

Solar collectors

- types
- efficiency
- application
- statistics

collecting surface (collector)

surface absorbing solar radiation which converts to heat

accummulation (heat storage)

storing the solar heat gains for further use (storage tank, wall, mass in the building space, ...)

consumer

hot water, heating, cooling, ...

Solar collector

Solar collectors

Solar air collectors

- heat transfer fluid is air
- heats from outer surface of absorber
- Iow heat capacity, high flowrates, large dimensions
- high auxilliary electricity use

applications:

agriculture – drying residental – heating of ventilation air

Solar air collectors

Solar air collectors

integration into roof

Solar liquid collectors

 liquid as heat transfer fluid (water, antifreeze, oil, etc.)

 energy absorbed at surface is removed by heat transfer liquid flowing inside pipes of absorber

Solar collectors

11/69

Unglazed solar collectors

- temperature level < 40 °C</p>
- seasonal applications, swimming pools
- strongly dependent on ambient conditions (temperature, wind)

Solar collectors

Flat plate covered solar collectors

- 1 frame
- 2 sealing
- 3 transparent cover
- 4 thermal insulation
- 5 absorber
- 6 pipe register

14/69

Flat plate solar collectors

- suitable for building envelope integration
 - roof

Solar collectors

Vacuum flat plate solar collectors

underpressure to reduce heat loss (absolute pressure 1 to 10 kPa)

load upon flat cover glazing (pillars)

need for shading the radiation heat trasfer to back side (IR reflectors)

Solar collectors

single vacuum tube flat absorber

double vacuum tube (Sydney) **cylindric absorber**

high vacuum 1 mPa

Single vacuum tube with flat absorber

direct flow (DF)

high quality heat transfer from absorber into fluid

Single vacuum tube with flat absorber

heat pipe (HP)

high quality heat transfer from absorber to evaporator part

single vacuum tube flat absorber

double vacuum tube (Sydney) cylindric absorber

high vacuum 1 mPa

Double vacuum Sydney tube with cylindric absorber

direct flow (DF)
with a contact fin

heat transfer fin between absorber tube and pipe register needed!

Double vacuum Sydney tube with cylindric absorber

 heat pipe (HP) with a contact fin

heat transfer fin between absorber tube and evaporator needed!

The getter material is held inactive in a reservoir during assembly, then heated and evaporated after initial evacuation. The vaporized getter, usually a volatile metal, instantly reacts with any residual gas, then condenses on the cool walls of the tube in a thin coating, the *getter mirror*, which continues to absorb gas.

vacuum insulation = snow or frost removed very slowly

snow accummulation: problematic use of reflectors

Flat plate collectors and defrosting

heat loss allows collector operation even in periods of snow cover

Tube collector with a heat pipe

Tube collector with a heat pipe

dry connection

condenser placed in a slot slot washed by heat transfer fluid

Tube collector with a heat pipe

wet connection

condenser of heat pipe directly washed by heat transfer fluid

Tube collector with a reflector

compound parabolic reflector (CPC)

Concentrating solar collectors

concentration of direct solar radiation

reflection (mirrors) x refraction (lenses)

linear focus

- parabolic reflector
- Winston collector (trough form)
- collector with a Fresnel lens

point focus

- paraboloid reflector
- heliostats

Concentrating solar collectors (reflection)

Collector with Fresnel lenses (refraction)

 combined active and passive component

Principle and balance of solar collector

Solar collector glazing

- single glazing
- low-iron glass, solar glass
 - Iow absorbance of solar radiation
- antireflective coatings
 - reduction of reflection at interface glass-air
- prismatic glass (pyramidal texture)
 - increase of transmittance at high angles

Reflection loss

reflection at each interface glass-air 4 % (normal) independent on thickness

Antireflection (AR) coatings

reflection reduced to 1,5 % at each interface glass-iron coating with low refraction index

Solar collector absorber

radiation properties for athermanous bodies

Athermanous body is such a body through which any heat radiation cannot pass.

- absorptance α + reflectance ρ = 1
- for given wavelength λ apply: absorptance α_{λ} = emittance ε_{λ}
- perfect black body: α = 1, ρ = 0 for all wavelengths
- perfect white body: $\alpha = 0$, $\rho = 1$ for all wavelengths
 - grey body $0 < \alpha = \alpha_{\lambda} < 1$, $\rho = 1 \alpha$ for all wavelengths
- selective body $0 < \alpha_{\lambda} < 1, \rho_{\lambda} = 1 \alpha_{\lambda}$

 $\alpha_{\rm SOI} \neq \mathcal{E}_{\rm IR}$

Selective surfaces

galvanic

electrochemical process $\alpha = 0.93 - 0.96$, $\varepsilon = 0.10 - 0.16$

ceramic-metal (cermet)

sputtering, physical vapour deposition process, high quality surfaces $\alpha = 0.95, \varepsilon = 0.05$

paints

• considerably worse $\alpha = 0.92, \varepsilon = 0.85$

material goes from a condensed phase to a vapor phase and then back to a thin film condensed phase

Efficiency of solar collector

$$\eta = \tau \alpha - U \frac{(t_{abs} - t_e)}{G}$$

- τ ... glazing transmittance for solar radiation [-]
 - α ... absorber absorptance for solar radiation [-]
- *U* ... heat loss coefficient [W/m².K]
- *t*_{abs} ... mean absorber temperature [°C]
 - ... ambient temperature [°C]

optical efficiency

heat loss

Simple calculation

collector	C1	C2
transmittance of collector glazing:	0,90	0,90
absorptance of collector absorber:	0,90	0,90
front U-value	6 W/m²K	3 W/m ² K
back U-value	1 W/m ² K	1 W/m ² K

calculate efficiency for given conditions:

<i>t</i> _e = 10 °C	
G = 800 W/m ²	
$t_{\rm abs}$ = 20 °C	80 °C

Simple calculation

Collector 1

$$\eta = \tau \alpha - U \frac{(t_{abs} - t_e)}{G}$$
 Collector 2
 $\eta = 0.9 \cdot 0.9 - (6+1) \frac{(t_{abs} - 10)}{800}$ $\eta = 0.9 \cdot 0.9 - (3+1) \frac{(t_{abs} - 10)}{800}$

Efficiency of solar collector

Efficiency of solar collector

$$\eta = F \cdot \left[\tau \alpha - U \frac{\left(t_m - t_e\right)}{G} \right]$$

F' ... efficiency factor > 0.90 depends on geometry and thermal properties of absorber

.....quality heat transfer from the absorber to the heat transfer fluid

 $t_{\rm m}$... mean fluid temperature

 $t_{\rm m} = (t_{\rm k1} + t_{\rm k2})/2$

Heat transfer from absorber surface

depends on

geometry of absorber:

- pipe distance, pipe dimension, thickness of pipe-absorber bond, absorber thickness
- physical properties of absorber:
 - thermal conductivity of absorber, thermal conductance of the bond pipe-absorber
- flow regime in pipes: heat transfer from pipe wall to fluid

Efficiency factor F'

• total heat loss coefficient of collector *U*

Determination of heat output by testing

heat output [W]

solar collector power

$$\dot{Q}_{\rm k} = \dot{M} \cdot c \cdot (t_{\rm k2} - t_{\rm k1})$$

efficiency [-] $\eta = \frac{\dot{Q}_k}{G \cdot A_k}$

tested at clear sky, $G > 700 \text{ W/m}^2$, normal incidence, w > 3 m/s

Efficiency characteristic

Efficiency characteristic =
$$f(t_m - t_e)$$

Reference collector area A_k

Reference collector area *A*_k

Reference collector area A_k

- aperture: comparison of collector quality, construction
- gross area: decision on potential for given application (limited space on roof)

63/69

Efficiency characteristic

$$\eta = \eta_0 - a_1 \cdot \frac{t_m - t_e}{G} - a_2 \cdot \frac{(t_m - t_e)^2}{G}$$

- η_0 "optical" efficiency [-], better: zero-loss efficiency
- a_1 linear heat loss coefficient [W/(m².K)]

"related to difference between absorber and ambient temperature"

 a_2 quadratic heat loss coefficient [W/(m².K²)] "simplified approach for the radiation losses" values η_0 , a_1 , a_2 related to reference area A_k (aperture is preferred) coefficients are given by producer, supplier or testing institute based on test report in accordance to EN 12975-2

Theory x testing

$$\eta = F'\tau\alpha - F'U \cdot \frac{t_m - t_e}{G}$$

$$\eta = \eta_0 - a_1 \cdot \frac{t_m - t_e}{G} - a_2 \cdot \frac{(t_m - t_e)^2}{G}$$

 $\eta_0 = F' \tau \alpha$ $a_1 + a_2(t_m - t_e) = F' U$

zero-loss efficiency heat loss coefficient

Typical coefficients *)

Collector type	η_0	a ₁	a ₂
Collector type	-	W/(m²K)	W/(m²K²)
Unglazed	0.85	20	-
Glazed with nonselective absorber	0.75	6.5	0.030
Glazed with selective absorber	0.78	4.2	0.015
Vacuum single tube (flat absorber)	0.75	1.5	0.008
Vacuum tube Sydney	0.65	1.5	0.005

*) referenced to aperture area

Heat output (power) of solar collector

solar collector power (normal incidence, clear sky)

$$\dot{Q}_{k} = \eta \cdot A_{k} \cdot G = A_{k} [\eta_{0}G - a_{1} \cdot (t_{m} - t_{e}) - a_{2} \cdot (t_{m} - t_{e})^{2}]$$

 η_0 "optical" efficiency [-], a_1 linear heat loss c. [W/(m².K)] a_2 quadratic heat loss c. [W/(m².K²)]

installed (nominal) power

- for defined conditions (according to ESTIF):
- $G = 1000 \text{ W/m}^2$ $t_e = 20 \text{ °C}$ $t_m = 50 \text{ °C}$

peak power (without heat loss)

$$\dot{Q}_{k,peak} = A_k \eta_0 G$$
 $G = 1000 \text{ W/m}^2$

Heat output (power) of solar collector

Efficiency and power calculation

	flat-plate	vacuum tube		
$\eta_{0,a}$	0,75	0,65	-	
a _{1,a}	3,5	1,5	W/m ² K	
a _{2,a}	0,015	0,005	W/m ² K ²	
A _G	4		m ²	
A _a	3,6	2,4	m ²	
calculation of daily efficiency for April,				
Prague city, slope 45°, azimuth 45°				
G _{T,m}	473		W/m ²	
t _{e,s}	12,1		°C	
t _{k,m}	40		°C	

Efficiency and power calculation

$$\begin{split} \eta_{k} &= \eta_{0} - a_{1} \cdot \frac{t_{k,m} - t_{e,s}}{G_{T,m}} - a_{2} \cdot \frac{\left(t_{k,m} - t_{e,s}\right)^{2}}{G_{T,m}} \\ \dot{Q}_{k,m} &= \eta_{k} \cdot A_{k} \cdot G_{T,m} \\ Q_{k,day} &= \eta_{k} \cdot A_{k} \cdot H_{T,day} \\ &= daily solar irradiation \\ H_{T,day} = \tau_{r} \cdot H_{T,day,th} + (1 - \tau_{r}) \cdot H_{T,day,dif} \\ H_{T,day} &= 3.64 \text{ kWh/m2.day} \\ \hline \eta_{k} & 0,52 & 0,55 & - \\ \hline Q_{k,m} & 884 & 628 & W \\ \hline Q_{k,day} & 6,8 & 4,8 & \text{kWh/day} \\ \hline \end{split}$$

Nominal conditions (ESTIF)

$$Q_{k,peak} = A_k \eta_0 G$$

	flat-plate	vacuum tube	
G	1000		W/m ²
t _{e,s}	20		°C
t _m	50		°C
η_{k}	0,63	0,60	
Q _{k,nom}	2273	1441	W
$Q_{k,peak}$	2700	1560	W

Solar collector / applications

Solar collectors in the World

72/69

Sub-Sahara Africa: Asia w/o China: Latin America: Europe: MENA region: Lesotho, Mauritius, Mozambique, Namibia, South Africa, Zimbabwe India, Japan, Korea South, Taiwan, Thailand Barbados, Brazil, Chile, Mexico, Uruguay EU 28, Albania, Macedonia, Norway, Russia, Switzerland, Turkey Israel, Jordan, Lebanon, Morocco, Palestinian Territories, Tunisia

per 1000 inhabitants

Solar collectors new installations (2015)

Sub-Sahara Africa:	Lesotho, Mauritius, Mozambiqu
Asia w/o China:	India, Japan, Korea South, Taiw
atin America:	Brazil, Chile, Mexico, Uruguay
Europe:	EU 28, Albania, Macedonia, Nor
MENA region:	Israel, Jordan, Lebanon, Moroco

e, South Africa, Zimbabwe van, Thailand way, Russia, Switzerland, Turkey co, Palestinian Territories, Tunisia