

Solar energy

- measurement
- source of data
- solar maps
- practical recalculation

Measurement of direct solar irradiance

pyrheliometer (actinometer) 5.7°

collimated sensor for measurement of solar radiation coming directly from Sun disc (and small portion of sky around)

measurement in incidence angle (tracking Sun)

standard for other sensors

Abbot pyrheliometer (1902)

Measurement of direct solar irradiance

Measurement of global solar irradiance

pyranometer (solarimeter)

measurement of hemispherical total (direct + diffuse) solar irradiance

thermocouple sensor - measurement of temperature difference temperature difference ~ solar irradiance

photovoltaic sensor – measurement of produced electric output problems: spectral sensitivity, temperature dependence ...

Thermocouple pyranometers

 segmented pyranometer (star pyranometer, Stern-pyranometer) measurement of temp difference between two segments (black and white)

multiple thermocouple

USA, Canada

Thermocouple pyranometers

disc pyranometer (Moll-Gorzynski)

measurement of temp difference between the disc and body of pyranometer multiple thermocouple

Europe

Quality?

Disc pyranometer Kipp&Zonen CM11 x noname producer (segmented pyranometer)

Photovoltaic sensors

Photovoltaic sensors: spectral sensitivity

Comparison of PV and TC sensor

Measurement of diffuse irradiance

pyranometers with a shading device (shading of direct irr.)

shading ring – adjustment once per 14 days with change of declination shading ball – tracking system

Measurement of duration of sunshine

heliograph (Campbell-Stokes heliograph)

glass ball 10 cm as lens, concentration of solar beams if direct component higher than critical, track is burn down on paper (heliogram), length of track = duration of sunshine

Measurement of duration of sunshine

electronic types

slots with photodiods

Measurement of albedo

albedometer (double-pyranometr)

upper pyranometer receives solar solar irradiance incident on given surface

lower pyranometer faces the surface and receives only reflected solar irradiance

Sources of solar radiation data

- PVGIS Photovoltaic Geographical Information System Joint Research Centre EC, originally for PV potential http://re.jrc.ec.europa.eu/pvgis
- Meteonorm software of Meteotest company complex meteorological reference with a catalogue of meteodata, http://www.meteonorm.com
- ČHMÚ Czech Hydrometeo Institute, http://www.chmu.cz
 climatic data hourly values, real measured data for sale
- Tables theoretical calculation for typical locations, corrected with relative duration of sunshine (for designers)

PV GIS - inputs

terrain model

digital model U.S. Geological Survey, Shuttle Radar Topography Mission (elevation, terrain profile)

climatic data

not using satellite measurements

566 European terrestrial meteostations

real measured climatic data

PV GIS - inputs

average monthly data

daily solar irradiation for given surface temperature in period of sunshine

based on terrain properties

elevation

shading by country profile

resolution 1 km²

PV GIS - method

- theoretical calculation of solar irradiance for clear sky at horizontal plane for given elevation and given atmosphere
- calculation of global solar irradiance at horizontal plane for real cloudiness at horizontal plane based on index of sky clearness (ratio real / clear sky; monthly averages from meteostations, interpolation to raster GIS)
- calculation of global solar irradiance for real cloudiness at given plane (surface)

dividing of total radiation to direct and diffuse, recalculation for given surface, albedo 15 %

PV GIS

Yearly sum of global irradiation incident on optimally-inclined south-oriented Global irradiation [kWh/m²] <600 800 1000 1200 1400 1600 1800 2000 2200>

PV GIS

Annual irradiation deficit due to shadowing (horizontal): 0.0 %

Month	Hh	Hopt	H(45)	lopt	TD	T24h	NDD	
Jan	756	1170	1240	63	-1.0	<mark>-1</mark> .3	560	
Feb	1390	1960	2050	57	1.7	1.1	459	
Mar	2400	2980	3020	45	4.8	4.0	386	
Apr	3740	4160	4080	32	10.7	9.1	184	
May	4850	4930	4720	20	16.2	14.1	77	
Jun	4900	4770	4500	12	19.0	16.9	34	
Jul	5060	5030	4780	16	20.8	18.8	6	
Aug	4290	4610	4480	27	20.7	18.7	37	
Sep	2860	3430	3450	41	15.8	14.4	164	
Oct	1860	2630	2740	55	10.9	10.0	332	
Nov	789	1100	1150	58	4.4	4.0	500	
Dec	537	795	842	62	0.2	-0.1	600	
Year	2790	3140	3090	34	10.3	9.1	3339	

Hh: Irradiation on horizontal plane (Wh/m2/day)

Hopt: Irradiation on optimally inclined plane (Wh/m2/day)

H(45): Irradiation on plane at angle: 45deg. (Wh/m2/day)

lopt: Optimal inclination (deg.)

TD: Average daytime temperature (°C)

T24h: 24 hour average of temperature (°C)

NDD: Number of heating degree-days (-)

source: PVGIS

PV GIS

Solar energy in Czech Republic

Solar energy in Europe

Yearly sum of global irradiation incident on optimally-inclined south-oriented Global irradiation [kWh/m²] <600 800 1000 1200 1400 1600 1800 2000 2200>

Solar energy in Germany

Germany and Czech Republic similar conditions: **1000 to 1200 kWh/m²** similar solar systems similar solar collectors similar energy yields

Solar energy in Austria

Solar potential of Austria starts where czech potential ends ...

Meteonorm

database of climate data

climate data from more than 8055 meteostations

- global solar irradiation
- duration of sunshine
- temperature
- humidity
- precipitation
- wind velocity and direction

monthly data (daily averages, monthly sums, ...)

1961-1990, 1996-2005

1981-2000

Meteonorm

terrestrial meteostations

CZ: uses 32 meteostations, 8 stations with measurement of solar energy

Europe: 1551 stations, from which 361 solar radiation

satellite data Heliosat II

with density of stations > 300 km: only satellite data with density of stations > 50 km: interpolation between terrestrial and satellite data

Meteonorm - method

 field (space) interpolation of monthly averages / sums of solar irradiance at *horizontal plane* according to location, elevation, topography, etc.

generator hourly climatic data

calculation of hourly data of total solar irradiance at *horizontal plane* with monthly sums = 10 years averages

- dividing total solar irradiance to direct and diffuse component for horizontal plane
- calculation of total solar irradiance at given plane (surface), considering given local profile of horizont

Meteonorm - outputs

ORM Version 6.0 B	eta 2 Site Name of site Athinai Type of site Stations Altitude [m] 107 Longitude [*] 23.7170 Latitude [*] 37.9670 Situation open Time zone 2.00 Time ref. [min.] -30	Data Radiation model Default (hour) Temperature model Default (hour) Tilt radiation model Perez Time period Temperature 1961-1990 Radiation 1981-1990 10 y. extreme monthly values	Format Output formats Standard Azimuth Inclination 0 30 Horizon file	Calculations Tesults :: Units tempo [10] Units radiat [10] [10] (MJ/m2 (MJ/m2 (RW/h/n (RW/h/n	oved prature (F) ion 12 m] 12 d]		Continue	
Intro	Site	Data	Format	Cal	culations		Exit	
adiation Temperature adiation Temperature 250 250 2150 2150 50 0 Jan	Precipitation Sunshine durat	ion Daily means of global radiation	n Oct Nov Dec iation horizontal	Jan: Feb Mar Apr Jun Jul Aug Sep Oct Nov	9.3 9.8 11.7 15.5 20.2 24.6 27.0 26.6 23.3 18.3 14.4	Hogen 66 75 104 146 182 200 213 200 156 106 66	Hous 105 97 122 155 177 189 203 208 183 140 93	
View results	raird Fi	● [10 min.] ● [d] ● [Mon]	Save	Dec Year	11.1	53 1564	83 1754	

Meteonorm - outputs

Meteonorm - outputs

hourly climatic data

for given conditions

30 formats for different simulation softwares

TMY, TRY, DRY

softwares TRNSYS, DOE, T-SOL, POLYSUN

Meteonorm – web application

Climate data worldwide

Get an impression of METEONORM's capabilities! With a few clicks you can create climate diagrams for any site in the world.

Please center the desired site on the map...

Hint: To navigate, either use the map tools, or directly use the mouse (doubleclick = center and zoom, drag = move map).

... or select site

either by address, eg. "Hamburg, Germany":

Bern, Switzerland

or by Geographical coordinates:

search	

... and get the result!

Geographical:	
Lat: 46.953 N	Lon: 7.423 E
UTM:	
x: 380004	y: 5201148
UTM zone:	32
Swiss Grid:	
x: 598810	y; 200213
Altitude:	555 masl
» show climate	data «
	VIZ.

© METEOTEST

Hourly data of solar irradiance

horizontal plane

Hourly data of solar irradiance

optimum slope 45°

Daily solar irradiation

horizontal plane

Daily solar irradiation

optimum slope 45°

Direct : diffuse = 50 : 50 %

Direct : diffuse in Europe

How irradiation changes?

Practical calculation

- given **measured** values of total solar irradiance on horizontal plane $G = (G_b + G_d)$
- need to recalculate it for other slope and orientation $G_T = G_{bT} + G_{dT}$ (+ G_{rT})

Splitting radiation to components

- known:
 - **measured** value of total solar irradiance on horizontal plane G
 - theoretical value of total solar irradiance on horizontal plane out of atmosphere G_{o}

$$G_o = G_{sc} \left(1 + 0.033 \cdot \cos \frac{360 \cdot n}{365} \right) \sin h$$

clearness index
$$k_{\tau} = \frac{G}{G_o}$$
 (analogy of transmittance)

Splitting radiation to components

 correlation between clearness index and ratio diffuse to total on horizontal plane exists

Recalculation of solar irradiance

- known:
 - **splitted** values of total solar irradiance on horizontal plane $G = G_{b} + G_{d}$
 - calculation on given sloped and oriented plane

Components of solar irradiance (detail)

- **direct** from geometry
- diffuse components:
 - **isotropic** uniform from sky hemisphere
 - circumsolar (around Sun) scattering of radiation around "beams" passing the atmosphere, considered as diffuse, certain dependency on direction
 - horizon brightening for clear sky part of sky above horizon is brighter than rest of sky, thicker layer ... larger scattering

anizotropic

$$G_{T} = G_{bT} + G_{dT,izo} + G_{dT,cs} + G_{dT,hz} + G_{rT}$$

Components of solar irradiance (detail)

Direct component

$$G_{bT} = G_{bn} \cos \theta$$

$$G_{b} = G_{bn} \cos \theta_{z}$$

$$R_{b} = \frac{G_{bT}}{G_{b}} = \frac{G_{bn} \cos \theta}{G_{bn} \cos \theta_{z}}$$

geometry factor
$$R_b = \frac{\cos\theta}{\cos\theta_z}$$

recalculation between horizontal and given $G_{bT} = G_b R_b$ plane

Diffuse components – models

- **isotropic** sky diffuse and reflected is **only** isotropic
- **anisotropic** sky except isotropic also other diffuse components
 - *Hay-Davies*: circumsolar (YES), horizon brightening (NO)
 - Hay-Davies-Klutcher-Reindl (HDKR): model HD + correction for horizon brightening
 - **Perez**: most difficult, very detail analysis of all 3 components

all given models of diffuse irradiance appear in simulation programs (ESP-r, TRNSYS, aj.)

Isotropic model

 solar irradiance in 3 components : direct, isotropic diffuse (uniform from sky) and diffuse reflected from terrain

$$G_{T} = G_{b}R_{b} + G_{d}\left(\frac{1+\cos\beta}{2}\right) + G\rho_{g}\left(\frac{1-\cos\beta}{2}\right)$$

view factor to the sky

view factor to the ground

Anizotropic model Hay-Davies

- simple extension of isotropic
- anisotropy index A_i: which part of diffuse is circumsolar

$$A_{i} = \frac{G_{b}}{G_{o}} = \frac{G_{bn} \sin h}{G_{on} \sin h} = \frac{G_{bn}}{G_{on}}$$

circumsolar is directional dependent

$$G_{T} = (G_{b} + G_{d}A_{i})R_{b} + G_{d}(1 - A_{i})\left(\frac{1 + \cos\beta}{2}\right) + G\rho_{g}\left(\frac{1 - \cos\beta}{2}\right)$$

clear sky: A_i is high, majority of diffuse is cirkumsolar
overcast without beam radiation: A_i is low, isotropic model enough

Anizotropic model HDKR

- modification of Hay-Davies
- introduces correction for horizon brightening

$$G_{T} = G_{b}R_{b} + G_{dT} + Gr_{g}\left(\frac{1 - \cos\beta}{2}\right)$$
$$= \left(G_{b} + G_{d}A_{i}\right)R_{b} + G_{d}\left\{\left(1 - A_{i}\right)\left(\frac{1 + \cos\beta}{2}\right)\left[1 + f\sin^{3}\left(\frac{\beta}{3}\right)\right]\right\} + G\rho_{g}\left(\frac{1 - \cos\beta}{2}\right)$$

modulating factor
$$f = \sqrt{\frac{G_b}{G}}$$

Perez anizotropic model

different from others

$$G_{dT} = G_d \left[\left(1 - F_1 \right) \left(\frac{1 + \cos \beta}{2} \right) + F_1 \frac{a}{b} + F_2 \sin \beta \right]$$

$$\frac{a}{b} = R_b$$

major part of day

- F_1 circumsolar coefficient (see further)
- *F*₂ horizon brightness coefficient (see further)
- *a* term considering that cone of circumsolar radiation reach the given surface

$a = \max [0, \cos \theta]$

b term considering that cone of circumsolar radiation reach the horizontal plane

 $b = \max [\cos 85, \cos \theta_z]$

Perez anizotropic model

 $F_{1} = \max\left[0, \left(f_{11} + f_{12}\Delta + \frac{\pi\theta_{z}}{180}f_{13}\right)\right]$

$$F_2 = f_{21} + f_{22}\Delta + \frac{\pi\theta_z}{180}f_{23}$$

brightness
$$\Delta = AM \frac{G_d}{G_{on}}$$

clearness
$$\varepsilon = \frac{\frac{G_d + G_{bn}}{G_d} + 5,535 \times 10^{-6} \theta_z^3}{1 + 5,535 \times 10^{-6} \theta_z^3}$$

Range of ε	f_{11}	f_{12}	f_{13}	f_{21}	f_{22}	f_{23}
1.000-1.065	-0.008	0.588	-0.062	-0.060	0.072	-0.022
1.065-1.230	0.130	0.683	-0.151	-0.019	0.066	-0.029
1.230-1.500	0.330	0.487	-0.221	0.055	-0.064	-0.026
1.500-1.950	0.568	0.187	-0.295	0.109	-0.152	0.014
1.950-2.800	0.873	-0.392	-0.362	0.226	-0.462	0.001
2.800-4.500	1.132	-1.237	-0.412	0.288	-0.823	0.056
4.500-6.200	1.060	-1.600	-0.359	0.264	-1.127	0.131
6.200–∞	0.678	-0.327	-0.250	0.156	-1.377	0.251

^a From Perez et al. (1990).