindentation - the Tool For Material Identification of Biological Tissues

MAREŠ, T., DANIEL, M. (2008): Homogenization of lipid membranes via statistical mechanics BAM 13, 24–33

MAREŠ, T. (2008): Curvilinear tensor analysis of an elastic heterogenous epicycloidal thick walled tube BAM 14, 37–47

MAREŠ, T., et al. (2008): JOURNAL OF PHYSICAL CHEMISTRY B

MAREŠ, T. (2006): Základy Konstrukční Optimalizace. Nákladem Tomáše Mareše, Praha.

BERTHELOT, J-M (1999): Composite Materials: Mechanical Behavior and Structural Analysis. Spiringer-Verlag, New York. ALLAIRE, G. (2002): Shape Optimization by the Homogenization Method. Springer-Verlag, New York.

General (1010) A function of the Data of Data Distribution of the Data of Distribution of the Distribution

GRAY, H. (1918): Anatomy of the Human Body. Lea & Febiger, Philadelphia.

DORLAND, I. and NEWMAN, W. A. (1900, 2003): Dorland's illustrated medical dictionary. Saunders Comp. Philadelphia.