

Solar energy

- solar radiation
- definitions
- incident solar energy

centre of our planetary system – solar system

- diameter 1 392 000 km
 109 x larger than Earth
- weight 2 x 10³⁰ kg 330 000 x greater than Earth 99,86 % weight of solar system
- consists of: 70 % hydrogen H, 28 % helium He, 2 % other elements

- origin of solar energy in nuclear reactions
- nuclear fusion takes place inside the Sun at high temperatures 10⁶ K and pressures 10¹⁰ MPa synthesis of hydrogen nuclei (H) → helium nuclei (He)
- 564 x 10⁹ kg/s H transforms to 560 x 10⁹ kg/s He
- mass difference 4 x 10⁹ kg/s is radiated in the form of energy

$$E = m.c^2$$

radiative power:

3,6 x 10²⁶ W

specific radiated power (density):
 6 x 10⁷ W/m²

- core (to 23 % radius) temperature 10⁶ K, X-ray radiation 90 % of Sun's energy generated
- radiative zone (from 23 to 70 % radius) temperature falls down to 130 000 K radiative energy transfer (fotons)
- convective zone (from 70 to 100 % radius)
 lower density, convective energy transfer
- photosphere (visible surface of Sun) temperature 5800 K, solar radiation

Т

- Sun radiates as **perfect black body** with surface temperature **5800 K**
- spectral density of radiative solar flux (Planck's law)

$$E_{\check{c}}(\lambda,T) = \frac{2 \cdot \pi \cdot h \cdot c^2}{\lambda^5} \left[e^{\frac{h \cdot c}{k \cdot \lambda \cdot T}} - 1 \right]^{-1} \qquad [W/m^2.\mu m]$$

 $h = 6,6256 \times 10^{-34} \text{ J.s}$ Planck's constant

- $k = 1,3805 \times 10^{-23} \text{ J/K}$ Boltzmann's constant
- $c = 2,9979 \times 10^8 \text{ m/s}$ light velocity in vacuum

thermodynamic surface temperature [K]

Planck's law

7/55

Spectral density of radiative flux

Solar energy irradiated

Wien's law

maximum of radiative flux – seeking the extreme of Planck's function

Propagation of solar energy

- power spreads to larger area with increasing distance from Sun
- 0,5 x 10⁻⁹ of the irradiated Sun's power is incident on Earth radiative flux 1,7 x 10¹⁷ W
- solar "beams" considered as parallel (32')

12/55

Earth rotates around Sun

- solar radiative flux incident on area unit perpendicular to direction of propagation
- changes during the year, variable distance Sun-Earth (eliptic orbit) change of distance \pm 1,7 %, change of flux \pm 3,3 %
- value for mean distance Sun-Earth

solar constant G_{sc} = 1367 W/m² (value from WRC, 1 %)

original measurements Ch. Abbot in mountains 1322 W/m², today satellites

Merkur: 9040 W/m² ... Neptun: 1,5 W/m²

Radiative flux density out of atmosphere

Solar radiation passing the atmosphere

- solar radiation enters the atmosphere (no definite boundary, exosphere continuosly fading to interplanetary space)
- ionosphere (60 km) atmospheric gases O₂, N₂ absorb ultraviolet a x-ray radiation, becoming ionised
- ozonosphere (20 až 30 km)
 ozon O₃ absorbs rest of harmfull ultraviolet radiation (UVC)
- troposphere (lowest layer, clouds)
 water vapor, CO₂, dust, water droplets absorb infrared radiation

Solar radiation passing the atmosphere

Annual balance

reflection from atmosphere	34 %
absorption in atmosphere	19 %
incident and absorbed by Earth surface	47 %

- absorbed at surface
- emitted back
 14 % energy of environment
- evaporation (oceans)
- convection, winds
- biologic reactions, photosynthesis
- 14 % energy of environment
 23 % water energy
 10 % wind energy
 1 ‰ energy of biomass

Solar geometry

- surface slope β
- surface azimuth γ
- latitude ϕ
- time, date
- time angel τ
- declination δ
- Sun height *h*
- Sun azimuth γ_s
- incidence angle θ

Surface position

latitude ϕ <u>convention</u>: north (+), south (-)

angle between plane of equator and a line connecting Earth centre and given place on Earth surface

Surface position

high difference between north and south in one country

Norway: 57 to 71°

Sweden: 55 to 68°

Surface orientation

- slope angle β <u>convention</u>: horizontal 0°, vertical 90° angle between horizontal plane and surface plane
- surface azimuth γ <u>convention:</u> east (-), west (+), south (0°) angle between projection of surface normal and local meridian (south)

Declination

Declination δ

- tilt angle of Earth's axis due to precession movement during rotation
- angle between the line (connecting centres of Earth and Sun) and equator plane
- Iatitude of place on Earth where in given day in the noon the Sun is in zenith

Calculation of declination δ

• from calender date *DD.MM*.

 $\delta = 23,45^{\circ} \sin(0,98 \cdot DD + 29,7 \cdot MM - 109^{\circ})$

• from order of the day in the year *n*

$$\delta = 23,45^{\circ} \sin\left(360 \frac{284+n}{365}\right)$$

Calculation of declination δ

time (hour) angle au

- angle of virtual translation of Sun above local meridians due to Earth rotation, related to solar noon
- Earth is rotating around its axis (360°) once for 24 hours
 - \rightarrow translation of Sun by 15° over 1 hour
- time angle is calculated from solar time ST

$$\tau = 15^{\circ} \cdot (ST - 12)$$

<u>convention</u>: before noon (-), after noon (+)

- each timezone has a time related to local meridian timezones of 1 h ~ meridians of 15°
- CET: local solar time at meridian 15° east longitude
- **solar time:** daily time defined from virtual translation of Sun
- observer at reference meridian: local time = solar time
- observer out of reference meridian: local time ≠ solar time shift up to 30 minnutes

example:	solar noon	Prague	14,4°	12:02
		Brno	16,6 °	11:53
		Košice	21,2°	11:35

Sun altitude *h*

angle between line connecting surface-Sun and horizontal

 $\sin h = \sin \delta \cdot \sin \phi + \cos \delta \cdot \cos \phi \cdot \cos \tau$

• complement angle to 90°: zenith angle θ_z

$$\theta_z = 90^\circ - h$$

Air mass

 ratio between mass of atmosphere passed by solar radiation to mass, which would be passed if Sun is in zenith

$$AM = \frac{1}{\cos \theta_z} = \frac{1}{\sin h}$$

• $AM = 0$ outside atmosphere
• $AM = 1$ zenith $h = 90^{\circ}$
• $AM = 1,5$ $\theta_z = 48^{\circ}$ $h = 42^{\circ}$
• $AM = 2$ $\theta_z = 60^{\circ}$ $h = 30^{\circ}$

Change of spectrum with air mass

Time of sunrise and sunset

sunrise / sunset: altitude angle = 0°

```
\sin h = \sin \delta \cdot \sin \phi + \cos \delta \cdot \cos \phi \cdot \cos \tau = 0
```

time angle of sunrise / sunset

$$\tau_{1,2} = \arccos\left(-tg\phi \cdot tg\delta\right)$$

theoretical period of sunshine = time between sunrise and sunset

$$\tau_t = \frac{2 \cdot \tau_{1,2}}{15^\circ}$$

Azimuth of Sun $\gamma_{\rm s}$

 angle between projection of line connecting surface-Sun and local meridian (south)

Altitude and azimuth of Sun

Incidence angle

angle between line connecting surface-Sun and surface normal

 $\cos\theta = \sin h \cdot \cos \beta + \cos h \cdot \sin \beta \cdot \cos(\gamma_{s} - \gamma)$

35/55

Solar radiation - definitions

 solar irradiance G [W/m²] - radiative *power* incident at area unit, density of solar radiative flux

solar irradiation *H*[kWh/m², J/m²] – density of radiative *energy*, integral of flux density per time period, e.g. hour, day, ...

$$H = \int_{\tau_1}^{\tau_2} G.d\tau$$

- direct solar radiation (index "b", beam) without scattering in atmosphere angle dependent, significant intensity in one direction
- diffuse solar radiation (index "d", diffuse) scattered in atmosphere
 all-directions, isotropic: identical intesity in all direction
- reflected solar radiation (index "r", reflected) reflection from terrain, buildings usual surfaces reflect diffusively – considered together with diffuse radiation

Solar radiation - definitions

 direct normal solar irradiance (on surface perpendicular to direction of propagation) after passing atmosphere

$$G_{bn} = G_{on} \cdot \exp\left(-\frac{Z}{\varepsilon}\right)$$
 [W/m²]

 G_{on} normal solar irradiance above atmosphere

Z attenuation factor

$$\varepsilon = \frac{9,38076 \cdot \left[\sin h + (0,003 + \sin^2 h)^{0,5}\right]}{2,0015 \cdot (1 - L_v \cdot 10^{-4})} + 0,91018$$

- *h* Sun altitude
- *L*_v elevation above sea-level [m]

Attenuation factor

- how many times the clear atmosphere should be "heavier", to have the same transmissivity as the real polluted atmosphere
- polluted means also water vapor not only dust, emissions, etc.
- gives attenuation of solar flux when passing the real atmosphere

$$Z = \frac{\ln G_{0n} - \ln G_{bn}}{\ln G_{0n} - \ln G_{b0}}$$

 G_{b0} direct irradiance after passing completely clear atmosphere (with Z = 1)

40/55

Attenuation factor

Month	Average monthly values for <i>Z</i> for locations with different environment			
Wonth	mountains	contryside	cities	industrial
Ι.	1,5	2,1	3,1	4,1
II.	1,6	2,2	3,2	4,3
III.	1,8	2,5	3,5	4,7
IV.	1,9	2,9	4,0	5,3
V.	2,0	3,2	4,2	5,5
VI.	2,3	3,4	4,3	5,7
VII.	2,3	3,5	4,4	5,8
VIII.	2,3	3,3	4,3	5,7
IX.	2,1	2,9	4,0	5,3
Χ.	1,8	2,6	3,6	4,9
XI.	1,6	2,3	3,3	4,5
XII.	1,5	2,2	3,1	4,2
annual average	1,9	2,75	3,75	5,0

sim	plified	<u>: t</u>
	-	

mountains	Z =	2

countryside	Z = 3
-------------	-------

cities Z = 4

industrial

Z > 5

Solar irradiance on general surface

total solar irradiance on generally sloped and oriented surface

Solar irradiance on general surface

direct solar irradiance on given surface

$$G_{bT} = G_{bn} \cos \theta$$
 $= G_b \frac{\cos \theta}{\sin h} = G_b \frac{\cos \theta}{\cos \theta_z}$ [W/m²]

sky diffuse solar irradiance on given surface

$$G_{dT} = \left(\frac{1 + \cos\beta}{2}\right) G_d \qquad [W/m^2]$$

reflected diffuse solar irradiance on given surface

$$G_{rT} = \rho_g \left(\frac{1 - \cos\beta}{2}\right) \cdot \left(G_b + G_d\right)$$
 [W/m²]

Terrain reflectance (albedo)

- ratio between reflected and incident solar irradiance
- for calculations considered $\rho_{\rm g}$ = 0,2

usual surfaces	0,10 až 0,15
SNOW	0,90

Earth albedo (planet)

0,30 (average)

Solar irradiance on horizontal plane

direct solar irradiance on horizontal plane

$$G_b = G_{bn} \sin h$$
 [W/m²]

diffuse solar irradiance on horizontal plane

$$G_d = 0.33 \cdot (G_{on} - G_{bn}) \cdot \sin h \qquad [W/m^2]$$

simplified model: 1/3 of solar radiatin "lost" in atmosphere comes to horizontal plane (sin *h*) as a diffuse isotropic radiation

• theoretical daily solar irradiation, integration of irradiance on a plane from sunrise τ_1 to sunset τ_2

Influence of slope

optimum slope:

summer 20-30°

winter 75-90°

• diffuse daily solar irradiation, integration of diffuse solar irradiance on a plane from sunrise τ_1 to sunset τ_2

$$H_{T,day,dif} = \int_{ au_1}^{ au_2} G_{dT} d au$$

H_{T,day,th} H_{T,day.dif} G_{T,m}

tabelled in literature for given: slopes, azimuths, locations (attenuation factors)

Real duration of sunshine

duration of direct solar radiation > 120 W/m²

49/55

Real duration of sunshine

Month	Real duration of subshine τ s [h]			
	Praha	České Budějovice	Hradec Králové	Brno
I.	53	46	47	46
١١.	90	82	77	88
III.	157	136	149	142
IV.	187	164	185	163
V.	247	207	241	232
VI.	266	226	249	258
VII.	266	238	252	270
VIII.	238	219	233	230
IX.	190	174	188	179
Х.	117	108	115	116
XI.	53	55	48	56
XII.	35	36	42	30
Σ	1 899	1 691	1 826	1 810

Real duration of sunshine in CZ

source: ČHMÚ

1400 – 1900 h/year

Real duration of sunshine in Europe

Total irradiation on given plane

daily solar irradiation

$$H_{T,day} = \tau_r \cdot H_{T,day,th} + (1 - \tau_r) \cdot H_{T,day,dif}$$
 [kWh/(m².day)]

monthly solar irradiation

 $H_{T,mon} = n \cdot H_{T,day}$

[kWh/(m².mon)]

annual solar irradiation

$$H_{T,year} = \sum_{l}^{XII} H_{T,mon}$$

[kWh/(m².year)]

Annual solar irradiation in CZ

- slope 30 až 45°, south orientation:
- slope 90°, south orientation:

1000 až 1200 kWh/m² 750 až 900 kWh/m²

Optimum slope for Central Europe ?

Solar energy: typical values

solar irradiance G (power)

clear sky

800 to 1000 W/m²

semibright

overcast

100 to 300 W/m²

400 to 700 W/m²

solar irradiation *H* (energy)

winter 3 kWh/(m².day)

spring, autumn 5 kWh/(m².day)

summer 8 kWh/(m².day)