7 Heat pumps sizing

- heat pump characteristics
- testing & operation conditions
- balance point
- storage size
- hydraulics
Heat pump

\[\dot{Q}_k = P_{el} + \dot{Q}_v \]

\[\text{COP} = \frac{\dot{Q}_k}{P_{el}} \]

\[\dot{Q}_v = \dot{Q}_k - P_{el} \]

\[\dot{Q}_v = \dot{Q}_k \cdot \left(1 - \frac{1}{\text{COP}}\right) \]
Heat pumps: ground source (borehole)
Heat pumps: ground source (ground HX)
Heat pumps: water source (water well)
Heat pumps: air source (ambient)
Types of heat pumps on the market

- Reversible air/air: 49%
- Sanitary hot water: 9%
- Reversible other: 10%
- H-air/water: 16%
- H-ground/water: 14%
- Exhaust air: 2%
The trend is air source
... also sanitary hot water HP increase
Heat pumps market in Europe
Top ten countries is the market

674,389 units (89%)
Heat pump parameters

- heat output, heat capacity $Q_k \text{ [kW]}$ – heat output from condenser
- coefficient of performance COP [-]

at given boundary conditions
- t_{v1}
- t_{k2}
- electric power $P_{el} \text{ [kW]}$
- evaporator input = source output $Q_v \text{ [kW]}$
Air-water heat pump characteristics

Air-water heat pump characteristics include the performance curves for different temperatures. The graphs show the relationship between Q_k, P_{el} and COP as a function of t_{v1} and t_{k2} for 35 °C and 50 °C.

- Q_k, P_{el} vs. t_{v1}
- COP vs. t_{v1}

The graphs illustrate how the heat pump's performance changes with varying temperatures and conditions.
Air-water heat pump characteristics

electric power, heating capacity [kW]

ambient air temperature

Flow temperature 35°C
Flow temperature 50°C
Flow temperature 60°C
Air-water heat pump characteristics

COP [-] vs. ambient air temperature

The graph illustrates the coefficient of performance (COP) of an air-water heat pump system as a function of ambient air temperature. The COP values increase with higher ambient temperatures, indicating improved heat pump performance in warmer conditions.
Brine-water heat pump (ground source)

Brine-water

- Q_k, P_{el} [kW]
- t_{v1} [°C]
- t_{k2}
- 35 °C
- 50 °C

- COP [-]:
- t_{v1} [°C]
Brine-water heat pump (ground source)
Water-water heat pump
Testing of heat pumps

- **EN 14511** - Air conditioners, liquid chilling packages and heat pumps with electrically driven compressors for *space heating and cooling*.
 - EN 14511-1: dtto - Terms and definitions
 - EN 14511-2: dtto - Test conditions
 - EN 14511-3: dtto – Test methods
 - EN 14511-4: dtto - Requirements

- **EN 16147** – Heat pumps with electrically driven compressors. Testing and requirements for marking of *domestic hot water units*
Testing conditions

- **EN 14511: water-water \(W/W \)** (W10 / W35)
 - **nominal:** 10/35 °C 10/45 °C
 - **operation:** 15/45 °C 10/55 °C

- **EN 14511: brine-water (ground-water) \(B/W \)** (B0 / W35)
 - **nominal:** 0/35 °C 0/45 °C
 - **operation:** 5/35 °C 5/45 °C 0/55 °C
 - -5/45 °C

- **EN 14511: air-water (ambient air) \(A/W \)** (A2 / W35)
 - **nominal:** 7/35 °C 7/45 °C
 - **operation:** 2/35 °C 2/45 °C 7/55 °C
 - -7/35 °C -7/45 °C -7/55 °C
 - -15/35 °C -15/45 °C
Requirements on heat pump

- **Quality label EHPA (European Heat Pump Association)**

- Minimum COP from testing according to EN 14511 in respected lab

 - **brine-water** B0/W35 \(\text{COP} > 4.3 \)
 - **water-water** W10/W35 \(\text{COP} > 5.1 \)
 - **air-water** A2/W35 \(\text{COP} > 3.1 \)

- Declaration of sound power level

- Documentation: planning, service and operation guides in local language

- Customer service network, 24 h reaction time on customer complaints

- 2 years full warranty, spare parts inventory available for 10 years in stock
Seasonal performance factor

\[SPF = \frac{Q_{sh,hw}}{Q_{el,tot}} \]

\[COP = \frac{Q_{HP}}{Q_{el,HP}} \]
RES directive, minimum SPF

- heat pumps consume electric energy
 - produced mainly from fossil fuels (primary non-renewable energy source)

\[SPF > 1.15 \frac{1}{\eta_e} \]

\(\eta_e \) electricity production efficiency
 european average 45.5 % \(SPF > 2.5 \)

if \(SPF < 2.5 \) ... better to use fossil fuels directly by combustion
Table C.1 — Default minimum and target values for SPF for heat pump systems employed for space heating and domestic hot water production in new buildings (typical for Central Europe)

<table>
<thead>
<tr>
<th>energy source / sink</th>
<th>minimum value for SPF</th>
<th>target value for SPF</th>
</tr>
</thead>
<tbody>
<tr>
<td>air / water</td>
<td>2.7</td>
<td>3.0</td>
</tr>
<tr>
<td>ground / water</td>
<td>3.5</td>
<td>4.0</td>
</tr>
<tr>
<td>water / water</td>
<td>3.8</td>
<td>4.5</td>
</tr>
</tbody>
</table>

Table C.2 — Default minimum and target values for SPF for heat pump systems employed for space heating and domestic hot water production in retrofit buildings (typical for Central Europe)

<table>
<thead>
<tr>
<th>energy source / sink</th>
<th>minimum value for SPF</th>
<th>target value for SPF</th>
</tr>
</thead>
<tbody>
<tr>
<td>air / water</td>
<td>2.5</td>
<td>2.8</td>
</tr>
<tr>
<td>ground / water</td>
<td>3.3</td>
<td>3.7</td>
</tr>
<tr>
<td>water / water</td>
<td>3.5</td>
<td>4.2</td>
</tr>
</tbody>
</table>

Table C.3 — Default minimum and target values for SPF for heat pump systems employed for domestic hot water production only (typical for Central Europe)

<table>
<thead>
<tr>
<th>energy source / sink</th>
<th>minimum value for SPF</th>
<th>target value for SPF</th>
</tr>
</thead>
<tbody>
<tr>
<td>air / water</td>
<td>2.3</td>
<td>2.8</td>
</tr>
<tr>
<td>ground / water</td>
<td>3.0</td>
<td>3.5</td>
</tr>
<tr>
<td>water / water</td>
<td>3.2</td>
<td>3.8</td>
</tr>
</tbody>
</table>
Operation modes

- **monovalent operation**
 - only heating device

- **parallel bivalent operation**
 - under bivalent temperature (balance point) back-up heater is switched-on
 - low temperature systems
Operation modes

- alternatively bivalent operation
 - under bivalent temperature back-up replaced heat pump. for high temperature heating systems

the balance point = temperature under which the back-up heater is required
Operation modes

- **monoenergetic operation**
 - e.g. bivalent operation of electric heat pump with electroboiler (integrated in one device)

- **balance point**
 - according to heat output (dimensioning)
 - acc. heating water temperature
 - sufficient heat output from heat pump
 - high temperatures of heating water needed, which couldnt be supplied by heat pump, esp. in extreme winter
Heat pump sizing

- determination of heat pump type
 - available heat source

- determination of (condenser) heat output Q_k (for space heating)
 - building heat loss
 - heat output for hot water
 - design flow temperature
 - design source temperature
Balance point according to temperature

- Flow temperature vs. outdoor temperature

Example of air source HP

Radiators

Max output temperature

Underfloor heating

- 90/70 °C
- 75/55 °C
- 60/45 °C
- 55/40 °C
- 45/35 °C
- 35/30 °C
Balance point according to heat output

ground source HP

- Heat output Q_k [kW], heat load Q_L [kW]
- Output temperature $35 \degree C$
- Output temperature $50 \degree C$
- Heat load

Balance point according to heat output

- $Q_{L, \text{des}}$
- Q_L
- Q_k

Diagram:

- Ambient temperature t_e [°C]
- Heat output Q_k [kW], heat load Q_L [kW]

Legend:

- Blue: Output temperature $35 \degree C$
- Red: Output temperature $50 \degree C$
- Black: Heat load

Balance point
Balance point according to heat output

![Graph showing balance point for heat output and load](image)

- **Heat output** Q_k and **heat load** Q_L are plotted against **ambient temperature** t_e.
- **Balance point** $Q_{k,bal}$ is indicated where Q_k and Q_L intersect.

Legend:
- Blue line: Output temperature 35 °C
- Red line: Output temperature 50 °C
- Black line: Heat load

Note: The graph illustrates the balance point for air source HP systems.
Balance point determination

- design heat load $Q_{L,\text{des}}$
 - calculation according to EN 12 831 for design external temperature (e.g. -12 °C, -15 °C, -18 °C in CZ)
- heat output at balance point $Q_k = Q_L$
 - e.g. from desired fraction 60 to 100 % $Q_{k,\text{bal}} / Q_{L,\text{des}}$

\[
\frac{Q_{L,\text{des}}}{(t_i - t_{e,\text{des}})} = \frac{Q_L}{(t_i - t_e)} = \frac{Q_{k,\text{bal}}}{(t_i - t_{e,\text{bal}})}
\]

\[
t_{e,\text{bal}} = t_i - \frac{Q_{k,\text{bal}}}{Q_{L,\text{des}}}(t_i - t_{e,\text{des}})
\]

if $Q_k = \text{konst}$
if $Q_k \neq \text{konst}$ - graph
Example

family house

design load 15 kW for
design temperature -15 °C

heat pump (SE WPL18)
heating system 50/40 °C

determine the balance point
balance point heat output
balance point power input
balance point COP
Flow temperature

\[t_{w1} = t_{w1,\text{des}} - \left(t_{w1,\text{des}} - t_{w1,\text{min}} \right) \frac{t_e - t_{e,\text{des}}}{t_i - t_{e,\text{des}}} \]

Flow temperature

42 °C

flow \(t_{w1} \)

return \(t_{w2} \)
Power input at balance point

for balance power point

\[t_{v1} = -5 \, ^\circ C, \ t_{k2} = 42 \, ^\circ C \]

\[P_{35} = 3.3 \, kW \]

\[P_{50} = 4.5 \, kW \]

\[\frac{P_{tw1} - P_{35}}{t_{w1} - 35} = \frac{P_{50} - P_{35}}{50 - 35} \]

\[P_{tw1} = P_{35} + \left(P_{50} - P_{35} \right) \frac{t_{w1} - 35}{50 - 35} \]

balance power point

\[P_{42} = 3.9 \, kW \]
Example

\[
COP_{tw1} = COP_{50} + (COP_{35} - COP_{50}) \frac{50 - t_{w1}}{50 - 35}
\]
Example

family house
design load 15 kW for
design temperature -15 °C

heat pump (SE WPL18)
heating system 50/40 °C
determine the balance point
balance point heat output
balance point power input
balance point COP

\[Q_k = 10.5 \text{ kW} \]

\[P_{42} = 3.9 \text{ kW} \]

balance point COP =
Heat pump sizing – coverage of demand

Diagram shows the relationship between outdoor temperature (t_e °C) and the number of days for different coverage levels (25%, 50%, 75%, 100%). The coverage levels are indicated at the right side of the graph, with 60% coverage marked at a specific temperature and days value.
Heat pump sizing – coverage of demand

- residential sector
 - based on heating demand

Graph showing the supplied energy by HP / heating demand vs. HP heating output / design heating load.
Heat pump sizing (ground source)

- dimensioning heat output *(independent on ambient conditions)*
 - 50 % heat loss - coverage 85 % heat demand
 - 60 % heat loss – coverage 93 % heat demand
 - 70 % heat loss - coverage 97 % heat demand
Heat pump sizing *(air source)*

- **dimensioning heat output** *(dependent on ambient conditions)*
 - 50 \% heat loss - coverage 75 \% heat demand
 - 60 \% heat loss – coverage 85 \% heat demand
 - 70 \% heat loss - coverage 92 \% heat demand
Heating capacity control

- usual heat pumps
 - start-stop regime
 - cycling = reduction of durability compressor
 - elimination cycling
 - undersizing
 - heat storage – sizing of store for minimum operation time of heat pump

- heat pump with heating capacity control
 - compressor speed control
 - possibility for monovalent operation
Heating capacity control

Without capacity control

With capacity control
Heat storage for heat pump

- **oversized storage** for most of operation time
 - balancing heat output and heat load

- **reduction of frequency compressor on/off** (1 x 10 min)
 - longer durability of compressor

- **heat source for outdoor units** (air-water)
 - antifreeze protection
Heat storage for heat pump

- **hydraulic decoupling of heat pump** from load circuit
 - hydraulic shunt
 - heating systems can’t influence HP circuit
 - providing required (higher) flowrates at condenser
Sizing of storage tank

- **balance** to reduce on/off frequency
 - minimum operation time period \(\Delta \tau \)
 - increase of temperature \(\Delta t \) in store during operation of heat pump
- heat stored during operation of heat pump

\[
Q_{\text{stored}} = \dot{Q}_{\text{HP}} \cdot \Delta \tau = V \cdot \rho \cdot c \cdot \Delta t
\]
Sizing of storage tank

specific volume

\[\frac{V}{Q_{HP}} = \frac{1000 \cdot \Delta \tau}{\rho \cdot c \cdot \Delta t} \]

\(\Delta \tau \) [s] minimum operation time: 15 min

\(\Delta t \) [K] increase of store temperature: 3 - 5 K

usually 15 to 30 l/kW

thermal capacity (momentum) of heating system results in lower volume requirement
Example

- **calculate** heat storage volume for balance point heat output **10.5 kW**
 - minimum operation time period $\Delta \tau = 15$ min
 - increase of temperature Δt in store 3 K

\[
V = \dot{Q}_{HP} \frac{1000 \cdot \Delta \tau}{\rho \cdot c \cdot \Delta t}
\]

\[
V \text{ [m}^3\text{]} = \dot{Q}_{HP} \text{ [kW]} \cdot \frac{1000 \cdot 15 \cdot 60}{998 \cdot 4187 \cdot 3}
\]

\[
V = 754 \text{ l}
\]
Integration of store electronically controlled pump

1 heat pump
2 control
2a temperature sensor
3 pump
4 bypass valve
5 heating system
6 storage tank
Hydraulics

- with two stores
 - heating water store, hot water store
 - bivalent (back-up) heater inside heat pump
Hydraulics

- with central store
 - hot water heated in heat exchanger immersed in heating water store volume
 - bivalent (back-up) heater: immersed in store

![Diagram of hydraulics system]

- EL.HEATER
- HEAT PUMP
- HW
- CW
- Heating system

Guides for design

- low temperature heating < 45 °C
 - floor heating, wall heating
 - radiators with larger surface

- pool water heating

- hot water
 - low temperature 45 °C
 - air-water: advantage in summer, high ambient temperatures
 - brine-water: reduction of borehole regeneration (!)