

Solar storage

- water storage
- PCM stores
- volume design
- stratification
- heat losses

Heat storage for solar thermal systems

during a year

HEAT STORE = HEART OF SOLAR SYSTEM

highly efficient solar collector + inefficient store = inefficient system

- storage density (capacity)
- size of storage (space demand)
- efficiency (loss, usability of storage exergy)
- price
- lifetime
- safety
- ekology

Possibilities

storage of sensible heat

- stored energy proportional to temperature change
- storage density: 100 to 300 MJ/m³

storage of latent heat

- use of phase change + sensible heat
- storage density: 200 to 500 MJ/m³

sorption storage

- storage of water (humidity) in solid (adsorption) or liquid (absorption) component, sorption process = heat rejection, regeneration = heat supply
- storage density: 500 to 1000 MJ/m³

storage with chemical reactions

- reversible chemical reaction with heat absorption and rejection
- storage density: 1000 to 3000 MJ/m³

under development

on the market

Sensible heat storage

$$Q = \int_{t_1}^{t_2} V \cdot \rho \cdot c \cdot dt = V \cdot \rho \cdot c \cdot (t_1 - t_2)$$

Working medium	Temperature range [°C]	Specific heat <i>c</i> [Wh/kg.K]	Density ρ [kg/m³]	Thermal capacity թ.c [Wh/m³.K]
water	0-100	1,16	998	1160
air	-50-1000	0,28	1,1	0,31
oil	0-400	0,44-0,5	800-900	350-450
gravel, sand	0-800	0,2	1800-2000	360-390
granit	0-801	0,21	2750	570
concrete	0-500	0,24	1900-2300	460-560
brick	0-1000	0,23	1400-1900	330-440
iron	0-800	0,13	7860	1000
gravek-water (37% water)	0-100	0,37	2200	810

Water as a storage medium

- available
- cheap
- non-toxic
- non-flammable
- good heat transfer (conductivity)
- high thermal capacity

- limited temperature range (0 to 100 °C)
- small surface tension (leaks)
- corrosivity

Water storage types

application

- hot water stores
- heating water stores, heat stores, combistores

number of heat exchangers

vessels (0), monovalent (1), bivalent (2), multivalent (...)

pressure

- pressurized
- non-pressurized (free water level)

storage period

- short-term (daily)
- long-term (seasonal)

Hot water stores – heat exchangers

Combined tanks (HW + SH)

flow heat exchanger

tank in tank

flow-tank heat exchanger

Combined tanks (HW + SH)

What size ?

- domestic hot water
 - 50 I/m² collector aperture area

- combined with heating
 - 50 to 70 l/m² collector aperture area
 - larger if backup heater supply heat into store
 - biomass boiler (logs) 50 l/kW
 - automatic biomass boiler (pellets) 25 l/kW
 - heat pump 15 to 30 l/kW
 - gas boilers 25 l/kW

Comparison of volumes

What size ?

- solar combitank
 - one for solar system and back-up
 - one for DHW and SH

- example
 - solar system 10 m²
 - biomass boiler 10 kW
 - 2/3 volume = cca 500 l
 - storage size 750 l

Which solar store ?

tank in tank

small heat transfer area small loads 1 – 2 persons

flow HX

Exergy = usable energy (temperature)

thermal stratification = high efficiency, high solar fraction

Factors influencing stratification

- aspect ratio: height / diameter
- heated water inlet
- hot water load
- cold water inlet
- heat losses
- vertical conduction in storage wall
- vertical conduction in water content

indirect charge - direct discharge

small solar systems for hot water

heat exchanger in bottom part – collector efficiency, use of volume

direct charge – indirect discharge

larger solar systems with external heat exchanger (combisystems) Fig: bad location of HW HX (obr), better to use full heigth

Influence of supply and load

indirect charge – indirect discharge

simple combisystems

large mixing effects

direct charge – direct discharge

advanced storages with stratification devices

charging and discharging at layers (piston effect)

Heat storage with stratification

- stratification (thermal layering) of storage volume

 heat storage to layers with same or similar temperature
- upper part with significantly higher temperatures than bottom part (cold until fully charged)
- reduction of back-up heating

increase of usable gains

increase of solar fraction

Stratified storage

- assumption: low flow to achieve higher temperature difference at solar collector (30 to 40 K)
- e.g. solar system control to constant collector output temperature, "once – through" mode

- stratification devices
 - passive
 - active

Controlled thermal stratification

water enters the layer with similar density = similar temperature (passive) advanced control (active)

Stratification devices

Stratification devices

Heat losses

- influence storage effectivity
- thermal insulation
- pipe connections
 - thermal bridges, degradation of stratification

Heat loss of storage

specific heat loss of cylindric storage tank U.A [W/K]

- *D*_e storage diameter (no ins);
- s_{ins} insulation thickness
- s_w wall thickness
- $\begin{array}{ll} \alpha_{i} & \text{heat transfer coefficient} \\ & (\text{liquid}) \end{array}$

 $\begin{array}{lll} D_{\rm e} + 2.s_{\rm ins} \ ({\rm with \ ins}), \ L \ {\rm height} \\ \lambda_{\rm ins} & {\rm insulation \ conductivity} \\ \lambda_{\rm w} & {\rm wall \ conductivity} \\ \alpha_{\rm e} & {\rm heat \ transfer \ coefficient} \\ ({\rm ambient}) \end{array}$

Heat loss of storage

heat loss of storage (power)

$$\dot{Q}_{I,st} = U \cdot A \cdot (t_{st} - t_a) \qquad [W]$$

heat loss of storage (energy)

$$Q_{I,st} = \int \dot{Q}_{I,st} d\tau \qquad [MJ, kWh]$$
$$Q_{I,st} = \sum_{i=1}^{n} U \cdot A \cdot (t_{st,i} - t_{a,i}) \cdot \Delta \tau_i$$

Requirements (standard, legislation)

Minimum insulation thickness

Influence of pipe connection

thermosiphon (convection) brakes – natural check-valve, elimination of losses by in-pipe convection

Influence of pipe connection

compact (integrated) solution

- minimizing of installation defects
- optimized hydraulics
- efficiency
- space savings
- placement into residential rooms

Trends

- phase change accompanied with heat absorption / heat rejection
- liquid gas: undesirable change of volume
- liquid solid: suitable (melting solidification)

$$Q = V \cdot \left[\rho_s \cdot c_s(t_m - t_1) + \rho_m \cdot l_m \right] + \left[\rho_l \cdot c_l(t_2 - t_m) \right]$$

sensible heat solid phase latent heat sensible heat liquid phase

where t_m ... phase change temperature $t_1 < t_m < t_2$ I_t ... latent heat of melting - solidification

Heat storage with phase change

Heat storage with phase change

Heat storage with phase change

Phase change materials (PCM)

anorganic PCM:

- salt hydrates (Glauber salt)
- + high latent heat
- + high thermal conductivity
- corrosive
- subcooling
- phase segregation

organic PCM:

wax, parafin, fatty acids

- + chemically, thermally stable
- + noncorrosive
- low thermal conductivity
- low latent heat

Phase change materials (PCM)

required properties

- suitable temperature of phase change
 - for solar systems: 35 70 °C, choice of temperature
- Iow thermal conductivity (parafins) irregular melting, reduction of storage capacity
 - use of conductive matrix, composite materials (carbon fibres)
- change of volume at phase change not critical (up to 15 %)
- corrosion (salts)
- need for longterm stability (cyclic change of phase)
- subcooling: to use it or not?

Subcooling

Product	Melting	Heat
	point ¹	storage
		capacity ²
	[°C]	[kJ/kg]
RT -4	-4	179
RT 3	4	198
RT 4	4	182
RT 5	5	198
RT 6	6	175
RT 21	21	134
RT 27	27	179
RT 31	29	169
RT 42	41	174
RT 50	49	168
RT 52	52	173
RT 55	55	172
RT 58	58	178
RT 60	60	144
RT 62	61	146
RT 65	65	152
RT 82	82	176
RT 100	100	124

Applications - macrocapsules

Applications - macrocapsules

Applications - microcapsules

Use of PCM in solar systems

Use of PCM in solar systems

