Operation characteristics of heat pumps II

- calculation - bin method - example
- influence of operation conditions on HP effectivity
Example: family house

- **space heating**
 - heat loss 30 kW (-18 °C)
 - space heating demand **60 500 kWh/a**
 - climate defined by table, \(d = 235, \ t_{e,m} = 3,0 \) °C
 - heating system **50/40 °C**

- **hot water**
 - 6 persons, 60 l/per.day, heat losses 30 %
 - hot water temperature 55 °C, cold water temperature 10 °C
 - hot water heat demand = **8 950 kWh/a**
Example: heat demand
Example: heat pump

- ground source heat pump WPF 20
 - nominal heat output $Q_{HP} = 21.9 \text{ kW}$
 - $COP = 4.8$
Example

\[Q_{\text{HP}} = 25.9 + 0.569 t_{v1} - 0.103 t_{k2} \]

- 35 °C
- 50 °C
- 60 °C
Example

$$COP = 8.6 + 0.091 \cdot t_{v1} - 0.104 \cdot t_{k2}$$
Example: boreholes

- ground source
 - input to evaporator dependent on ambient temperature

\[
t_{v1} = \max\left(0 \degree C; \min\left(0.15 \cdot t_e + 1.5 \degree C; 4.5 \degree C\right)\right)
\]
Example: heating system

- space heating regime (radiators)
 - nominal temperatures flow/return $t_{w1,N} = 50 \quad t_{w2,N} = 40 \, ^\circ\text{C}$
 - temperature exponent $n = 1,3$

$$t_{w1} = t_i + \frac{t_{w1,N} - t_{w2,N}}{2} \cdot \frac{t_i - t_e}{t_i - t_{e,N}} + \left(\frac{t_{w1,N} + t_{w2,N}}{2} - t_i\right) \cdot \left(\frac{t_i - t_e}{t_i - t_{e,N}}\right)^{1/n}$$

$$t_{k2} = t_{w1} + 3 \, \text{K}$$

weather compensation curve
Example: hot water

- **hot water regime**
 - requirement $t_{HW} = 55 \, ^\circ C$

\[t_{k2} = t_{HW} + 5 \, K \]
Example: heat demand
Prague: temperature histogram

<table>
<thead>
<tr>
<th>te,lim,d,j</th>
<th>te,lim,h,j</th>
<th>te,m,j</th>
<th>tj</th>
<th>tkum,j</th>
<th>DH20/13</th>
<th>DH20/13,kum</th>
<th>fSH</th>
<th>fHW</th>
</tr>
</thead>
<tbody>
<tr>
<td>-18</td>
<td>-17</td>
<td>-17,5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,000</td>
<td>0,000</td>
</tr>
<tr>
<td>-17</td>
<td>-16</td>
<td>-16,5</td>
<td>5</td>
<td>5</td>
<td>183</td>
<td>183</td>
<td>0,002</td>
<td>0,001</td>
</tr>
<tr>
<td>-16</td>
<td>-15</td>
<td>-15,5</td>
<td>5</td>
<td>10</td>
<td>178</td>
<td>360</td>
<td>0,002</td>
<td>0,001</td>
</tr>
<tr>
<td>-15</td>
<td>-14</td>
<td>-14,5</td>
<td>14</td>
<td>24</td>
<td>483</td>
<td>843</td>
<td>0,005</td>
<td>0,002</td>
</tr>
<tr>
<td>-14</td>
<td>-13</td>
<td>-13,5</td>
<td>14</td>
<td>38</td>
<td>469</td>
<td>1312</td>
<td>0,005</td>
<td>0,002</td>
</tr>
</tbody>
</table>

8	9	8,5	334	4496	3841	82225	0,040	0,038
9	10	9,5	387	4883	4064	86289	0,042	0,044
10	11	10,5	341	5224	3240	89528	0,034	0,039
11	12	11,5	408	5632	3468	92996	0,036	0,047
12	13	12,5	376	6008	2820	95816	0,029	0,043
13	14	13,5	322	6330				
14	15	14,5	326	6656				
15	16	15,5	320	6976				
16	17	16,5	273	7249				
27	28	27,5	38	8720				
28	29	28,5	30	8750				
29	30	29,5	6	8756				
30	31	30,5	4	8760				
31	32	31,5	0	8760				

| 8760 | | | | | | 3992 | 1,000 | 1,000 |
Example calculation

<table>
<thead>
<tr>
<th>$t_{em,j} = -14.5 \degree C$</th>
<th>$t_{em,j} = 2.5 \degree C$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\tau_j = 14 , h$</td>
<td>$\tau_j = 433 , h$</td>
</tr>
<tr>
<td>$f_{HW} = 0.0016 \approx 0.002 \text{ in table}$</td>
<td>$f_{HW} = 0.049$</td>
</tr>
<tr>
<td>$f_{SH} = 0.005 \text{ in table}$</td>
<td>$f_{SH} = 0.079$</td>
</tr>
<tr>
<td>$Q_{HW} = 14 , kWh$</td>
<td>$Q_{HW} = 442 , kWh$</td>
</tr>
<tr>
<td>$Q_{SH} = 305 , kWh$</td>
<td>$Q_{SH} = 4785 , kWh$</td>
</tr>
</tbody>
</table>
Example calculation

\[t_{v1} = \max(0 \, ^\circ\text{C}; \min(0.15 \cdot t_e + 1.5 \, ^\circ\text{C}; 4.5 \, ^\circ\text{C})) \]

\[t_{k2,\text{HW}} = t_{k2} = t_{HW} + 5 \, \text{K} \quad \text{requirement } t_{HW} = 55 \, ^\circ\text{C} \]

\[t_{k2,\text{SH}} = t_{k2} = t_{w1} + 3 \, \text{K} \]

\[
t_w = \left(t_i + \frac{t_{w1,N} - t_{w2,N}}{2} \cdot \frac{t_i - t_e}{t_i - t_{e,N}} + \left(\frac{t_{w1,N} + t_{w2,N}}{2} \right) - t_i \right) \cdot \left(\frac{t_i - t_e}{t_i - t_{e,N}} \right)^{1/n}
\]

\[Q_{\text{HP,HW}} = Q_{\text{HP}} = f(t_{v1}, t_{k2}), \quad Q_{\text{HP}} = 25.9 + 0.569 \cdot t_{v1} - 0.103 \cdot t_{k2} \]

\[\text{COP}_{\text{HW}} = \text{COP} = f(t_{v1}, t_{k2}) \quad \text{COP} = 8.6 + 0.091 \cdot t_{v1} - 0.104 \cdot t_{k2} \]

\[Q_{\text{HP,SH}} = \]

\[\text{COP}_{\text{SH}} = \]
Example calculation

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_{v1}</td>
<td>0,0 °C</td>
<td>t_{v1}</td>
<td>1,9 °C</td>
</tr>
<tr>
<td>$t_{k2,HW}$</td>
<td>60,0 °C</td>
<td>$t_{k2,HW}$</td>
<td>60,0 °C</td>
</tr>
<tr>
<td>$t_{k2,SH}$</td>
<td>50,7 °C</td>
<td>$t_{k2,SH}$</td>
<td>39,1 °C</td>
</tr>
<tr>
<td>$Q_{HP,HW}$</td>
<td>19,7 kW</td>
<td>$Q_{HP,HW}$</td>
<td>20,8 kW</td>
</tr>
<tr>
<td>COP_{HW}</td>
<td>2,4</td>
<td>COP_{HW}</td>
<td>2,5</td>
</tr>
<tr>
<td>$Q_{HP,SH}$</td>
<td>20,7 kW</td>
<td>$Q_{HP,SH}$</td>
<td>22,9 kW</td>
</tr>
<tr>
<td>COP_{SH}</td>
<td>3,3</td>
<td>COP_{SH}</td>
<td>4,7</td>
</tr>
</tbody>
</table>
Example calculation

\[
Q_{\text{HP,HW,avail}} = Q_{\text{HP,available,j}} = \dot{Q}_{\text{HP,j}} \cdot \tau_j
\]

\[
Q_{\text{HP,HW,del}} = Q_{\text{HP,delivered,j}} = \min(Q_{\text{HP,available,j}}, Q_{\text{HW,j}})
\]

\[
E_{\text{HP,HW}} = E_{\text{HP,j}} = \frac{Q_{\text{HP,delivered,j}}}{COP_j}
\]

\[
\tau_{\text{HP,HW}} = \tau_{\text{HP,j}} = \frac{Q_{\text{HP,delivered,j}}}{\dot{Q}_{\text{HP,j}}}
\]

\[
Q_{\text{bu,HW}} = Q_{\text{bu,HW}} = Q_{\text{HW,j}} - Q_{\text{HP,delivered,j}}
\]
Example calculation

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Q_{HP,HW,avail}$</td>
<td>276 kWh</td>
<td>$Q_{HP,HW,avail}$</td>
<td>9001 kWh</td>
</tr>
<tr>
<td>$Q_{HP,HW,del}$</td>
<td>14 kWh</td>
<td>$Q_{HP,HW,del}$</td>
<td>442 kWh</td>
</tr>
<tr>
<td>$E_{HP,HW}$</td>
<td>6 kWh</td>
<td>$E_{HP,HW}$</td>
<td>175 kWh</td>
</tr>
<tr>
<td>$\tau_{HP,HW}$</td>
<td>0.7 h</td>
<td>$\tau_{HP,HW}$</td>
<td>21.3 h</td>
</tr>
<tr>
<td>$Q_{bu,HW}$</td>
<td>0 kWh</td>
<td>$Q_{bu,HW}$</td>
<td>0 kWh</td>
</tr>
</tbody>
</table>
Example calculation

\[\tau_{HP,SH,\text{avail}} = 13,3 \text{ h} \]
\[Q_{HP,SH,\text{avail}} = 274 \text{ kWh} \]
\[Q_{HP,SH,\text{del}} = 274 \text{ kWh} \]
\[E_{HP,SH} = 83 \text{ kWh} \]
\[\tau_{HP,SH} = 13,3 \text{ h} \]
\[Q_{bu,SH} = 31 \text{ kWh} \]

\[\tau_{HP,SH,\text{avail}} = 411,7 \text{ h} \]
\[Q_{HP,SH,\text{avail}} = 9446 \text{ kWh} \]
\[Q_{HP,SH,\text{del}} = 4785 \text{ kWh} \]
\[E_{HP,SH} = 1016 \text{ kWh} \]
\[\tau_{HP,SH} = 208,5 \text{ h} \]
\[Q_{bu,SH} = 0 \text{ kWh} \]
Bin method: annual results

total delivered energy by heat pump

\[Q_{HP,\text{delivered}} = \sum_{j} Q_{HP,\text{delivered},j} \]

total delivered energy by back up heater

\[Q_{bu} = \sum_{j} Q_{bu,j} \]

total electricity for heat pump

\[E_{HP} = \sum_{j} E_{HP,j} \]

total electricity for back up heater

\[E_{bu} = \sum_{j} E_{bu,j} \]

total electricity for auxiliaries

\[E_{aux} = \sum_{j} E_{aux,j} \]

seasonal performance factor

\[SPF = \frac{Q_{HP,\text{delivered}} + Q_{bu}}{E_{HP} + E_{bu} + E_{aux}} \]
Annual results

$\text{SPF}_{\text{HW}} = 2.60$

$\text{SPF}_{\text{SH}} = 4.61$

$\text{SPF} = 4.17$
Standard house

Passive house
Standard house

- **space heating**
 - 160 m²
 - heat loss 10 kW (-12 °C)
 - SH heat demand 21 500 kWh/a (135 kWh/m².a),
 - typical meteorological year in Prague
 - heating system 50/40 °C 35/30 °C

- **hot water**
 - 4 persons, 45 l/per.day, heat losses 15 %
 - hot water temperature 55 °C, cold water temperature 15 °C
 - hot water heat demand 3 500 kWh/a (14 % from total demand)
Standard house

![Energy Consumption Chart]

- **kWh**
- **hot water**
- **heating**

Months:
- leden
- únor
- březen
- duben
- květen
- červen
- červenec
- srpen
- září
- říjen
- listopad
- prosinec

Energy consumption for different months.
Heat pump air-water

heat output 8.1 kW and COP = 3.4 … at A2/W35

<table>
<thead>
<tr>
<th>SPF</th>
<th>SPF<sub>HW</sub></th>
<th>SPF<sub>VSH</sub></th>
<th>SPF<sub>sys</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.50</td>
<td>2.84</td>
<td>2.79</td>
</tr>
<tr>
<td>50/40</td>
<td>35/30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.50</td>
<td>2.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.31</td>
<td>3.17</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Heat pump ground-water

heat output 9.9 kW and $COP = 4.5 \ldots$ at $B0/W35

\[\text{SPF}_{\text{HW}} = 2.30 \quad \text{and} \quad 35/30\]
\[\text{SPF}_{\text{SH}} = 3.61 \quad \text{and} \quad 4.62\]
\[\text{SPF}_{\text{sys}} = 3.35 \quad \text{and} \quad 4.05\]
Standard house

- recommendations for SPF from EN 15 450 can be met
 - high space heating demand compared to hot water preparation
 - low temperature heating system
 - high coverage of heat demand by heat pump (requirement for monovalent solutions)
 - well designed low-potential heat source
 - usual concept of heat pumps
Passive house

- **space heating**
 - 160 m²
 - heat loss 2.7 kW (-12 °C)
 - SH heat demand 3 200 kWh/a (20 kWh/m².a),
 - typical meteorological year in Prague
 - heating system 35/30 °C

- **hot water**
 - 4 persons, 45 l/per.day, heat losses 15 %
 - hot water temperature 55 °C, cold water temperature 15 °C
 - hot water heat demand 3 500 kWh/a (52 % from total demand)
Passive house

- **hot water**
- **heating**

Months: leden, únor, březen, duben, květen, červen, červenc, srpen, září, říjen, listopad, prosinec

kWh: 0-1400
Heat pump air-water

heat output 6.7 kW and COP = 3.2 … at A2/W35

SPF_{SH} = 2.94

SPF_{HW} = 2.40

SPF = 2.63
Heat pump ground-water

heat output 5,8 kW and COP = 4,3 … at B0/W35

SPF_{SH} = 4,15
SPF_{HW} = 2,12
SPF = 2,76
Passive house

- recommendation for SPF from EN 15450 cannot be met despite
 - low temperature system
 - monovalent solution
 - well designed low potential heat source
 but at
 - usual concept of heat pump
 - high hot water heat demand when compared to space heating (high temperature)

- gas boiler + solar system = 20 to 30 % lower primary energy consumption
Quo vadis heat pump in passive?

- reduction of hot water temperature to 45 °C
 - restriction of thermal comfort
 - hygienic requirements

- concept of heat pump for more effective water heating
 - heat pumps with subcooler to preheat cold water
 - cascade water heating, two stores in series, stratified heating