

Analysis of Solar Flat-plate Collectors

Tomáš Matuška

Faculty of Mechanical Engineering University Centre of Energy Efficient Buildings Czech Technical University in Prague

Solar Thermal Collectors, 24.3.2015, Palma de Mallorca

Content of lectures today

- design tool KOLEKTOR for theoretical analysis of flat-plate collectors
 - introduction into software
 - downloading, installation, support files, ...
- theoretical modelling of collector heat output "step by step"
 - external energy balance of absorber
 - internal energy balance of absorber
- what influences annual energy yields of collector
- examples solved with use of KOLEKTOR and annual simulation in TRNSYS

Design Tool KOLEKTOR 2.2 for Virtual Prototyping of Solar Flat-plate Collectors

Tomáš Matuška, Vladimír Zmrhal

Faculty of Mechanical Engineering University Centre of Energy Efficient Buildings Czech Technical University in Prague

Solar Thermal Collectors, 24.3.2015, Palma de Mallorca

Background & Motivation

Lack of software for solar thermal collector modeling:

- detailed parameters of solar collector
- detailed calculation of heat transfer
- user friendly
- general use
- freely available
 CoDePro (Madison), TRNSYS Type 103 (CSTB)
- wide application range for FP collectors (evacuated, building integrated, transparent cover structures, HT fluids)
- versatile for different heat transfer models (convection, sky radiation)

Model inputs and outputs

Inputs:

- detailed parameters of individual parts of solar collector geometry, thermophysical parameters, optical parameters
- climatic conditions: ambient temperature, irradiation, wind velocity
- operation conditions: **input temperature** t_{in} , mass flowrate m, slope β

Outputs:

- efficiency curve η (based on aperture area A_a)
- output temperature from solar collector t_{out}
- detailed temperature distribution in collector, heat transfer coefficients

Principle of calculation

external balance of absorber

heat flow from absorber surface to ambient

temperature distribution at main collector levels (nodes **p**, **z**, **b**)

overall U-value of collector

internal balance of absorber
 heat flow from abs.surface to fluid
 heat removal factor *F_R* absorber temperature *t_{abs}* heat gain *Q_µ*

 $\dot{Q}_{\mu} = A_{a}F_{R}[\tau\alpha G - U(t_{in} - t_{a})]$

External balance of absorber

back side (U_z)

edge side (U_b)

- heat transfer coefficients calculation based on temperatures of main nodes
- iteration loop for temperature of nodes (starting values based on t_{abs}, U-value calculation, reverse calculation of temperature distribution)
- starting absorber temperature is estimated from **input temperature** ($t_{abs} = t_{in} + 10$ K)

Internal balance of absorber

- heat transfer by fin conduction, bond conduction and forced convection in pipes
- iteration loop for mean fluid temperature (starting values based on *t_{in}*, *F_R* calculation, reverse calculation of mean fluid temperature), absorber temperature calculation
- starting mean fluid temperature is estimated from input temperature ($t_m = t_{in} + 10$ K)

Calculation procedure

external and internal balance iteration loops (5 loops enough) superior iteration loop governing output / inputs

Design tool KOLEKTOR 2.2 (2009)

- model converted into program based on Visual Basic Studio
- concept of "cards" for data inputs
- selections in rolling windows
- default settings
- saving settings of parameters, loading settings
- installation pack 400 kB (zipped)
- installation for Win XP presume Microsoft.NET Framework installed
- new Windows include the Framework environment

Features and availability

- user-friendly software KOLEKTOR 2.2 is useful for analysis, design and prototyping
- several experimental validations have been performed based on commercial collectors testing
- software tool KOLEKTOR 2.2 is freely available at:

http://users.fs.cvut.cz/tomas.matuska/?page_id=194

- mathematical reference handbook as pdf
 - theoretical background of the tool
 - downloadable

Preparation for installation

12/150

do it now ...

- Iocal settings in Windows change to Great Britain settings
- e.g. windows 8 Control Panel Language
- change of datum, time or number format
- further settings using dot in decimal values

•	Oblast	1231	2 P	Viat	ani Sormat	
Formity Million Spritvice				tele mena čes betum		
Econait			2	Pikini		
Anglictina (Spojene koa	loistv0			Kladvé 121,436,795.02	Záposné -121,456,79	9.00
inplused greatening			ē			_
Formatty data a Casu			2	Desetivný oddělovač	1	14
Kratký formát data	4614945-mm	-		Packet desetion job mails	1	
Disubji formilt data:	old MMMMM reer	Ψ.	H.		*	-
Snithy formalt Case	Hitana		ъ.	Oddfloveć skupin čislic	P	
Douby format Casu	184 million		54	Seskupmaini ilistic	121,456,799	
Princiden tildner	Monday			Záporné znaménkoz		
C	(constant)			Formalt zápomého čísla:	-13	
Priklady				Zobrazovat úvodní tudy:	6.7	~
Kritiký formát data:	22/96/2015			Oddekovać septamu:	1.	
Doubý formát data:	22 March 2015			Jadrutlancj systèm:	Mesoy	
Krietký formát Ceruz	22:50				Part of the second s	
Disubý formát česz	22:50:53			Standardni öldice	0123456789	
	Qalki nestavani			Paudivat nativni čislice:	Nikity	. w
	OK Borns	Posts	0	Výchosí nastavení čísel, měny, česu na tlačíško Obnovit.	e date obrovite klikmutim	Obmovit
		installe	5		OK Stame	100

Download KOLEKTOR and install now ...

http://users.fs.cvut.cz/tomas.matuska/?page_id=194

- download kolektor22.zip
- unzip it Program files folder Kolektor will be created
- start setup.exe start installation process
- setup also opens the program

for Windows versions higher than XP you don't need
 Microsoft.NET Framework should be included in ...

Design tool KOLEKTOR 2.2 (2009)

Kolektor 2.2

14/150

Kolektor 2.2			_O×
le Calculation Help			
Design parameters Absorber Glazing and in	sulation Calcula	ation	1
Operation and climatic conditions			
Input fluid temperature	tin	50 °C	G
Specific fluid mass flow rate	m'	0.02 kg/s/m2	
Global solar irradiation	G	800 W/m2	t _a L _G d _p d _z
Ambient temperature	ta	20 °C	w + / L4 / / / / / / / / / / / / / / / / /
Ambient relative humidity	φa	50 %	
Wind velocity	w	4 m/s	z_1
Collector slope	β	45 deg	
Envelope thermal resistance	Rk	6 m2K∕₩	B
Collector dimensions			-Type of collector instalation
Gross height	Lg	2 m	C Separate
Gross width	Hg	1 ^m	Integrated into building envelope
Gross area	Ag	2 m2	Collector depth
Aperture height	La	2 m	Absorber-glazing gap thickness dp 20 mm
Aperture width	Ha	1 m	Absorber-frame gap thickness dz 20 mm
Aperture area	Aa	2 m2	Collector depth B 0.09 m
Envelope dimensions	2 ×	1 m	Edge sides area Ab 0.57 m2
VZTech			
			06/02/2008 11:06:55

Kolektor 2.2						<u>_ 0 ×</u>	I
ile Calculation Help	and insulation	Calculation					
•	, and insulation [calculation					
Absorber parameters							
Material	Copper	•	Solar absor	btance	ar aps	0.95	
Thermal conductivity	λ _{abs} 390	W/mK	Front surfa	ce emissivity	abs,p ع	0.05	
Thickness	d _{abs} 0.2	mm	Back surfa	ce emissivity	^ع abs,z	0.5	
Pipe register parameters							
Length of riser pipes	L	2	m	Collector mass flow rate	М'	0.04 kg/s	
Number of riser pipes	r	ntp 10	pcs	Pipe mass flow rate	M1'	0.004 kg/s	
Distance between riser pipes (fin	١	// 100	mm	Heat transfer fluid			
Pipe external diameter	C	De 10	mm	Fluid type vVater	•	Water	
Pipe internal diameter	C	Di <mark>8</mark>	mm	Mixing ratio	%	100 %	
Type of bond	Upp	er	-	Freezing temperature	t _f	0 °C	
Average bond width	a	3	mm				
Average bond thickness	E	3	mm	dabs A.A.		+ ^d +	
Bond thermal conductivity	λ	sp 300	W/mK		(
Bond thermal conductance	C	sp 300	W/mK	De		Di	
					w		
VZTech							
121001							
				(06/02/2008 1	1:06:55	

_	olektor 2.2 Calculation Help					<u>_</u> _×
	esign parameters Absorber Glazing and ir	nsulation Calculati	on			
	Glazing parameters					
	Material Thickness	Glass d _{gl} 4	mm	Thermal properties Thermal conductivity		
	Normal solar transmittance	_	.92 -	C Thermal resistance		
	Normal solar reflectance Diffuse solar reflectance External surface emissivity	o □ b9		Thermal conductivity (polynomic) $\lambda = \lambda_0 + \lambda_1 t + \lambda_2 t^2$	λ λ 1	0.8 W/mK 0 W/mK ²
	Internal surface emissivity		.85 -		λ2	0 W/mK ³
Γ	Frame / insulation parameters			-Gas filling of collector in	iterior ——	
	Material	Polyuret	hane 💌	Type of gas		Air 💌
	Thickness	d fr 5	0 mm	Gas pressure		100 kPa
	Thermal conductivity	λfr 0.	035 W/mK	Optical efficiency of col	lector	
	Thermal resistance	B _{fr} 1	43 m2K/W	Effective tox product	t	0.874
	External frame surface emissivity	ε f,z1 0.	5 -			
	Internal frame surface emissivity	६ f,z2 0.	5 -			
	VZTech					
			06/02/200	08 11:06:55		

File Calculation Help	
Design parameters Absorber Glazing and insulation Calculation	
GLAZING ABSORBER FRAME / INSULATION	
but = 393.1 °C	
ta tp1 tp2 total 355.1 C tz2 tz1 ta 20 °C 88.81 °C 97.94 °C F' = 0.914 368.3 °C 368.3 °C 30.56 °C 20 °	
$F_{R} = 0.887$	
Radiation p1 - a Radiation abs - p2 Radiation abs - z2 Radiation z1 - a	
hs <u>6.848</u> W/m2K hs <u>6.848</u> W/m2K hs <u>6.848</u> W/m2K	
tabs = 378.6 °C tm = 401.0 °C	
Convection p1 - a - 1 / / Convection abs - p2 - Convection abs - z2 - Convection z1 - a -	
Convection p1 - a Convection abs - p2 Convection abs - z2 Convection abs - z2 Convection z1 - a McAdams	
hp 19.7 W/m2K hp 4.892 W/m2K hp 2.655 W/m2K hp 19.7 W/m2K	
for all w	
p1 p2 tin = 409 °C z1 z2 tstg = 211 °C	
Forced convection in pipes	
Laminar Shah	
Turbulent Colburn	
hi (Laminar) 517 W/m2K Calculate	
VZTech	
06/02/2008 11:06:55	

Default example – usual collector

download as default.kol
 File – Open – default.kol

http://users.fs.cvut.cz/tomas.matuska/?page_id=194 as zip file

- main default collector parameters
 - solar glazing , transmittance 91 %
 - standard flat-plate collector with selective coating: $\varepsilon = 5 \%$ $\alpha = 95 \%$
 - cooper absorber 0.2 mm, risers 10/8 mm, distance 112 mm
 - absorber glazing gap 20 mm, absorber insulation gap 5 mm
 - insulation thickness 30 mm, mineral wool
 - slope of collector 45°

Calculation possibilities in collector

- calculation for given t_{in}
- analysis of heat transfer at individual parts of collector

• you can play with models ... and see the impact

Calculation possibilities in collector

efficiency curve calculation

run calculation

- range if t_{in} from 10 °C to 400 °C to cover also high-temperature collectors
- results can be saved to file = text file, columns separated by semicolon;
- get the efficiency coefficients η_0 , a_1 , a_2 by use of evaluation.xls <u>http://users.fs.cvut.cz/tomas.matuska/?page_id=194</u>
- important set the dots for decimals also in Excel settings

Solar DHW simulation in TRNSYS

- download example SDHW simple solar system, modified for this Solnet course
- climate data Wurzburg (in data folder)
- daily load 200 I, cold water 10 °C, hot water 55 °C
- collector area 4 m², storage tank 200 l, no pipes ... simplified
- annual energy yields for changed construction of collector

50 %

- reference case:
 - annual yields of collector
 1887 kWh/a
 - solar fraction

Analysis of Solar Flat-plate Collectors – part 1

Tomáš Matuška

Faculty of Mechanical Engineering University Centre of Energy Efficient Buildings Czech Technical University in Prague

Solar Thermal Collectors, 24.3.2015, Palma de Mallorca

Content

- how to calculate thermal output of solar collector on theoretical basis
 - from detailed data on construction
 - at given operation conditions
 - with use of different alternative models of heat transfer phenomena
- to predict the influence of
 - change in construction of the collector
 - operation conditions
- on efficiency curve
- on annual energy yields of the collector

Solar thermal flat-plate collector

Solar collector energy balance

Solar collector energy balance

External energy balance of absorber

- heat flow from absorber surface to ambient environment
- heat losses of the collector
- quality of solar collector envelope

Internal energy balance of absorber

- heat flow from absorber surface into heat transfer fluid
- ability to transfer heat and remove it from collector
- quality of absorber construction

$$\frac{dQ}{dt} = \dot{Q}_{s} - \dot{Q}_{l,o} - \dot{Q}_{l,t} - \dot{Q}_{u}$$
 general description

steady state dQ/dt = 0
$$\dot{Q}_{u} = \dot{Q}_{s} - \dot{Q}_{l,o} - \dot{Q}_{l,t}$$

Q _s	solar energy input [W]	$Q_{\rm s} = G.A_{\rm c}$
Q _{I,o}	optical losses [W]	$Q_{\rm l,o}$ = $Q_{\rm s}$ - $Q_{\rm s}(\tau\alpha)_{\rm ef}$
$Q_{I,t}$	thermal losses [W]	$Q_{\rm l,t} = U.A_{\rm c} (t_{\rm abs} - t_{\rm a})$
Q _u	useful heat removed from collector [W]	$Q = Mc(t_{out} - t_{in})$

External energy balance: efficiency

useful heat output:

$$\dot{Q}_{u} = GA_{c}(\tau \alpha)_{ef} - UA_{c}(t_{abs} - t_{a})$$

efficiency:

$$\eta = \frac{\dot{\mathsf{Q}}_{u}}{\dot{\mathsf{Q}}_{s}} = \frac{\dot{\mathsf{Q}}_{u}}{GA_{c}} = \frac{GA_{c}(\tau\alpha)_{ef} - UA_{c}(t_{abs} - t_{a})}{GA_{c}}$$

$$\eta = (\tau \alpha)_{\rm ef} - U \underbrace{(t_{\rm abs} - t_{\rm a})}_{G}$$

Efficiency formulas

$$\eta = (\tau \alpha)_{\text{ef}} - U \overset{(t_{\text{abs}} - t_{a})}{G}$$

$$\eta = F'\left[(\tau\alpha)_{\rm ef} - U \underbrace{(t_{\rm m} + t_{\rm a})}_{G}\right]$$

external balance, losses

+ internal balance influence of absorber design European standards

$$\eta = F_R \left[(\tau \alpha)_{\text{ef}} - U \underbrace{(t_{\text{in}} - t_{a})}_{G} \right]$$

+ influence of flowrate, specific heat of fluid US standards

Solar collector efficiency (based on t_{abs})

Reference area for calculations

gross area: A_G edge side area: A_b $(2H_G + 2L_G).B$ aperture area: A_a

maximum area = H_{G} . L_{G} area of glazing = H_a . L_a

Reference area - comparison

Collector testing standards relates collector efficiency to:

• aperture area A_a

EN 12975-2

- absorber area A_A
- gross area A_G EN ISO 9806

- aperture area: for comparison of collector properties or **design**
- gross area:

for decision on roof production **potential** for comparison of collector with different **active** areas

Reference area - comparison

External energy balance: detailed

$$\dot{Q}_{u} = GA_{a}(\tau\alpha)_{ef} - U_{p}A_{G}(t_{abs} - t_{a}) - U_{z}A_{G}(t_{abs} - t_{a}) - U_{b}A_{b}(t_{abs} - t_{a})$$

I [

Scheme of external balance

36/150

Wind convection

- Wind induced convection heat transfer from cover to ambient:
 - mix of natural and forced covection
 - turbulent environment
 - very dependent on location, terrain morphology, barriers, etc.
- Number of models existing for number of boundary conditions
 - wind tunnel measurements (low turbulence)
 - outdoor experiments (on roof, on ground, urban, countryside)
- Most of wind convection models
 - empirical linear function $h_w = a + bw$

Wind convection

- how can the model influence calculated output temperature?
- run KOLEKTOR programme
- open default.kol
- Design parameters wind velocity w = 3 m/s
- Calculation card select Calculation for given t_{in}

select McAdams ... Calculate

select Watmuff ... Calculate

McAdam's correlation $h_w = 16.1 \text{ W/m}^2\text{K}$ $t_{out} = 55.6 \text{ °C}$ Watmuff correlation $h_w = 11.3 \text{ W/m}^2\text{K}$ $t_{out} = 55.7 \text{ °C}$

- how can the model selection influence the efficiency curve?
- Calculation card select Efficiency curve calculation
- select McAdams Calculate, Results export to file
- select Watmuff
 Calculate, Results export to file

- open Evaluation.xls
- make copies of the sheets
- open res files in excel, mind the semicolons as separators
- compare the efficiency curves based on $(t_m t_e)/G$

Wind convection for *w* = 3 m/s

- how can the model selection influence the annual energy yields?
 - McAdams $\eta_0 = 0.789$ $a_1 = 4.857$ $a_2 = 0.006$
 - Watmuff $\eta_0 = 0.791$ $a_1 = 4.664$ $a_2 = 0.006$

- open studio SDHW-SOLNET in TRNSYS
- make a change of coefficients in KOLEKTOR type
- results of collector yield find under Totals.txt

compare the annual sums for both alternatives

Wind convection for *w* = 3 m/s

- selection of the wind convection models
- minor influence even if two models with largest difference selected
 - valid for usual quality flat-plate collectors (as our reference is)
- negligible difference for high quality flat-plate collectors

- very critical for unglazed collectors modelling
- less critical for PV modules modelling
 - reduced influence on electric yields via temperature coefficients

High wind velocity as test condition

testing standard: air velocity during the testing procedure *w* > 3 m/s use of artifical wind needed!

Sky radiation

Sky radiation heat transfer coefficient related to ambient temperature

$$h_{\rm s,p1-a} = \varepsilon_{\rm p1} \sigma \frac{T_{\rm p1}^4 - T_{\rm o}^4}{T_{\rm p1} - T_{\rm a}}$$
 [W/m²K]

Sky temperature models

Number of models for sky temperature T_{o} calculation based on:

- dew point temperature T_{dp}
- water vapour pressure p_d
- sky clearness index K_o
- clear sky conditions
- cloudy sky conditions

for more see Reference handbook on web

Sky temperature models

Sky temperature calculation based on:

 $T_{\rm o} = T_{\rm a}$

$$e_{p1} = 0.85$$
, $t_{p1} = 40$ °C, $t_a = 20$ °C
 $h_{s,p1-a} = 5.38$ W/m²K

 $T_{\rm o} = 0.0552 (T_{\rm a})^{1.5}$

 $t_{\rm o}$ = 3.9 °C

 $e_{p1} = 0.10, t_{p1} = 40 \ ^{\circ}C, t_{a} = 20 \ ^{\circ}C$ $h_{s,p1-a} = 0.63 \ W/m^2K$ $h_{s,p1-a} = 1.06 \ W/m^2K$

considerable decrease of heat transfer coefficient if low-e coating does it mean also improvement of collector performance?

heat transfer from glazing exterior surface: proportions

 $q = q_s$ (sky radiation) + q_p (wind convection)

W	h _s	h _p	$h_{\rm s}$ + $h_{\rm p}$
[m/s]	[W/m ² K]	[W/m ² K]	[W/m ² K]
0	5.1 / 0.6	5.3	10.4 / 5.9
2	5.0 / 0.6	12.5	17.5 / 13.1
4	5.0 / 0.6	19.7	24.7 / 20.3
6	5.0 / 0.6	26.2	31.2 / 26.8

convection heat transfer is dominant (if wind is present ...)

Influence of sky radiation reduction

Influence of sky radiation reduction

Conduction through cover glazing

heat conductance

$$h_{\rm gl} = h_{\rm v,p1-p2} = \frac{\lambda_{\rm gl}}{L_{\rm gl}} \qquad [W/m^2K]$$

single glazing: glass:
$$\lambda_{gl} = 0.8$$
 W/mK, $L_{gl} = 4$ mm
 $h_{gl} = 200$ W/m²K

PC:
$$\lambda_{gl} = 0.2 \text{ W/mK}, L_{gl} = 4 \text{ mm}$$

 $h_{gl} = 50 \text{ W/m}^2\text{K}$

practicaly negligible

Conduction through cover glazing

transparent insulation structures

- channel structures:
- honeycombs:
- aerogels:

 h_{gl} = 2 to 8 W/m²K h_{gl} = 1 to 2 W/m²K

 $h_{\rm gl}$ = less than 1 W/m²K

function of mean temperature

Conduction through cover glazing

Radiation between absorber and cover

Radiation heat exchange

$$q_{\rm s,abs-p2} = \sigma \frac{T_{\rm abs}^4 - T_{\rm p2}^4}{\frac{1}{\varepsilon_{\rm p2}} + \frac{1}{\varepsilon_{\rm abs,p}} - 1} \qquad [W/m^2]$$

Radiation between absorber and cover

influence of absorber emissivity

t _{abs}	40 °C			
t _{p2}	20 °C			
$\mathcal{E}_{abs,p}$	0.85	0.10	0.05	
\mathcal{E}_{p2}	0.85	0.85	0.85	
h _{s,p1-a}	4.7 W/m ² K	0.6 W/m²K	0.3 W/m ² K	

- how can the absorber emissivity influence the thermal performance of the solar collector?
- influence on efficiency curve
- influence on the yields

are low-emittance coating for absorbers needed?

compare
$$\varepsilon_{abs} = 0.85$$
 $\varepsilon_{abs} = 0.10$ $\varepsilon_{abs} = 0.05$

- run KOLEKTOR programme, open default.kol
- Absorber card change Front surface emissivity
- Calculation card select Efficiency curve calculation

Calculate, Export results

- open Evaluation.xls
- make copies of the sheets for three alternatives
- open res files in excel, mind the semicolons as separators
- compare the efficiency curves based on $(t_m t_e)/G$

59/150

- how can the absorber emissivity influence the annual energy yields of collector?
 - $\varepsilon_{abs} = 0.05$ $\eta_0 = 0.789$ $a_1 = 4.857$ $a_2 = 0.006$
 - $\mathcal{E}_{abs} = 0.10$ $\eta_0 = 0.785$ $a_1 = 5.006$ $a_2 = 0.008$
 - $\mathcal{E}_{abs} = 0.85$ $\eta_0 = 0.744$ $a_1 = 6.773$ $a_2 = 0.020$
- open studio SDHW-SOLNET in TRNSYS
- make a change of coefficients in KOLEKTOR type
- results of collector yield find under Totals.txt
- compare the annual sums for both alternatives

- new cermet coatings with extremely low-emittance are about 1.5 % better than old-fashioned galvanic coatings
- there could be no fear about nonuniformity of coating emittance at the whole absorber area
 - it does not matter for annual effectivity
 - facts above valid for **domestic hot water systems**
- significant difference for high emittance coatings
- very critical for high temperature operation much higher impact on the annual yields

coupled convection and conduction heat transfer in closed gas layer

$$h_{p+v} = Nu_L \frac{\lambda_g}{L}$$
 [W/m²K]

<u>Characteristic dimension:</u> thickness of gas layer *L*

Nusselt number:

characterization of conduction heat transfer $\rightarrow \lambda_g/L$ enhancement by fluid convection (driven by buoyancy) $\rightarrow Nu_L$ definition: ratio of the total heat transfer to conductive heat transfer

Convection in the air gap - criteria

Nusselt number: $Nu_L = f(Gr_L, Pr)$

Grashof number:
$$\operatorname{Gr}_{L} = \beta \frac{g L^{3} \Delta t}{v^{2}} = \frac{2}{(T_{h} + T_{c})} \cdot \frac{g L^{3} (t_{h} - t_{c})}{v^{2}}$$

ratio of the buoyancy to viscous force acting on a fluid

Prandtl number:
$$\Pr = \frac{v}{a} = \frac{v \rho c}{\lambda}$$

express conformity of velocity and temperature fields, ratio of momentum diffusivity (kinematic viscosity) to thermal diffusivity

Convection in the air gap - criteria

Rayleigh number: Ra = Gr · Pr =
$$\frac{\beta g L^3 (t_h - t_c)}{va}$$

ratio of buoyancy forces to thermal and momentum diffusivities of fluid

for standard conditions

400 < Gr < 60 000 0.72 < Pr < 0.73 300 < Ra < 44 000

Structure of the convection models

Hollands:
$$\operatorname{Nu}_{L} = 1 + 1.44 \left[1 - \frac{1708}{\operatorname{Ra}_{L} \cos \phi} \right]^{+} \left(1 - \frac{(\sin 1.8\phi)^{1.6} 1708}{\operatorname{Ra}_{L} \cos \phi} \right) + \left[\left(\frac{\operatorname{Ra}_{L} \cos \phi}{5830} \right)^{1/3} - 1 \right]^{+} \left[\left(\frac{\operatorname{Ra}_{L} \cos \phi}{5830} \right)^{1/3} \right]^{+} \left[\left(\frac{\operatorname{Ra}_{L} \cos \phi}{5830} \right)^{1/3} - 1 \right]^{+} \left[\left(\frac{\operatorname{Ra}_{L} \cos \phi}{5830} \right)^{1/3} \right]^{+} \left[\left(\frac{\operatorname{Ra}_{L} \cos \phi}{5830} \right)^{1/3} - 1 \right]^{+} \right]^{+} \left[\left(\frac{\operatorname{Ra}_{L} \cos \phi}{5830} \right)^{1/3} \right]^{+} \left[\left(\frac{\operatorname{Ra}_{L} \cos \phi}{5830} \right)^{1/3} - 1 \right]^{+} \left[\left(\frac{\operatorname{Ra}_{L} \cos \phi}{5830} \right)^{1/3} \right]^{+} \left[\left(\frac{\operatorname{Ra}_{L} \cos \phi}{5830} \right)^{1/3} - 1 \right]^{+} \left[\left(\frac{\operatorname{Ra}_{L} \cos \phi}{5830} \right)^{1/3} \right]^{+} \left[\left(\frac{\operatorname{Ra}_{L} \cos \phi}{5830} \right)^{1/3} - 1 \right]^{+} \left[\left(\frac{\operatorname{Ra}_{L} \cos \phi}{5830} \right)^{1/3} \right]^{+} \left[\left(\frac{\operatorname{Ra}_{L} \cos \phi}{5830} \right)^{1/3} - 1 \right]^{+} \left[\left(\frac{\operatorname{Ra}_{L} \cos \phi}{5830} \right)^{1/3} - 1 \right]^{+} \left[\left(\frac{\operatorname{Ra}_{L} \cos \phi}{5830} \right)^{1/3} - 1 \right]^{+} \left[\left(\frac{\operatorname{Ra}_{L} \cos \phi}{5830} \right)^{1/3} - 1 \right]^{+} \left[\left(\frac{\operatorname{Ra}_{L} \cos \phi}{5830} \right)^{1/3} - 1 \right]^{+} \left[\left(\frac{\operatorname{Ra}_{L} \cos \phi}{5830} \right)^{1/3} - 1 \right]^{+} \left[\left(\frac{\operatorname{Ra}_{L} \cos \phi}{5830} \right)^{1/3} - 1 \right]^{+} \left[\left(\frac{\operatorname{Ra}_{L} \cos \phi}{5830} \right)^{1/3} - 1 \right]^{+} \left[\left(\frac{\operatorname{Ra}_{L} \cos \phi}{5830} \right)^{1/3} - 1 \right]^{+} \left[\left(\frac{\operatorname{Ra}_{L} \cos \phi}{5830} \right)^{1/3} - 1 \right]^{+} \left[\left(\frac{\operatorname{Ra}_{L} \cos \phi}{5830} \right)^{1/3} - 1 \right]^{+} \left[\left(\frac{\operatorname{Ra}_{L} \cos \phi}{5830} \right)^{1/3} - 1 \right]^{+} \left[\left(\frac{\operatorname{Ra}_{L} \cos \phi}{5830} \right)^{1/3} - 1 \right]^{+} \left[\left(\frac{\operatorname{Ra}_{L} \cos \phi}{5830} \right)^{1/3} - 1 \right]^{+} \left[\left(\frac{\operatorname{Ra}_{L} \cos \phi}{5830} \right)^{1/3} - 1 \right]^{+} \left[\left(\frac{\operatorname{Ra}_{L} \cos \phi}{5830} \right)^{1/3} - 1 \right]^{+} \left[\left(\frac{\operatorname{Ra}_{L} \cos \phi}{5830} \right)^{1/3} - 1 \right]^{+} \left[\left(\frac{\operatorname{Ra}_{L} \cos \phi}{5830} \right)^{1/3} - 1 \right]^{+} \left[\left(\frac{\operatorname{Ra}_{L} \cos \phi}{5830} \right)^{1/3} - 1 \right]^{+} \left[\left(\frac{\operatorname{Ra}_{L} \cos \phi}{5830} \right)^{1/3} - 1 \right]^{+} \left[\left(\frac{\operatorname{Ra}_{L} \cos \phi}{5830} \right)^{1/3} - 1 \right]^{+} \left[\left(\frac{\operatorname{Ra}_{L} \cos \phi}{5830} \right)^{1/3} - 1 \right]^{+} \left[\left(\frac{\operatorname{Ra}_{L} \cos \phi}{5830} \right)^{1/3} - 1 \right]^{+} \left[\left(\frac{\operatorname{Ra}_{L} \cos \phi}{5830} \right)^{1/3} - 1 \right]^{+} \left[\left(\frac{\operatorname{Ra}_{L} \cos \phi}{5830} \right)^{1/3} - 1 \right]^{+} \left[\left(\frac{\operatorname{Ra}_{L} \cos \phi}{5830} \right)^{1/3} - 1 \right]^{+} \left[\left(\frac{\operatorname{Ra}_{L} \cos \phi}{5830} \right)^{1/3} - 1 \right]^{+} \left[\left(\frac{\operatorname{Ra}_{L} \cos \phi}{5830} \right)^$$

Buchberg:

$$\operatorname{Nu}_{L} = 1 + 1.446 \left(1 - \frac{1708}{\operatorname{Ra}_{L} \cos \phi} \right)^{+}$$

$$Nu_L = 0.157 (Ra_L \cos \phi)^{0.285}$$

Randall: Nu_L = 0.118
$$[Ra_L \cos^2(\phi - 45)]^{0.29}$$

Niemann:

$$Nu_L = 1 + \frac{m(Ra_L)^K}{Ra_L + n}$$

for more see Reference handbook on web

Convection in the air gap – optimum *L*

Slope dependence

Slope dependence 0°

absorber 60 °C, glass 20 °C

Slope dependence 45°

absorber 60 °C, glass 20 °C

Slope dependence 90°

Convection in inclined air layer

Slope impact on collector efficiency

Slope impact on collector efficiency

Convection in the back air gap

in the range 90 < ϕ < 180°

 $Nu_{L} = 1 + [Nu_{L}(\phi = 90^{\circ}) - 1] \sin \phi$ Arnold (1975)

Convection vs. slope

Radiation between absorber and frame

Radiation heat exchange

$$q_{s,abs-z2} = \sigma \frac{T_{abs}^4 - T_{z2}^4}{\frac{1}{\varepsilon_{z2}} + \frac{1}{\varepsilon_{abs,z}} - 1}$$

treatment of insulations:

aluminium foil applied to mineral wool

is it needed? $\epsilon_{72} = 0.1$

<u>example</u>: internal frame insulation surface emittance \mathcal{E}_{z2}

 t_{abs} = 60 °C, t_a = 20 °C, back insulation 30 mm, air gap d_{z2}

case 1:
$$d_{z2} = 20 \text{ mm}$$

 $\varepsilon_{z2} = 0.5$ $U_z = 1.10 \text{ W/m}^2\text{K}$
 $\varepsilon_{z2} = 0.1$ $U_z = 0.96 \text{ W/m}^2\text{K}$
15 %

case 2: d_{z2} = 5 mm \mathcal{E}_{z2} = 0.5 U_z = 1.22 W/m²K \mathcal{E}_{z2} = 0.1 U_z = 1.17 W/m²K

4 %

heat conductance of insulation layer

 $h_{\rm ins} = h_{\rm v,z1-z2} = \frac{\lambda_{\rm ins}}{L_{\rm ins}}$ [W/m²K]

insulation – thermal conductivity:

mineral wool: $\lambda = 0.045$ W/mK

PUR foam: $\lambda = 0.035$ W/mK

polystyren: weak resistance to thermal load thermal conductivity $\lambda = f(t)$

Thermal conductivity of mineral wool

polynomic function 0.12 ORSTECH URSA 0.1 TECHROCK 0.08 λ[W/mK NOBASIL 0.06 0.04 0.02 -50 100 150 200 250 300

t _m [°C]

- how can the thickness of insulation influence the thermal performance of the solar collector?
- influence on efficiency curve
- influence on the yields

what insulation thickness is reasonable?

compare 20 mm **30 mm** 50 mm

- run KOLEKTOR programme, open default.kol
- Glazind & insulation card
- Calculation card

change Insulation thickness

select Efficiency curve calculation

Calculate, Export results

- open Evaluation.xls
- make copies of the sheets for three alternatives
- open res files in excel, mind the semicolons as separators
- compare the efficiency curves based on $(t_m t_e)/G$

- how can the absorber emissivity influence the annual energy yields of collector?
 - 20 mm $\eta_0 = 0.782$ $a_1 = 5.272$ $a_2 = 0.007$
 - 30 mm $\eta_0 = 0.789$ $a_1 = 4.857$ $a_2 = 0.006$
 - 50 mm $\eta_0 = 0.796$ $a_1 = 4.451$ $a_2 = 0.006$
- open studio SDHW-SOLNET in TRNSYS
- make a change of coefficients in KOLEKTOR type
- results of collector yield find under Totals.txt
- compare the annual sums for both alternatives

- compared to 30 mm of mineral wool double thickness of insulation brings only several percents
- 80 to 90 % of the collector heat loss is the front side (top) loss
 - increase of insulation on the back side cannot proportionally help

- change of thermal conductivity by tens of percents due degradation will not significantly change the energy yields (by percents)
 - it does not matter for annual effectivity
 - facts above valid for domestic hot water systems

Radiation heat exchange between frame of collector and roof

$$q_{s,z1-as} = \sigma \frac{T_{z1}^4 - T_{as}^4}{\frac{1}{\varepsilon_{z1}} + \frac{1}{\varepsilon_{as}} - 1}$$
 [W/m²]

any treatment of external frame surface is useless

wind convection

frame insulation

supress any influence

88/150

Collector heat loss coefficient: U-value

Collector heat loss coefficient: U-value

$$Q_{\rm I,t} = U_G A_G (t_{abs} - t_a)$$

$$\dot{Q}_{\rm I,t} = U_a A_a (t_{abs} - t_a)$$

$$U_G A_G = U_p A_G + U_z A_G + U_b A_b = U_a A_a$$

$$U_a = \left(U_p + U_z + U_z \frac{A_b}{A_G}\right) \frac{A_G}{A_a}$$

for calculations: **U-value** related to aperture area **A**_a

Iterations for temperatures

calculation of heat transfer coefficients:

temperatures t_{abs} , t_{p1} , t_{p2} , t_{z1} , t_{z2} , (t_{b1}, t_{b2}) are required but not available at the start of calculation

example of iterative determination for front heat flow:

1. estimate:
$$t_{abs} = t_{in} + \Delta t$$

2. estimate:
$$t_{p1}$$
, t_{p2} $t_{p2} = t_{abs} - \frac{t_{abs} - t_a}{3}$ $t_{p1} = t_a + \frac{t_{abs} - t_a}{3}$

- 3. calculation of heat transfer coefficients h
- 4. calculation of overall heat flow rate q_p

5. reverse calculation of temperatures and then repeat from (3.)

Iterations for temperatures

$$q_{\mathrm{p}} = \left(h_{\mathrm{s,p2-a}} + h_{\mathrm{p,p2-a}}\right)\left(t_{\mathrm{p2}} - t_{\mathrm{a}}\right)$$

temperature difference is proportional to heat resistance

1. estimation of temperatures

Last iteration

Convergence of calculations

absorber temperature 35 °C

95/150

Results of external balance

U-value of solar collector dependent on:

- temperature of absorber
- ambient temperature, wind velocity, sky temperature
- geometry of solar collector
- detailed properties of collector elements, used material (conductivity), surface emittance
- adjacent structure properties (emittance, envelope thermal resistance)

Analysis of Solar Flat-plate Collectors – part 2

Tomáš Matuška

Faculty of Mechanical Engineering University Centre of Energy Efficient Buildings Czech Technical University in Prague

Solar Thermal Collectors, 24.3.2015, Palma de Mallorca

Solar collector energy balance

External energy balance of absorber

- heat flow from absorber surface to ambient environment
- heat losses
- quality of solar collector envelope

Internal energy balance of absorber

- heat flow from absorber surface into heat transfer fluid
- ability to transfer heat and remove it from collector
- quality of absorber construction

Internal energy balance

Energy balance of absorber fin

Energy balance of absorber fin

case of standard fin efficiency concept but with solar irradiation known from air-water heat exchangers theory

Energy balance of absorber fin element

derivation of temperature distribution between tubes (in absorber fin)

$$\tau \alpha G \Delta x - U \Delta x (T - T_a) + \left(-\lambda_{abs} d_{abs} \frac{dT}{dx} \right)_x - \left(-\lambda_{abs} d_{abs} \frac{dT}{dx} \right)_{x+\Delta x} = 0$$

yields in solution of differential equation of 2nd order

$$\frac{d^2T}{dx^2} = \frac{U}{\lambda_{abs}d_{abs}} \left(T - T_a - \frac{S}{U}\right)$$

Fin efficiency *F*

standard fin efficiency (rectangular profile)

$$= \frac{\tanh[m(W - D_{\rm e})/2]}{m(W - D_{\rm e})/2}$$

 $(W - D_e)/2$ or (W - 2a)/2... active fin length

ultrasonic welding

Fin efficiency F

standard fin efficiency (rectangular profile)

$$F = \frac{\tanh[m(W - D_e)/2]}{m(W - D_e)/2}$$

$$m = \sqrt{\frac{U}{\lambda_{abs}}d_{abs}}$$

U ... collector heat loss considered from absorber surface to ambient (result from external balance)

significant influence of thermal conductivity and thickness of absorber

conductivity and thickness of absorber are improportional

higher fin efficiency = higher heat removal from absorber

Fin efficiency F

reference case: fin efficiency 0.96 copper absorber (390 W/mK), $d_{abs} = 0.2 \text{ mm}$, fin $W^* = W - 2a = 100 \text{ mm}$ heat loss coefficient $U = 4 \text{ W/m}^2\text{K}$

EPDM (0.14 W/mK) $d_{abs} = 2.0 \text{ mm}, W^* = 6 \text{ mm}$

Plastic absorbers

00000000 QQQQQQQQ

Best absorbers – fully wetted metal sheet

F′ = 1.0

Influence of material and geometry

Efficiency factor F'

how efficient is heat transfer from absorber surface to heat transfer fluid ?

Collector performance based on t_m

useful heat gain from collector

$$\dot{Q}_{u} = AF'[\tau \alpha G - U(t_{m} - t_{a})]$$

$$t_{\rm m} = \frac{t_{\rm in} + t_{\rm out}}{2}$$

collector efficiency

$$\eta = F'\left[\tau\alpha - U\frac{t_m - t_a}{G}\right]$$

analogy to experimentally obtained efficiency curve reported by testing institutes

$$\eta = \eta_0 - a_1 \frac{t_m - t_a}{G} - a_2 \frac{(t_m - t_a)^2}{G}$$

Efficiency factor F'

function of fin efficiency *F*

Efficiency factor – absorber designs

Bond conductance

bond conductance – estimated from geometry and quality of contact

good metal-to-metal contact needed (welding, soldering, pressing) no clamping of absorber to pipes !

bond conductance > 30 W/mK needed

Bond conductance

for $C_{\rm b}$ < 30 W/mK significant reduction of collector performance

Bond conductance: testing

Convection heat transfer inside pipes

forced convection heat transfer in pipes is given by:

- heat transfer fluid type
- collector flow rate
- concept of collector hydraulic (parallel, serial-parallel, serpentine)
- number of risers (flow rate distribution)
- diameter of risers
- temperature

Nusselt number as criterion, number of models are available for

- Iaminar flow (mostly present in collector), turbulent flow
- constant heat flux case (uniformly irradiated absorber condition)
- constant temperature (heat transfer with phase change)
- fully developed profile, entry region with developing profile of velocity and temperature

$$h_{\rm fi} = {\rm Nu}_{\rm D} \cdot \frac{\lambda_{\rm f}}{D_{\rm i}}$$

 laminar flow, fully developed velocity and temperature profile, constant heat flux

$$Nu_D = \frac{48}{11} = 4.364$$
 (Shah)

 laminar flow, entry region of length L, developing profile, constant heat flux

$$Nu_{D} = \begin{cases} 1.953 \cdot L^{*-1/3} & L^{*} \leq 0.03 \\ 4.364 + \frac{0.0722}{L^{*}} & L^{*} > 0.03 \end{cases}$$
(Shah)

$$L^* = Gz^{-1} = \frac{L/D_i}{Re_D \cdot Pr}$$
 Gz ... Graetz number

Nusselt number in circular pipes

turbulent flow

 $Nu_D = A \operatorname{Re}_D^m \operatorname{Pr}^n$ (Dittus-Boelter, Colburn, Sieder-Tate)

$$Nu_{D} = \frac{(f/8)(Re_{D} - 1000)Pr}{1 + 12.7(f/8)^{1/2}(Pr^{2/3} - 1)}$$
 (Gnielinski)
where $f = (0.79 \ln Re_{D} - 1.64)^{-2}$ for smooth pipes

for more models see Reference handbook to KOLEKTOR

Convection heat transfer inside pipes

- high heat transfer require
 - high velocity
 - higher flow rate
 - Iow dimension
 - Iow viscosity
 - high conductivity of liquid

high Reyno

high Reynolds number

high Nusselt number

Convection heat transfer inside pipes

high flow: 0.025 kg/s.m² low flow: 0.005 kg/s.m²

Influence of riser pipe diameter

$$F' = \frac{1/U}{W\left[\frac{1}{U[2a+(W-2a)F]} + \frac{1}{C_{b}} + \frac{1}{h_{fi}\pi D_{f}}\right]}$$
$$\frac{1}{h_{fi}\pi D_{f}} = \frac{D_{i}}{Nu\lambda_{f}}\frac{1}{\pi D_{j}} = \frac{1}{Nu\lambda_{f}\pi}$$
 term is dependent directly on Nu

laminar flow

$$Nu_{D} = f(constant) = 4.364$$

$$Nu_{D} = f(L^{*})$$

$$L^{*} = \frac{L}{D_{i}} \frac{v \alpha}{u D_{i} v} = \frac{L \alpha}{D_{i}^{2}} \frac{\pi D_{i}^{2}}{4\dot{V}} = \frac{\pi L \alpha}{4\dot{V}}$$

term $\frac{1}{h_i \pi D}$ is **independent of D** in laminar flow

Analysis of efficiency factor F

length *L* = 2 m, fin width *W* = 100 mm, absorber thickness *d* = 0.2 mm, copper λ = 350 W/m.K, pipe D_e/D_i = 10/8 mm bond conductance C_b = 250 W/K h_i = 400 W/m²K

	$\frac{1}{U \cdot [D_e + (W - D_e) \cdot F]}$	$\frac{1}{C_{spoj}}$	$\frac{1}{h_i \cdot \pi \cdot D_i}$
$U = 4 \text{ W/m}^2.\text{K}$	2,6	0,004	0,099

heat transfer coefficient: **minor influence** to F' if $h_i > 200 \text{ W/m}^2\text{K}$ bond conductance: **minor influence** to F' if $C_b > 30 \text{ W/mK}$ **geometry is principal property of absorber** if low heat loss collector

Do we need for turbulators in pipes?

length *L* = 2 m, fin width *W* = 110 mm, absorber thickness *d* = 0.2 mm, copper λ = 350 W/m.K, pipe D_e/D_i = 10/8 mm bond conductance C_b = 200 W/K $U = 4 \text{ W/m}^2\text{K}$

	1	F
	$h_i \cdot \pi \cdot D_i$	<i>U</i> = 4 W/m ² K
$h_i = 400 \text{ W/m}^2.\text{K}$	0.099	0.919
$h_i = 600 \text{ W/m}^2.\text{K}$	0.066	0.931

enhancement of heat transfer inside pipe by 50 %

minor influence to *F*' change by **1.3** %

- how can the geometry of the absorber influence the thermal performance of the solar collector?
- influence on efficiency curve
- influence on the yields

fully wetted absorber from steel

- type of bond middle, pipes $D_e/D_i = 6/5$ mm, bond a/b = 3/1 mm
- material steel, thickness 0.5 mm
- bond conductivity 100 W/mK
- number of channels 145 pcs (not 150 pcs) ... W = 6.01 mm > D_e

- run KOLEKTOR programme, open default.kol
- Absorber card make the changes Material, Type of bond change Geometry, dimensions
- Calculation card select Efficiency curve calculation

Calculate, Export results

- open Evaluation.xls
- make a copy for the wetted alternative
- open res file in excel, mind the semicolons as separators
- compare the efficiency curves based on $(t_m t_e)/G$

- how can the absorber geometry influence the annual energy yields of collector?
 - fin&tube $\eta_0 = 0.789$ $a_1 = 4.857$ $a_2 = 0.006$
 - fully wetted $\eta_0 = 0.877$ $a_1 = 5.371$ $a_2 = 0.007$
- open studio SDHW-SOLNET in TRNSYS
- make a change of coefficients in KOLEKTOR type
- results of collector yield find under Totals.txt
- compare the annual sums for both alternatives

 fully wetted absorber could improve the annual energy performance by more than 5 % while steel could be cheaper material than copper

did we make a mistake in calculation? can geometry influence losses?

coefficients η_0 , a_1 , a_2 are one complex and cannot be separated

Vacuum tube collectors x efficiency factor

Single glass vacuum tube / flat absorber

- direct flow
- concentric direct flow
- heat pipe

firm metal contact absorber-pipe provides high F'

Vacuum tube collectors x efficiency factor

Double-glass (Sydney) vacuum tube

- all glass concentric tube (Dewar)
 - cylindric absorber (internal) glass tube
 - cover (external) glass tube
 - vacuum in space between
- absorber coating applied on exterior surface of internal glass tube
- conductive heat transfer fin in contact with interior surface

problematic contact absorber-pipe ...

Sydney vacuum tube collectors

Thermal analysis of direct flow VTC

<u>contact fin:</u> short (*W*), conductive (λ), thick (*d*) <u>bond-contact:</u> conductive; absorber tube-fin, fin-pipes <u>heat removal:</u> laminar / turbulent flow in pipes

Influence of contact fin

contact fin is a principle element in Sydney collector

Contact resistance in heat pipe VTC

Heat pipe (phase change of working liquid, high heat transfer coefficients)

- evaporator (in contact with fin transfering the heat from inner glass tube)
- condenser (placed into manifold box)

Contact resistance in heat pipe VTC

Temperature distribution in flow direction

derivation of temperature distribution between tubes (in absorber fin)

$$\left(\frac{\dot{M}}{n}\right)cT_{f}\big|_{y}-\left(\frac{\dot{M}}{n}\right)cT_{f}\big|_{y+\Delta y}+\Delta yq_{u}^{\prime}=0$$

yields in solution of differential equation of 1rst order

Heat removal factor $F_{\rm R}$

mathematical derivation of temperature profile: see Duffie, Beckman (2006)

<u>definition</u>: relates the actual collector gain to gain if absorber surface at fluid inlet temperature

$$F_{\mathsf{R}} = \frac{\dot{M}c(t_{out} - t_{in})}{A_c[\tau \alpha G - U(t_{in} - t_a)]}$$

$$F_{\rm R} = \frac{\dot{M}c}{A_{\rm c}U} \left[1 - \exp\left(-\frac{A_{\rm c}UF'}{\dot{M}c}\right) \right]$$

equivalent to effectiveness of heat exchanger, ratio of actual heat transfer to maximum possible heat transfer

Heat removal factor $F_{\rm R}$

heat removal factor is dependent on:

- efficiency factor F' (geometry, quality of absorber, fin efficiency F, ...)
- collector U-value (heat losses)
- specific heat of fluid c (type of fluid)
- specific mass flow through collector *M* / A_c (thermal capacity of flow)

Water vs. propylene glycol

- how can the heat transfer fluid influence the thermal performance of the solar collector?
- Influence on efficiency curve collectors are tested with water, does anything change when filled with glycol?

propylene glycol / water

- mixture 50 % / 50 % for freezing point -32 °C
- 8x viscous at 20 °C, high influence of temperature, only 2x at 80 °C
- Iower specific heat by cca 25 %
- worse heat transfer

- run KOLEKTOR programme, open default.kol
- Absorber card make the change of fluid
- Calculation card select Efficiency curve calculation

Calculate, Export results

- open Evaluation.xls
- make a copy for glycol alternative
- open res file in excel, mind the semicolons as separators
- compare the efficiency curves based on $(t_m t_e)/G$

Water vs. propylene glycol

Efficiency curve

145/150

based on absorber temperature, external balance of absorber

$$\dot{Q}_u = A_c [\tau \alpha G - U(t_{abs} - t_a)]$$

based on mean fluid temperature, experimental work

$$\dot{Q}_u = F' A_c [\tau \alpha G - U(t_m - t_a)]$$

based on fluid inlet temperature, simulation tools

$$\dot{Q}_{u} = F_{\mathsf{R}} A_{c} \big[\tau \alpha G - U \big(t_{in} - t_{a} \big) \big]$$

Solar collector temperatures

mean absorber temperature

$$t_{\rm abs} = t_{\rm in} + rac{Q_{
m u}/A_{
m c}}{F_{
m R}U}(1-F_{
m R})$$

mean fluid temperature

$$t_{\rm m} = t_{\rm in} + \frac{\dot{Q}_{\rm u}/A_{\rm c}}{F_{\rm R}U}(1 - \frac{F_{\rm R}}{F'})$$

fluid output temperature

$$t_{\rm out} = 2t_{\rm m} - t_{\rm in}$$

based on fluid inlet temperature

Solar collector efficiency

based on absorber temperature

$$\eta = \tau \alpha - U \frac{\left(t_{abs} - t_{a}\right)}{G}$$

based on mean fluid temperature

$$\eta = F' \left[\tau \alpha - U \frac{(t_m - t_a)}{G} \right]$$

based on fluid inlet temperature

$$\eta = F_{\mathsf{R}} \left[\tau \alpha - U \frac{(t_{in} - t_{a})}{G} \right]$$

Solar collector performance calculation

- KOLEKTOR is a design tool for virtual prototyping
 - to perform calculations of designs without need for fabrication prototypes
 - to optimize construction and design of collector
- KOLEKTOR is not perfect, but relevant TRNSYS type is on the way
 - for modelling solar thermal collectors (Slava Shemelin)
 - extension for glazed PVT collectors (Nikola Pokorny)
- efforts for extremely high performing solar thermal collectors could be sometimes useless if target is annual performance and not marketing