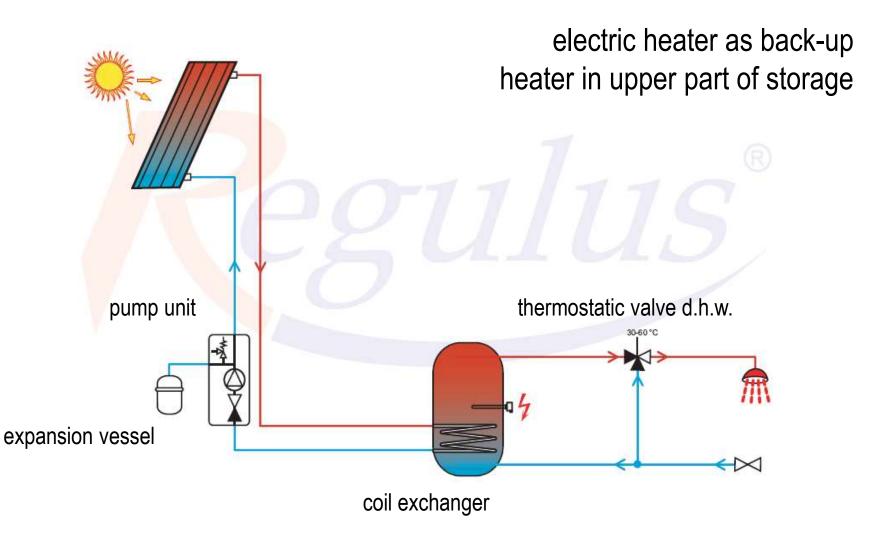


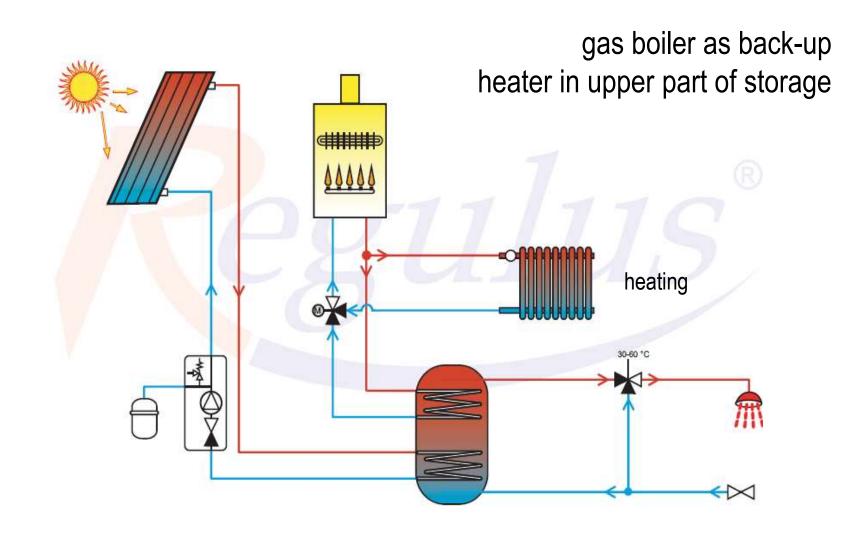

Solar systems

- solar system layouts
- heat demand
- collector area calculation

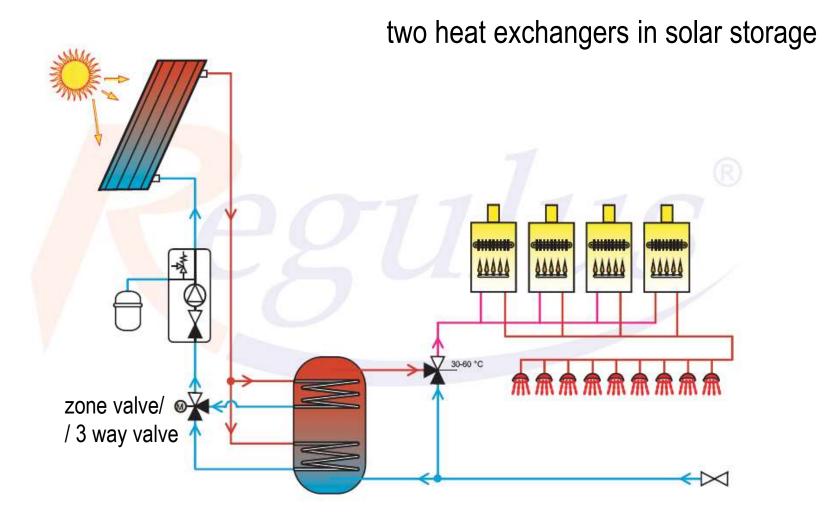


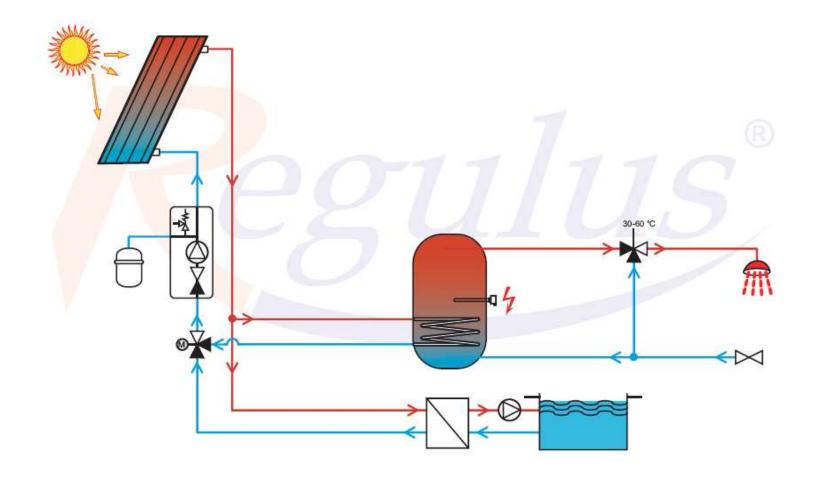
Solar systems - applications

- swimming pools (up to 35 °C)
- hot water systems (up to 70 °C)
- combined systems for hot water and space heating (up to 80 °C)
- district heating
- solar cooling and air-conditioning (up to 150 °C)
- industrial applications, process heat (up to 250 °C)
- solar thermal power plants (300 to 600 °C)
- air heating systems (drying, ventilation)



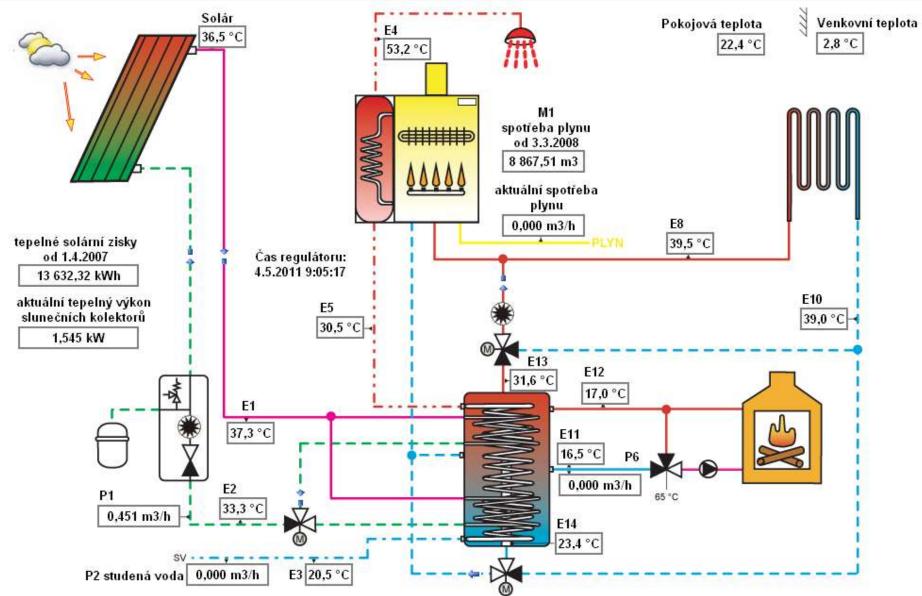
Solar hot water system with el. heater


Solar hot water system with gas boiler


Solar hot water preheating system

5/60

Solar hot water and swimming pool system



Solar multisource (multivalent) system

Solar multivalent system


Calculations

design of collector area

- daily heat demand in reference month
- daily system yield for 1 m² of collector in reference month
- determination of collector area

evaluation of annual yields

- monthly demands
- monthly system energy yields for given collector area
- balance, usability of yields
- real energy yields



Solar systems design

- heat demand reduction do the saving measures first !
- hot water
 - saving taps, insulation of hot water distribution system (pipes), control of water circulation by time, temperature

space heating

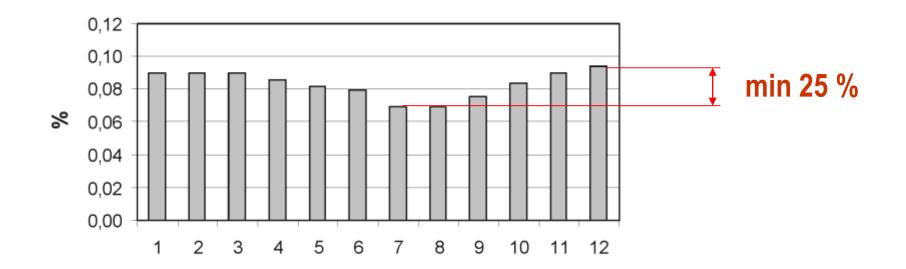
- low energy houses, passive houses (insulation, windows, ventilation heat recovery)
- Iow temperature space heating systems

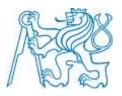
Solar systems design

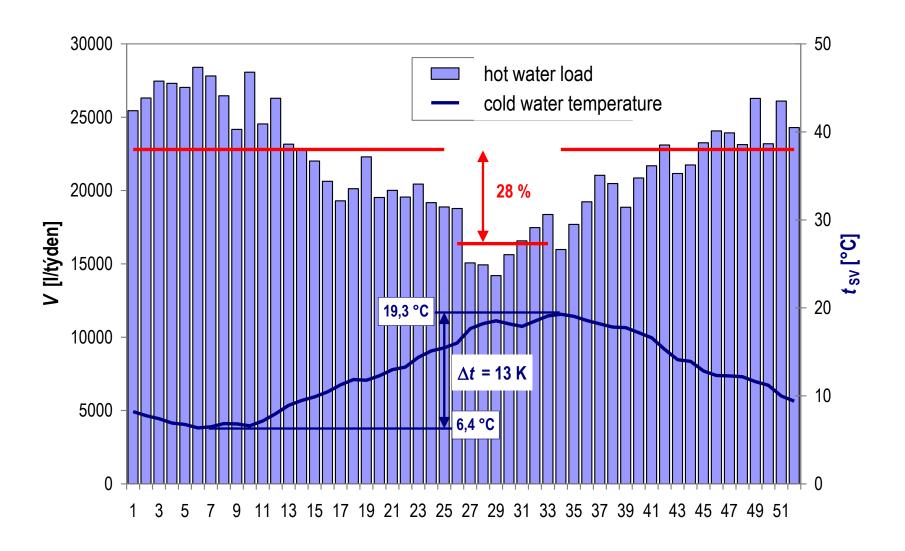
- analyse the REAL heat demand (!)
- hot water
 - long-term measurement, short-term measurements, hot water loads at required temperatures
 - reference figures: usual HW demand 40 I/person.day (60 °C)


space heating

- EN ISO 13 790 simple but detailed calculation
- degree-day method simple but sufficient for solar system design or evaluation


residential (60 / 15 °C)		
low standard	10 to 20 I/person.day	
usual standard	20 to 40 l/person.day	
high standard	40 to 80 l/person.day	


further data can be found e.g. in EN 15316-3-1, VDI 2067-4


Annual profile of hot water load

- summer decrease (residential sector)
 - vacations
 - higher cold water temperature
 - user behaviour (summer shower, winter bath)

Measurement in block of flats 35 l/(per.day)

Daily hot water heat demand

$$Q_{HW} = \frac{V_{HW,day} \cdot \rho \cdot c \cdot (t_{HW} - t_{CW})}{3,6 \times 10^6}$$

kWh/day

$V_{HW,day}$	average daily hot water demand	[m³/day]
ρ	water density	998 kg/m ³
С	specific heat of water	4187 J/kg.K
t _{CW}	cold water temperature	15 °C
t _{HW}	hot water temperature	60 °C

$$Q_{p,HW} = Q_{HW} + Q_{loss,HW} = (1 + z) \cdot Q_{HW}$$

Hot water preparation	Z
Local flow heaters	0.00
Central storage heaters (no hot water circulation)	0.15
Central storage heaters with controlled circulation	0.30
Central storage heaters with circulation (no control)	1.00
District heating, large distribution systems	> 2.00

Example 1 – hot water demand

daily demand

- 4 person x 40 l/person.day = 160 l/day
- hot water 60 °C, cold water 15 °C
- preparation in hot water tank with volume 200 I
- specific heat loss UA = 1.3 W/K (parameter of storage tank)

calculate

total hot water preparation demand

Example 1

$$Q_{HW} = \frac{V_{HW,day} \cdot \rho \cdot c \cdot (t_{HW} - t_{CW})}{3,6 \times 10^{6}}$$

$$Q_{HW} = \frac{0.16 \cdot 1000 \cdot 4187 \cdot (60 - 15)}{3,6 \times 10^{6}} = 8.4 \text{ kWh/day}$$

$$Q_{hoss,HW} = \frac{UA \cdot (t_{st} - t_{room}) \cdot 24}{1000} \quad \text{daily heat loss}$$

$$Q_{loss,HW} = \frac{1.3 \cdot (60 - 20) \cdot 24}{1000} = 1.25 \text{ kWh/day}$$

1000

Example 1

total heat demand for hot water

$$Q_{d,HW} = Q_{HW} + Q_{loss,HW} =$$
 9.65 kWh/day

fraction of heat loss

$$z = \frac{Q_{loss,HW}}{Q_{HW}} = \frac{1.25}{8.4} = 0.15$$

- EN ISO 13790 Energy performance of buildings Calculation of energy demand for heating and cooling
 - monthly balance
 - heat losses (transmission, ventilation)
 - solar heat gains
 - internal heat gains
 - usability of gains based on accumulation in internal construction (time constant calculation)



degree-day method – simplified approach (daily, monthly, seasonal)

$$Q_{SH} = 24 \cdot \varepsilon \cdot \dot{Q}_{N} \cdot \frac{\left(t_{i,avg} - t_{e,avg}\right)}{\left(t_{i,N} - t_{e,N}\right)}$$

kWh/day

- Q_N [kW] nominal (design) heat loss
- $t_{i,N}$ [°C] design indoor temperature
- $t_{e,N}$ [°C] design outdoor temperature
- $t_{i,avg}$ [°C] daily average indoor temperature
- $t_{e,avg}$ [°C] daily average outdoor temperature
- ε [-] correction factor

correction factor for degree day method

(reduction in the consumption of heat) Include:

- effects of regulation - discontinuous heating - solar heat gains - internal heat gains

Building energy performance	
usual standard legislation requirement	0.75
<i>low-energy standard</i> advanced constructions, ventilation with heat recovery	0.60
<i>passive standard</i> passive house constructions, ventilation with efficient heat recovery	0.50

Example 2 – space heating demand

design parameters

- building design heat loss
- design outdoor temperature
- design indoor temperature

t_{e,N} = -12 °C t_{i,N} = 20 °C

5 kW

calculate

- daily space heating demand for April
- $t_{i,avg} = 20 \ ^{\circ}C$
- t_{e,avg} = 8,8 °C
- correction factor ε = 0.6

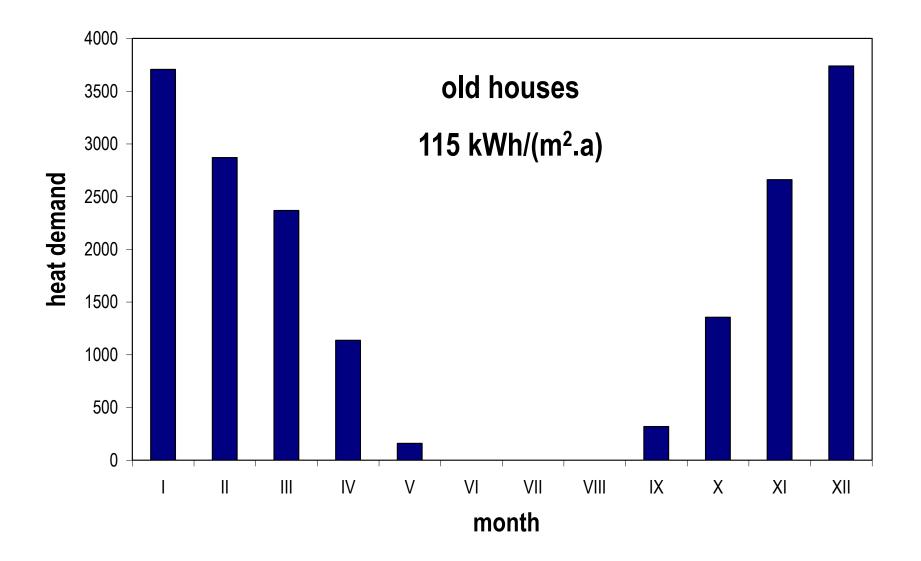
Example 2 – daily heat demand

$$egin{aligned} \mathsf{Q}_{\mathsf{SH}} = & 24 \cdot arepsilon \cdot \dot{\mathsf{Q}}_{\mathsf{N}} \cdot rac{ig(t_{i, \mathsf{avg}} - t_{e, \mathsf{avg}}ig)}{ig(t_{i, \mathsf{N}} - t_{e, \mathsf{N}}ig)} \end{aligned}$$

$$Q_{SH} = 24 \cdot 0.6 \cdot 5 \cdot \frac{(20 - 8.8)}{(20 - (-12))} = 25.2 \text{ kW}$$

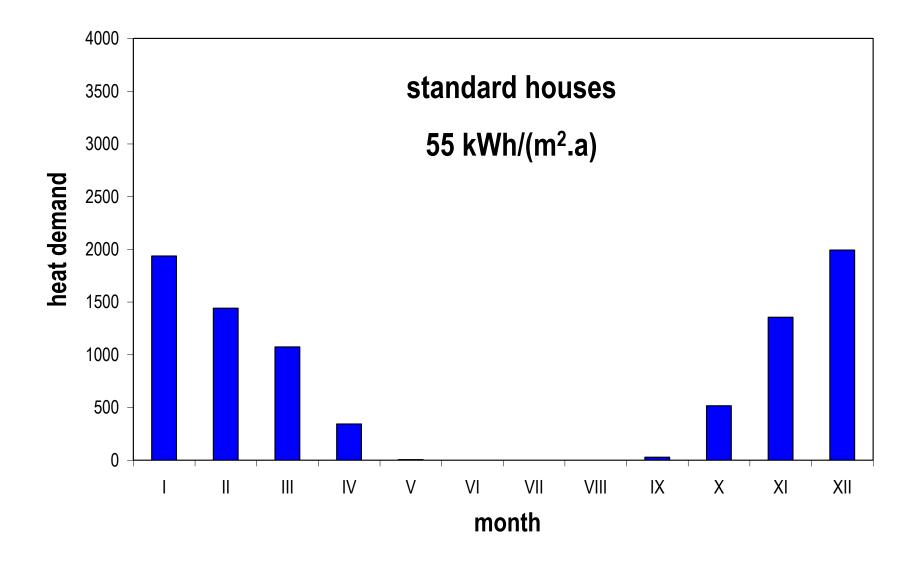
Example 2 – heating season demand

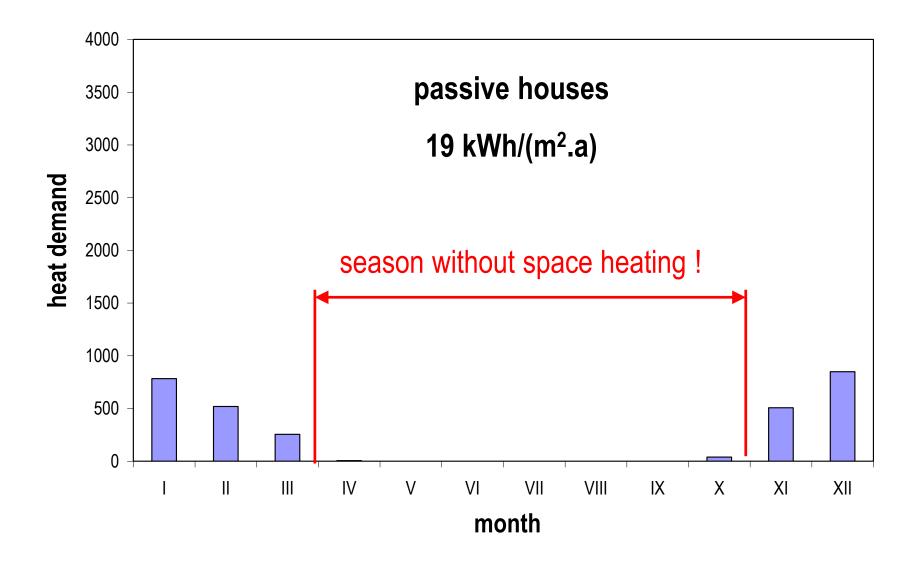
$$Q_{SH} = 24 \cdot \varepsilon \cdot \dot{Q}_{N} \cdot \frac{\left(t_{i,avg} - t_{e,avg}\right)}{\left(t_{i,N} - t_{e,N}\right)} \cdot d$$


number of days in heating season: *d* = 225 days

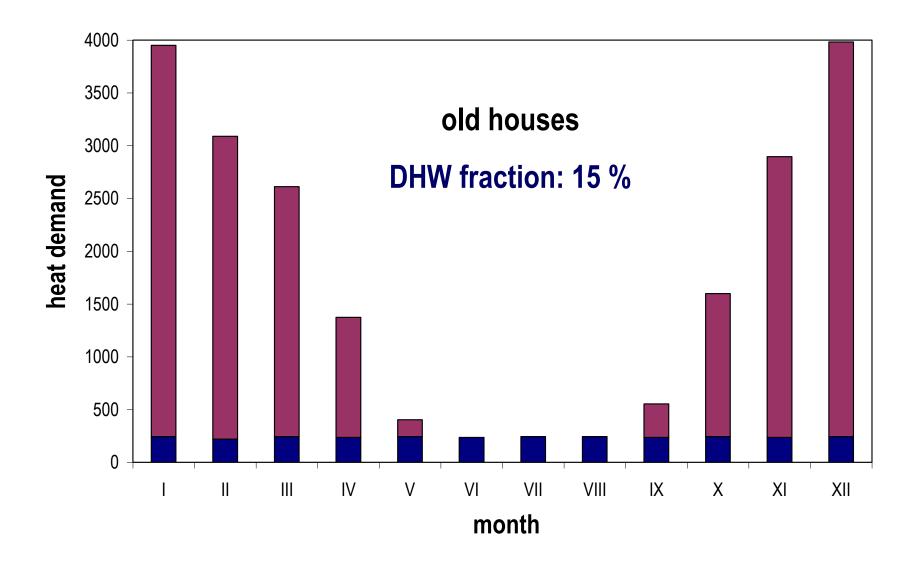
average temperature: $t_{e,avg} = 4.3 \text{ °C}$

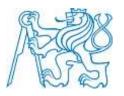
$$Q_{SH} = 24 \cdot 0.6 \cdot 5 \cdot \frac{(20 - 4.3)}{(20 - (-12))} \cdot 225 = 7948 \text{ kWh/season}$$

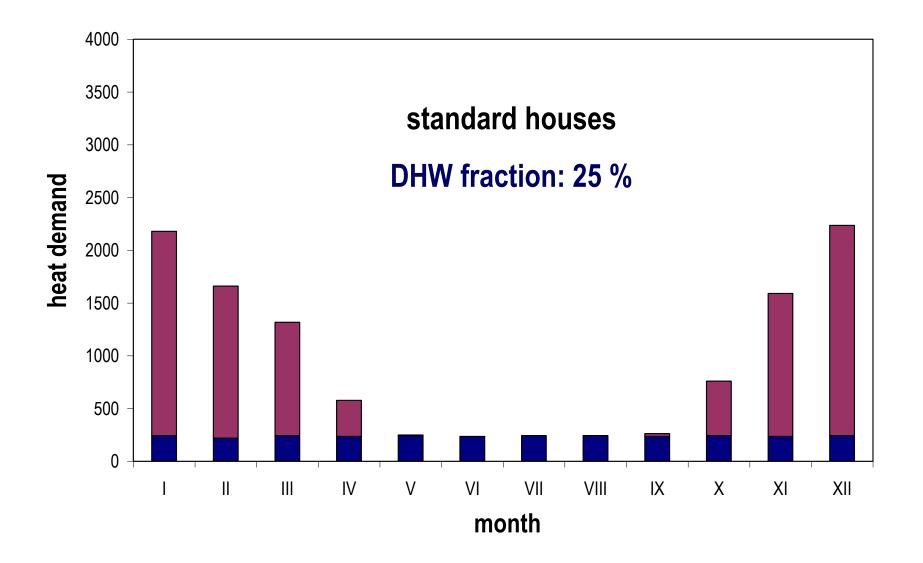

Space heating heat demand


26/60

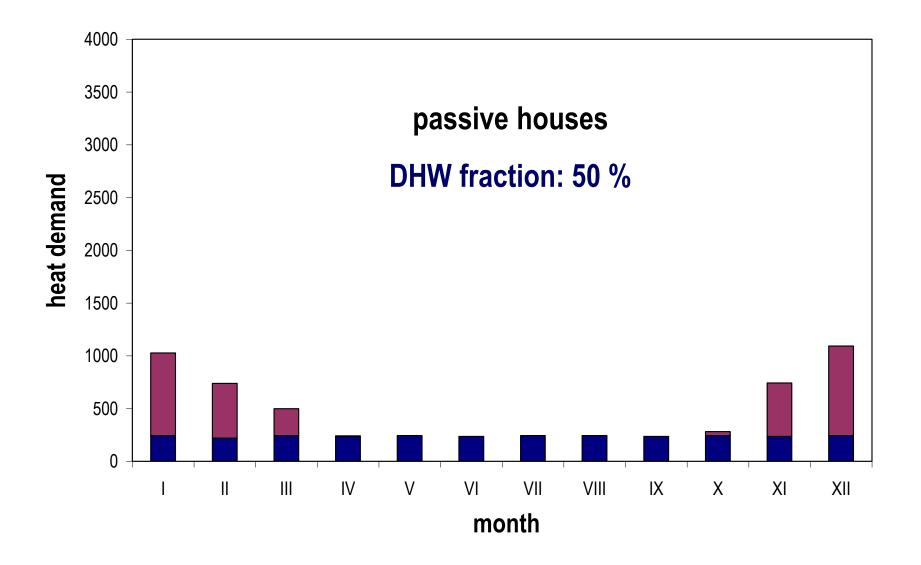
Space heating heat demand







Total heat demand



Total heat demand

Total heat demand

usable heat gain Q_{k,u} [kWh/m²] of solar collectors in given period (day, month)

$$Q_{k,u} = 0,9, \eta_k \cdot H_{T,day} \cdot A_k \cdot (1-p)$$
 kWh/day

- efficiency of solar collector for given conditions η_k
- solar irradiation of given plane of solar collector $H_{T,day}$
 - climate data from tables
- heat loss of solar system
 - reduction factors *p*
 - according to type and size of the solar system, data from tables

Solar collector efficiency

average daily collector efficiency η_k

$$\eta_{\rm k} = \eta_0 - a_1 \cdot \frac{t_{\rm k,m} - t_{\rm e,s}}{G_{\rm T,m}} - a_2 \cdot \frac{(t_{\rm k,m} - t_{\rm e,s})^2}{G_{\rm T,m}}$$

- mean fluid temperature $t_{k,m}$ in collector during the day
 - according to type and size of solar system
- for mean ambient temperature in time of sunshine t_{e,s}
 - climate data from tables
- mean daily solar irradiance $G_{T,m}$ for given plane (slope, orientation)
 - climate data from tables

34/60

Solar collector efficiency

• mean daily fluid temperature in collector $t_{k,m}$

Application	<i>t</i> _{k,m} [°C]
Water preheating, solar fraction < 35 %	35
Hot water preparation, 35 % < solar fraction < 70 %	40
Hot water preparation, solar fraction > 70 %	50
Hot water and space heating, solar fraction < 25 %	50
Hot water and space heating, solar fraction > 25 %	60

Heat losses – relative figures

reduction factor

$$Q_{k,u} = 0,9 \cdot \eta_k \cdot H_{T,day} \cdot A_k \cdot (1-p)$$

Application	p
Hot water preparation, up to 10 m ²	0,20
Hot water preparation, from 10 to 50 m ²	0,10
Hot water preparation, from 50 to 200 m ²	0,05
Hot water preparation, above 200 m ²	0,03
Hot water and space heating, up to 10 m ²	0,30
Hot water and space heating, from 10 to 50 m ²	0,20
Hot water and space heating, from 50 to 200 m ²	0,10
Hot water and space heating, above 200 m ²	0,06



Determination of required collector area

Collector area design A_k

- for given design day in typical design month
 - climate and operation conditions
- to provide coverage of considered heat demand
 - according to application, local conditions

$$Q_{k,u} = 0,9 \cdot \eta_k \cdot H_{T,day} \left(A_k \right) \left(1 - p \right) = Q_p$$

Design months: hot water

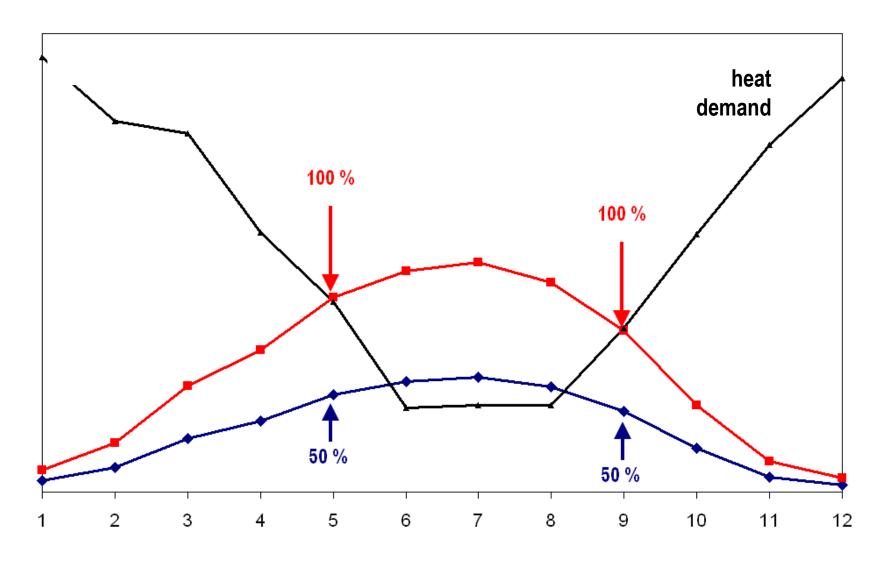
family houses

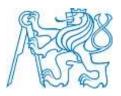

- April and September (100% design fraction = meet a needs in April)
- mean fluid temperature t_{k,m} = 40 °C
- coverage of 60 % annual hot water heat demand

block of flats

- July (100% design fraction)
- mean fluid temperature t_{k,m} = 40 °C
- coverage of 40 50 % annual hot water heat demand

Design months: hot water




Combined HW and SH systems

- hot water and space heating
 - May and September
 - mean fluid temperature t_{k,m} = 50 °C
 - consider meaningful use of summer excess heat gains
 - consider solar fraction in spring and autumn (100 % ?)

Combined systems

Influence on components design

- flowrate in solar system
 - pipe dimensions
 - insulation thickness

hydraulic losses, hydraulic concept

- system circulation pump
- volume of solar system
 - size of expansion vessel
- supporting structure
- heat exchanger size, safety valve

collector area influences the size of other system components

Example 3 – solar DHW for family house

Example 3 – solar DHW system

daily demand

- 4 person x 35 l/person.day = 140 l/day
- hot water 60 °C, cold water 15 °C
- hot water tank, z = 0.15
- small system up to 10 m², *p* = 0.20

calculate

- total heat demand for hot water preparation
- determine solar collector area for solar DHW preparation system

Example 3 – heat demand

$$Q_{d,HW} = \frac{(1+z) \cdot V_{HW,day} \cdot \rho \cdot c \cdot (t_{HW} - t_{CW})}{3,6 \times 10^6}$$
$$Q_{d,HW} = \frac{(1+0.15) \cdot 0.14 \cdot 1000 \cdot 4187 \cdot (60 - 15)}{3,6 \times 10^6} = 8.4 \text{ kWh/day}$$

Example 3 – solar collector

solar collector: flat-plate

- $\eta_0 = 0.78$
- $a_1 = 3.5 \text{ W/m}^2\text{K}$
- a₂ = 0.015 W/m²K²
- A_{k1} = 2.0 m² (aperture)

Example 3 – balance

- design for family house = design for April (September)
- daily balance

$$Q_{k,u} = 0.9 \cdot \eta_k \cdot H_{T,day} \cdot A_k \cdot (1-p) = Q_{d,HW}$$

$$0.9 \eta_k H_{T,day} A_k \cdot (1-0.2) = Q_{d,HW}$$

Example 3 – solar irradiation

- daily total solar irradiation for April (September), Prague
- slope 45°, south
- theoretical $H_{T,day,th} = 7.16 (6.42) \text{ kWh/m}^2.day$
- diffuse $H_{T,day,dif} = 1.34 (1.16) \text{ kWh/m}^2.day$
- relative period of sunshine $\tau_r = 0.45 (0.53)$

$$H_{\text{T,day}} = H_{\text{T,day,th}} \cdot \tau_{\text{r}} + H_{\text{T,day,dif}} (1 - \tau_{r}) = 3.96 (3.95) \text{ kWh/m}^2.\text{day}$$

Example 3 – collector efficiency

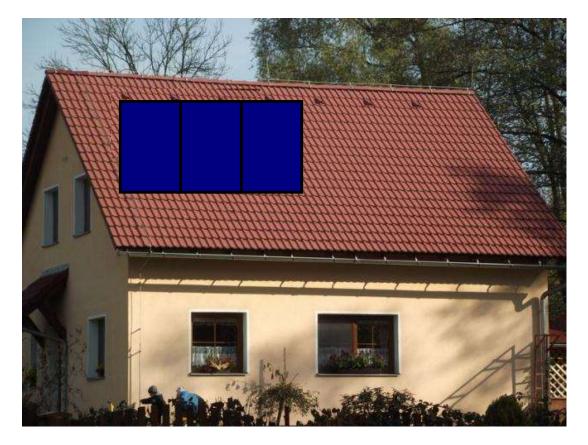
- average daily solar collector efficiency
- fluid temperature
 t_{k,m} = 40 °C
- ambient temperature in period of sunshine t_{e,s} = 12.1 (19.4) °C
- mean daily irradiance $G_{T,m} = 527 (516) W/m^2$

$$\eta_{\rm k} = \eta_0 - a_1 \cdot \frac{t_{\rm k,m} - t_{\rm e,s}}{G_{\rm T,m}} - a_2 \cdot \frac{(t_{\rm k,m} - t_{\rm e,s})^2}{G_{\rm T,m}} = 0.57 \ (0.63)$$

Example 4 – collector area

required solar collector area

$$A_{k} = \frac{Q_{d,HW}}{0,9 \cdot \eta_{k} \cdot H_{T,day} \cdot (1-p)}$$


$$A_{\rm k} = \frac{8.4}{0.9 \cdot 0.57 \cdot 3.96 \cdot (1 - 0.2)} = 5.2 \,{\rm m}^2$$

$$A_{\rm k} = \frac{8.4}{0.9 \cdot 0.63 \cdot 3.95 \cdot (1 - 0.2)} = (4.7 \,{\rm m}^2)$$

number of collectors = ? $2 \text{ pcs} (=4 \text{ m}^2) \text{ or } 3 \text{ pcs} (=6 \text{ m}^2)$?

Example 3 – solar DHW for family house

next lecture !

Example 4 – solar combisystem

hot water daily demand (same as previous example)

- 4 person x 35 l/person.day = 140 l/day
- hot water 60 °C, cold water 15 °C
- heat loss factor z = 15 %

space heating

- nominal heat loss 4 kW (design indoor 20 °C, design outdoor -12 °C)
- share of heating system losses v = 5 %

Daily heat demand for hot water

$$Q_{d,HW} = \frac{(1+z) \cdot V_{HW,day} \cdot \rho \cdot c \cdot (t_{HW} - t_{CW})}{3,6 \times 10^6}$$
$$Q_{d,HW} = \frac{(1+0.15) \cdot 0.14 \cdot 1000 \cdot 4187 \cdot (60 - 15)}{3,6 \times 10^6} = 8.4 \text{ kWh/day}$$

Daily heat demand for space heating

May:

$$t_{e,avg} = 13.6 \ ^{\circ}C$$
 $\mathcal{E} = 0.6$

 September:
 $t_{e,avg} = 14.9 \ ^{\circ}C$
 $t_i = 20 \ ^{\circ}C$

$$Q_{d,SH} = 24 \cdot \varepsilon \cdot \dot{Q}_{N} \cdot \frac{\left(t_{i,avg} - t_{e,avg}\right)}{\left(t_{i,N} - t_{e,N}\right)} \left(1 + v\right)$$

$$Q_{d,SH} = 24 \cdot 0.6 \cdot 4 \cdot \frac{(20 - 13.6)}{(20 - (-12))} (1 + 0.05) = 12.1 \text{ kWh/day}$$

$$Q_{d,SH} = 24 \cdot 0.6 \cdot 4 \cdot \frac{(20 - 14.9)}{(20 - (-12))} (1 + 0.05) = 9.6 \text{ kWh/day}$$

Total heat demand

Мау

$$Q_{d,HW+SH} = Q_{d,HW} + Q_{d,SH} = 8.4 + 12.1 = 20.5 \text{ kWh/day}$$

September

$$Q_{d,HW+SH} = Q_{d,HW} + Q_{d,SH} = 8.4 + 9.6 = 18.1 \text{ kWh/day}$$

Example 4 – solar collector

solar collector: flat-plate

- $\eta_0 = 0.78$
- $a_1 = 3.5 \text{ W/m}^2\text{K}$
- a₂ = 0.015 W/m²K²
- A_{k1} = 2.0 m² (aperture)

Example 4 – solar irradiation

- daily total solar irradiation for May (September), Prague
- slope 45°, south
- theoretical $H_{T,day,th} = 7.94 (6.42) \text{ kWh/m}^2.day$
- diffuse $H_{T,day,dif} = 1.62 (1.16) \text{ kWh/m}^2.day$
- relative period of sunshine $\tau_r = 0.51 (0.53)$

$$H_{\text{T,day}} = H_{\text{T,day,th}} \cdot \tau_r + H_{\text{T,day,dif}} (1 - \tau_r) = 4.84 (3.95) \text{ kWh/m}^2.\text{day}$$

Example 4 – collector efficiency

- average daily solar collector efficiency
- fluid temperature
 t_{k,m} = 50 °C
- ambient temperature in period of sunshine t_{e,s} = 16.6 (19.4) °C
- mean daily irradiance G_{T,m} = 521 (516) W/m²

$$\eta_{\rm k} = \eta_0 - a_1 \cdot \frac{t_{\rm k,m} - t_{\rm e,s}}{G_{\rm T,m}} - a_2 \cdot \frac{(t_{\rm k,m} - t_{\rm e,s})^2}{G_{\rm T,m}} = 0.52 \ (0.55)$$

required solar collector area

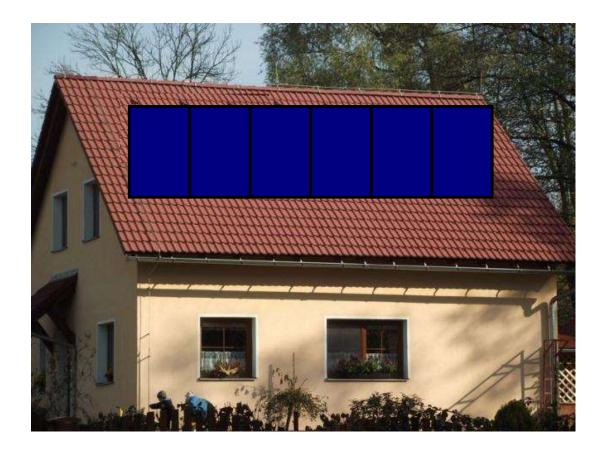
$$A_{k} = \frac{Q_{d,HW+SH}}{0,9 \cdot \eta_{k} \cdot H_{T,day} \cdot (1-p)}$$

$$p = 0,30 \text{ (for } A < 10 \text{ m}^{2}\text{)}$$

$$p = 0,20 \text{ (for } A > 10 \text{ m}^{2}\text{)}$$

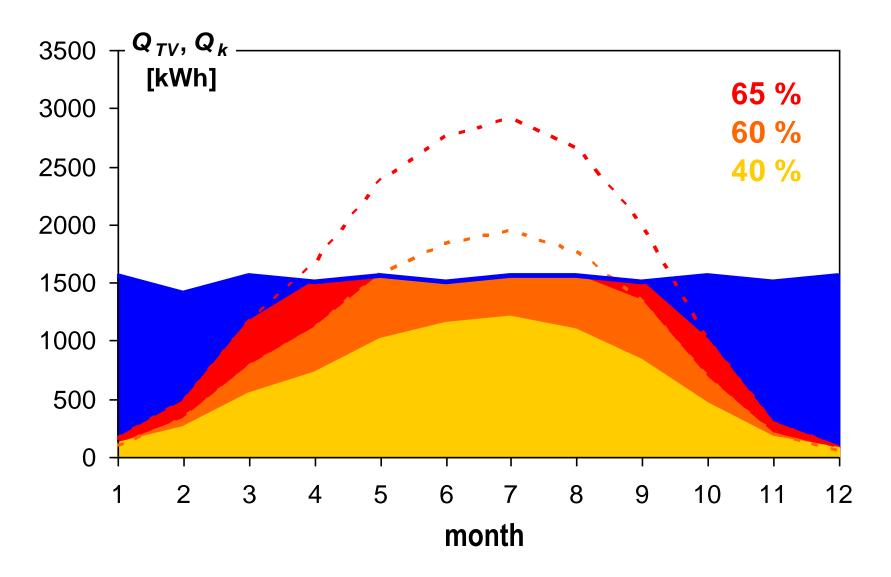
$$P = 0,20 \text{ (for } A > 10 \text{ m}^{2}\text{)}$$

$$A_{k} = \frac{20.5}{0.9 \cdot 0.52 \cdot 4.84 \cdot (1-0.2)} = 11.3 \text{ m}^{2}$$


11.5 m²

$$A_{\rm k} = \frac{18.1}{0.9 \cdot 0.55 \cdot 3.95 \cdot (1 - 0.2)} = 11.6 \,{\rm m}^2$$

number of collectors = ? 5 pcs (=10 m²) or 6 pcs (=12 m²)?


Example 4 – solar combisystem

next lecture !

Next lecture – annual performance

