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Photothermal conversion

 collecting surface (collector)

surface absorbing solar radiation which converts to heat

 accummulation (heat storage)

storing the solar heat gains for further use

(storage tank, wall, mass in the building space, ...)

 consumer

hot water, heating, cooling, ...
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Solar collector

Pipes with heat transfer fluid

Transparent cover - glazing

Absorber

Thermal insulation

Collector frame
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Solar collectors
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Solar air collectors

 heat transfer fluid is air

 heats from outer surface of 

absorber

 low heat capacity, high 

flowrates, large dimensions

 high auxilliary electricity use

 applications:

agriculture – drying

residental – heating of 

ventilation air
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Solar air collectors

Box

Frame

Glazing

Insulation

Finned absorber
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Solar air collectors



8/69

Solar air collectors

integration into roof
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Solar liquid collectors

 liquid as heat transfer fluid

(water, antifreeze, oil, etc.)

 energy absorbed at surface is 

removed by heat transfer liquid 

flowing inside pipes of 

absorber
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Solar collectors
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Unglazed solar collectors

 temperature level < 40 °C

 seasonal applications, swimming pools

 strongly dependent on ambient conditions

(temperature, wind)
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Solar collectors
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Flat plate covered solar collectors

1 frame

2 sealing

3 transparent cover

4 thermal insulation

5 absorber

6 pipe register
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Flat plate solar collectors

 suitable for building envelope integration

 roof

 facade



15/69

Solar collectors



16/69

Vacuum flat plate solar collectors

underpressure to reduce heat loss (absolute pressure 1 to 10 kPa)

load upon flat cover glazing (pillars)

need for shading the radiation heat trasfer 

to back side (IR reflectors)
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Solar collectors
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Vacuum tube solar collectors

single vacuum tube

flat absorber
double vacuum tube (Sydney)

cylindric absorber

high vacuum 1 mPa
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Vacuum tube solar collectors

Single vacuum tube

with flat absorber

 direct flow (DF)

high quality heat transfer from absorber into fluid
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Vacuum tube solar collectors

Single vacuum tube

with flat absorber

 heat pipe (HP)

high quality heat transfer from absorber to evaporator part
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Vacuum tube solar collectors

source: Viessmann

heat pipe 

direct flow 
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Vacuum tube solar collectors

single vacuum tube

flat absorber
double vacuum tube (Sydney)

cylindric absorber

high vacuum 1 mPa
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Vacuum tube solar collectors

Double vacuum Sydney tube

with cylindric absorber

 direct flow (DF)

with a contact fin

heat transfer fin between absorber tube and pipe register needed!
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Vacuum tube solar collectors

Double vacuum Sydney tube

with cylindric absorber

 heat pipe (HP)

with a contact fin

heat transfer fin between absorber tube and evaporator needed!
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Vacuum tube (Sydney) solar collectors

contact fin connection DF pipes Sydney tubes

reflector

source: OPC
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Vacuum tube (Sydney) solar collectors
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Vacuum tube (Sydney) solar collectors

barium absorbs gases and 

changes colour
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Vacuum tube (Sydney) solar collectors

The getter material is held inactive in a reservoir during 

assembly, then heated and evaporated after initial 

evacuation. The vaporized getter, usually a volatile 

metal, instantly reacts with any residual gas, then 

condenses on the cool walls of the tube in a thin coating, 

the getter mirror, which continues to absorb gas.
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Vacuum tube (Sydney) solar collectors

vacuum insulation = snow or frost removed very slowly

snow accummulation: problematic use of reflectors
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Flat plate collectors and defrosting

heat loss allows collector operation even in periods of snow cover
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Tube collector with a heat pipe

heat removed by evaporator 

of heat pipe

solar energy 

absorbed at 

absorber

heat removed to heat
transfer fluid

condenser

evaporator
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Tube collector with a heat pipe
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Tube collector with a heat pipe

dry connection

condenser placed in a slot

slot washed by heat transfer fluid

source: Viessmann
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Tube collector with a heat pipe

wet connection

condenser of heat pipe directly 

washed by heat transfer fluid
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Tube collector with a reflector

specular reflection

diffuse reflection

durability of optical 

quality of reflector

snow and ice 

accummulation, tube 

destruction

increase of 

collector active 

area (aperture)

compound parabolic reflector (CPC)

flat reflector
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Concentrating solar collectors

concentration of direct solar radiation

reflection (mirrors) x refraction (lenses)

linear focus

 parabolic reflector

 Winston collector   (trough form)

 collector with a Fresnel lens

point focus

 paraboloid reflector

 heliostats
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Concentrating solar collectors (reflection)
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Collector with Fresnel lenses (refraction)

 combined active and 

passive component

source: ENKI
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Principle and balance of solar collector

Heat loss through 

glazing

Reflection 

at absorber
Reflection at glazing

Incident solar 

radiation

Heat loss through 

side and back wall

Heat removal by fluid
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Solar collector glazing

 single glazing

 low-iron glass, solar glass

 low absorbance of solar radiation

 antireflective coatings

 reduction of reflection at interface glass-air

 prismatic glass (pyramidal texture)

 increase of transmittance at high angles
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Reflection loss

reflection at each interface glass-air 4 % (normal) 

independent on thickness

100 % 91 %

solar glass

4 % + 4 %

1 %
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Antireflection (AR) coatings

reflection reduced to 1,5 % at each interface glass-iron

coating with low refraction index

100 % 96 %

solar glass with 

double AR
3 %

1 %
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Solar collector absorber

radiation properties for athermanous bodies
Athermanous body is such a body through which any heat radiation cannot pass.

 absorptance a + reflectance r = 1

 for given wavelength l apply:   absorptance al = emittance el

 perfect black body: a = 1, r = 0 for all wavelengths

 perfect white body: a = 0, r = 1 for all wavelengths

 grey body    0 < a = al < 1, r = 1 – a for all wavelengths

 selective body    0 < al < 1, rl = 1 – al aSOL ≠ eIR
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Absorber selectivity
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Absorber selectivity
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Absorber selectivity
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Absorber selectivity
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Absorber selectivity

solar radiation 

spectrum (Sun)

infrared radiation 

spectrum (absorber)

ideal r = 0, e = a = 1

ideal r = 1, a = e = 0

re
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n
ce

 [
-]

ideal selective 

absorber

black chrome

Ni-AlO3

wavelength
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Selective surfaces

galvanic

 electrochemical process

a = 0,93 – 0,96, e = 0,10 – 0,16

ceramic-metal (cermet)

 sputtering, physical vapour deposition

process, high quality surfaces

a = 0,95, e = 0,05

paints

 considerably worse

a = 0,92, e = 0,85

material goes from a condensed phase to a vapor phase 

and then back to a thin film condensed phase
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Efficiency of solar collector

t ... glazing transmittance for solar radiation [-]

a ... absorber absorptance for solar radiation [-]

U ... heat loss coefficient [W/m2.K]

tabs ... mean absorber temperature [°C]

te ... ambient temperature [°C]

 
G

tt
U eabs 

ta

optical efficiency

heat loss
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Simple calculation

collector C1 C2

transmittance of collector glazing: 0,90 0,90

absorptance of collector absorber: 0,90 0,90

front U-value 6 W/m2K 3 W/m2K

back U-value 1 W/m2K 1 W/m2K

calculate efficiency for given conditions:

te = 10 °C

G = 800 W/m2

tabs = 20 °C 80 °C
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Simple calculation

 
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Efficiency of solar collector

~ (1-ta)

~ U(tabs-te)

optical loss

heat loss

efficiency
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Efficiency of solar collector

F’ ... efficiency factor  > 0.90

depends on geometry and thermal properties of absorber

………..quality heat transfer from the absorber to the heat transfer fluid

tm ... mean fluid temperature

tm = (tk1+tk2)/2

 
G

tt
U eabs 

ta
 








 
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G

tt
UF emta '
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Heat transfer from absorber surface 
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Efficiency factor F’

depends on

 geometry of absorber:

 pipe distance, pipe dimension, thickness of pipe-absorber 

bond, absorber thickness

 physical properties of absorber:

 thermal conductivity of absorber, thermal conductance of the 

bond pipe-absorber

 flow regime in pipes: heat transfer from pipe wall to fluid

 total heat loss coefficient of collector U



57/69

Determination of heat output by testing

)( k1k2k ttcMQ  

)( k1k2k ttcMQ  
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M
.

kAG

Q


 k




efficiency [-]

heat output [W]

solar collector power

tested at clear sky, G > 700 W/m2, normal incidence, w > 3 m/s
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Efficiency characteristic
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Efficiency characteristic = f (tm – te)
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Reference collector area Ak

gross area: AG

aperture area: Aa

absorber area: AA

k
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Q





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Reference collector area Ak

AA AA

AA

Aa Aa Aa
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Reference collector area Ak

 aperture: comparison of collector quality, construction

 gross area: decision on potential for given application (limited space on roof)

Aa = 0,9 AG Aa = 0,75 AG Aa = 0,6 AG Aa = 0,8 AG
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Efficiency characteristic

 
G

tt
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210





 

0 „optical“ efficiency [-],  better: zero-loss efficiency

a1 linear heat loss coefficient [W/(m2.K)]

„related to difference between absorber and ambient temperature“

a2 quadratic heat loss coefficient [W/(m2.K2)] „simplified approach for the radiation losses“

values 0, a1, a2 related to reference area Ak (aperture is preferred)

coefficients are given by producer, supplier or testing institute based

on test report in accordance to EN 12975-2
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Theory    x    testing

0 = F’ta zero-loss efficiency

a1+a2(tm - te) = F’U heat loss coefficient

 
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Typical coefficients *)

Collector type
0 a1 a2

- W/(m2K) W/(m2K2)

Unglazed 0.85 20 -

Glazed with nonselective absorber 0.75 6.5 0.030

Glazed with selective absorber 0.78 4.2 0.015

Vacuum single tube (flat absorber) 0.75 1.5 0.008

Vacuum tube Sydney 0.65 1.5 0.005

*) referenced to aperture area
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Heat output (power) of solar collector

GAQ kpeakk 0, 

solar collector power (normal incidence, clear sky)

installed (nominal) power

– for defined conditions (according to ESTIF):

G = 1000 W/m2 te = 20 °C tm = 50 °C

peak power (without heat loss)

])()([ 2
210 ememkkk ttattaGAGAQ  

G = 1000 W/m2

0 „optical“ efficiency [-],   a1 linear heat loss c. [W/(m2.K)] a2 quadratic heat loss c. [W/(m2.K2)]
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Efficiency and power calculation

flat-plate vacuum tube

0,a 0,75 0,65 -

a1,a 3,5 1,5 W/m2K

a2,a 0,015 0,005 W/m2K2

AG 4 m2

Aa 3,6 2,4 m2

calculation of daily efficiency for April, 

Prague city, slope 45°, azimuth 45°

GT,m W/m2

te,s °C

tk,m °C

473

12,1

40
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Efficiency and power calculation

flat-plate vacuum tube

k -

Qk,m W

Qk,day kWh/day

 
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Nominal conditions (ESTIF)

flat-plate vacuum tube

G 1000 W/m2

te,s 20 °C

tm 50 °C

k

Qk,nom W

Qk,peak W

GAQ kpeakk 0, 

0,63 0,60

2273 1441

2700 1560
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Solar collector / applications
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unglazed flat/plate selective

single vacuum tube Sydney vacuum tube

pools hot water & space heating

process heat high temperature 

industrial applications 
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Solar collectors in the World
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Solar collectors installed (valid for 2015)



74/69

Solar collectors installed (valid for 2015)

world

Europe
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Solar collectors installed (valid for 2015)
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Solar collectors installed (valid for 2015)

per 1000 inhabitants
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Solar collectors new installations (2015)


