


# Heat sources for heat pumps

- ground
- water
- air





# Natural and waste energy

- energy from solar radiation = ambient energy
  - solar radiation: 200 to 1000 W/m<sup>2</sup>
  - air
  - precipitation, surface water, well water
  - ground
- geothermal water in specific areas only
- waste energy

technology processes, laundry, washing, ventilation

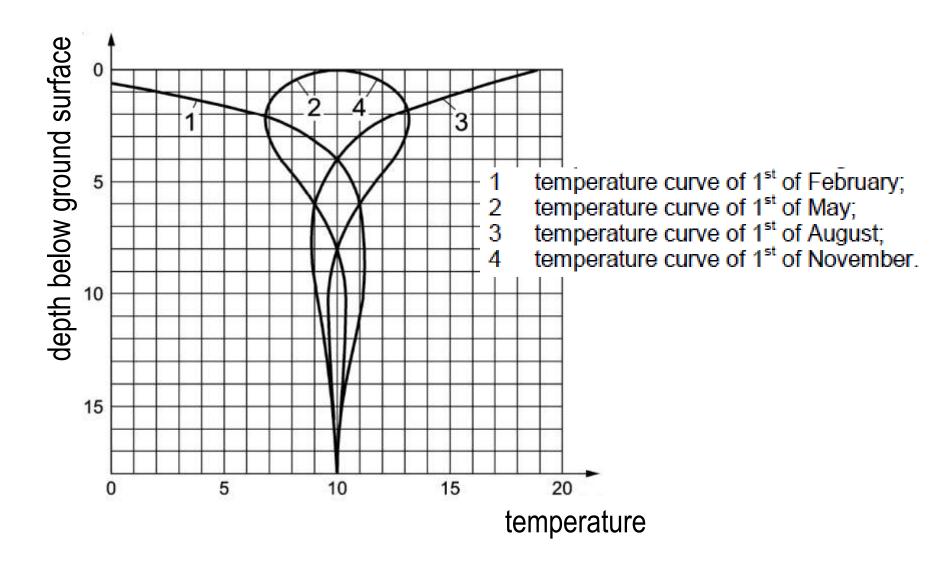


#### **Ground energy**

#### specific power

heat flow from ambient 10 to 40 W/m<sup>2</sup> (in average) heat flow from Earth core 0,04 to 0,06 W/m<sup>2</sup> Only!

#### temperature


under 2-5 m stable conditions > 10 °C geothermic temperature gradient 3 K/100 m

#### thermal conductivity

dry sand soil 1,1 W/m.K average 2 W/m.K wet granite 3,3 W/m.K



### **Ground temperature**





### **Ground energy extraction**

#### 1. vertical bore heat exchangers

drilled dry ground boreholes

#### 2. horizontal ground heat exchangers

subsurface HX

#### 3. wells

extraction of ground water – different technology, different heat pump application



#### 1 Ground vertical boreholes



- heat extraction by dry boreholes under 200 m
- usually under 100 m
- not space demanding (on ground surface)
- 1 or 2 pipe circuits in borehole
- primary circuit temperatures:from -4 °C to +4 °C



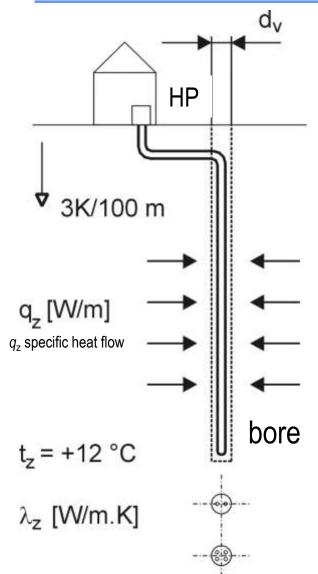
# Knowledge of geology!

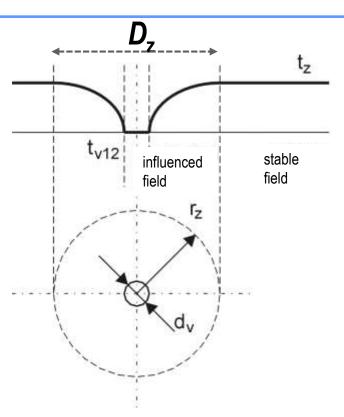
#### design of length and number of boreholes

thermal properties of the ground

risk of undersizing – reveals after years,

decrease of heat output and COP, insufficient borehole regeneration


#### ecology


disruption of water horizons

interconnection of deep horizons with high quality ground water with shallow horizons with low quality water



### 1 Ground vertical - Thermal resistance of ground





thermal resistance

$$R_z = \frac{1}{2\pi \cdot \lambda_z} \ln \frac{D_z}{d_z}$$

diameter of influenced field

$$D_{z} = 4 \text{ to } 6 \text{ m}$$

diameter of borehole

$$d_{\rm v}$$
 = 100 to 150 mm

HDPE DN25, DN32

thermal conductivity  $\lambda_z = 1.0$  to 3.0 W/m.K

[m.K/W]



# 1 Ground vertical - Specific heat flow

$$q_{z,l} = \frac{t_z - t_{v12}}{R_z} \quad [W/m]$$

borehole temperature  $t_{v12}$  = around 0 °C (+4 to - 4°C)

ground temperature in stable field  $t_z = 12 \text{ °C } (+3 \text{ K/100 m})$ 

| Ground type                   | specific heat flow $q_{z,l}$ [W/m] |
|-------------------------------|------------------------------------|
| granite with water            | 100                                |
| conductive stone              | 80                                 |
| standard solid stone, average | 55                                 |
| dry sands, low conductivity   | 30                                 |



# 1 Ground vertical - Specific heat flow

EN 15 450 (VDI 4650)

| Ground type                                                                           | Specific heat extraction rate |                             |
|---------------------------------------------------------------------------------------|-------------------------------|-----------------------------|
|                                                                                       | operation period<br>1 800 h   | operation period<br>2 400 h |
| General guidance values:                                                              |                               |                             |
| poor underground (dry sediment and $\lambda$ < 1,5 W/(m K)                            | 25 W/m                        | 20 W/m                      |
| normal underground and water-saturated sediment $1.5 < \lambda < 3.0 \text{ W/(m K)}$ | 60 W/m                        | 50 W/m                      |
| consolidated rock with high thermal conductivity $\lambda > 3.0 \text{ W/(m K)}$      | 84 W/m                        | 70 W/m                      |
| Individual ground types:                                                              |                               |                             |
| dry gravel or sand                                                                    | < 25 W/m                      | < 20 W/m                    |
| gravel or sand saturated with water                                                   | 65 to 80 W/m                  | 55 to 65 W/m                |
| gravel or sand and strong ground water flow                                           | 80 to 100 W/m                 | 80 to 100 W/m               |
| moist clay                                                                            | 35 to 50 W/m                  | 30 to 40 W/m                |
| massive limestone                                                                     | 55 to 70 W/m                  | 45 to 60 W/m                |
| sandstone                                                                             | 65 to 80 W/m                  | 55 to 65 W/m                |
| siliceous magmatite (e.g.granite)                                                     | 65 to 85 W/m                  | 55 to 70 W/m                |
| basic magmatite (e.g. basalt)                                                         | 40 to 65 W/m                  | 35 to 55 W/m                |
| diorite                                                                               | 70 to 85 W/m                  | 60 to 70 W/m                |
| NOTE values valid for heat pump systems with a heating output up to 30 kW             |                               |                             |

annual extracted energy should be between 100 and 150 kWh/m



### 1 Ground vertical - Depth (length) of borehole

for nominal conditions determine the heat power and COP

$$\dot{Q}_{v} = \dot{Q}_{k} \left( 1 - \frac{1}{COP} \right)$$

$$I_{v} = \frac{\dot{Q}_{v}}{q_{z}}$$
 [m]  $q_{z}$  considered according to assumed operation time of HP  $q_{z}$  specific heat flow (1800 h or 2400 h)

- final borehole depth given by drilling technology similar technology to water wells, not more than 100 m
- more boreholes = division of flowrate = lower pressure losses



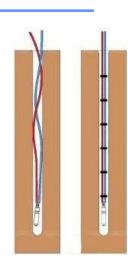
# 1 Alternative sizing

- determination of annual heat delivered by HP Q<sub>HP.del</sub> and COP
- determination of annual extracted energy from borehole Q<sub>v</sub>

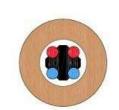
$$Q_{V} = Q_{del} \left( 1 - \frac{1}{COP} \right)$$
 inverse value

• operation period  $\Delta \tau_{HP}$ : 1800 h (space heating only),

2400 h (space heating and DHW)

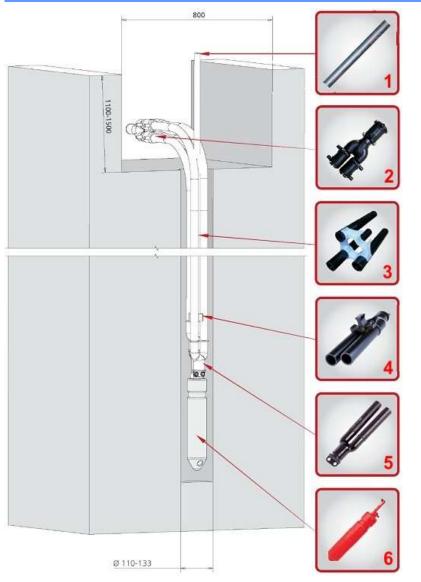

determination of average extraction power (at evaporator)

$$\dot{Q}_{V} = \frac{Q_{V}}{\Delta \tau_{HP}}$$
 design power for borehole depth calculation




#### 1 Borehole construction

- suitable piping: HD-PE, PE-RC (crack resistant), PN16 (100m)
- minimum distance > 5 m horizontal gap to avoid the coupling of influenced fields
- better > 10 m: drilling is not completely vertical (deflection could be 2 m), so distance larger than 10 % of borehole length
- ground water flow: suitable location of boreholes to avoid mutual cooling
- borehole filling by bentonite (cement mixture)
   can't be filled by extracted soil! = soil is insulator










#### 1 Borehole construction



**injection pipe** – filling the borehole with bentonite

reduction - connection of circuits

**distance bar** – distance between pipes

support bar

**U piece** – bottom of borehole

anchor





- house, heat load 10 kW (t<sub>e,N</sub> = -12 °C, t<sub>i</sub> = 20 °C)
- heat pump  $Q_{HP} = 10 \text{ kW}$ , COP = 4.0 (at B0/W35)
- heating season, monovalent operation
  - $t_{\text{e.av}}$  = 4,3 °C,  $t_{\text{i.av}}$  = 20 °C, 225 days of heating, correction factor 0,75
- space heating demand  $Q_{SH} = 19.9 \text{ MWh/a}$   $Q_{SH} = 225 \cdot 24 \cdot \varepsilon \cdot \dot{Q}_N \cdot \frac{\left(t_{i,avg} t_{e,avg}\right)}{\left(t_{i,N} t_{e,N}\right)}$
- hot water demand  $Q_{HW} = 3.5 \text{ MWh/a}$   $Q_{HW} = 365 \cdot \frac{V_{HW,day} \cdot \rho \cdot c \cdot (t_{HW} t_{CW})}{3.6 \times 10^6}$



- theoretical approach (power approach)
- cooling power of the heat pump

$$Q_v = Q_{HP} (1 - 1/COP) = 7.5 \text{ kW}$$

borehole

thermal conductivity 
$$\lambda_z = 2.5$$
 W/mK,  $d_v = 150$  mm,  $D_z = 4$  m,  $t_z = 12$  °C,  $t_{v1} = +2$  °C,  $t_{v2} = -2$  °C

- thermal resistence of ground  $R_z = \frac{1}{2\pi \cdot \lambda_z} \ln \frac{D_z}{d_y} = 0,22 \text{ mK/W}$
- specific heat power  $q_z = (t_z t_{v12}) / R_z = 54 \text{ W/m}$
- borehole length (depth)  $I_v = \frac{Q_v}{q_z}$  [m]  $I_v = 140$  m



- practical approach (demand approach): heating only 1800 h
- heat extracted by heat pump  $Q_{ex} = Q_{SH} (1 1/COP) = 14,9 MWh$
- average cooling power of heat pump Q<sub>v</sub> = Q<sub>ex</sub> / 1800 h = 8.3 kW
- <u>tables:</u> average soil with  $1.5 < \lambda_z < 3.0 \dots q_z = 60 \text{ W/m} (1800 \text{ h})$
- borehole length (depth)  $l_v = 138 \text{ m}$



- practical approach (demand approach): SH+HW 2400 h
- heat extracted

$$Q_{ex} = (Q_{SH} + Q_{HW})^*(1 - 1/COP) = 17,5 \text{ MWh}$$

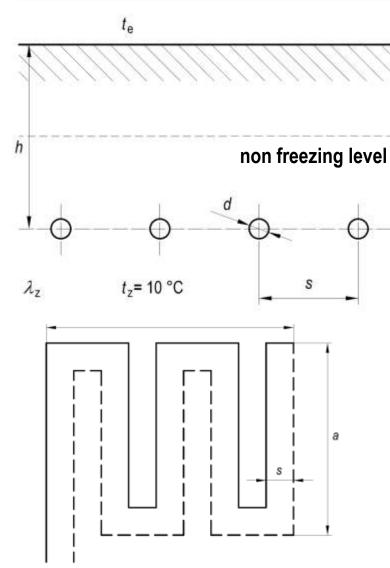
- average cooling power of heat pump Q<sub>v</sub> = Q<sub>ex</sub> / 2400 h = 7.3 kW
- tables: average soil with 1,5 <  $\lambda_z$  < 3,0


 $q_z = 50 \text{ W/m} (2400 \text{ h})$ 

borehole length (depth)

 $I_{v} = 146 \text{ m}$ 




### 2 Horizontal ground heat exchangers



- heat extraction from subsurface layer (up to 2 m depth)
- possible influence of vegetation
- space demanding excavation
- large land need
- HX temperatures around 0 °C



# 2 Horizontal ground heat exchangers



depth min. 0,2 m under non freezing level h = 0,6 to 2 m

pipe distance (spacing) s = min. 0,8 m to 1,1 m

HDPE pipes, diameter 25 – 40 mm

thermal conductivity  $\lambda_{7} = 1,0$  to 3,0 W/m.K

$$R_{z} = \frac{1}{2\pi \cdot \lambda_{z}} \ln \left[ \frac{2 \cdot s}{\pi \cdot d} \sinh \left( 2\pi \frac{h}{s} \right) \right] \quad [\text{m.K/W}]$$



# 2 Horizontal ground heat exchangers

$$q_{z,l} = \frac{t_z - t_{v12}}{R_z} \quad [W/m]$$

temperature in pipes

$$t_{v12}$$
 = around 0 °C (+4 to - 4°C)

temperature of ground

$$t_z = 10 \, ^{\circ}\text{C}$$

| Soil type                        | specific heat flow $q_{z,l}$ [W/m] |
|----------------------------------|------------------------------------|
| dry sands, non cohesive          | 10 – 15                            |
| dry solid soil                   | 15 – 20                            |
| moist solid soil                 | 20 – 25                            |
| soil saturated with ground water | 25 – 30                            |
| soil with ground water flow      | 35 – 40                            |



# 2 Length and area of ground HX

$$I_{v} = \frac{\dot{Q}_{v}}{q_{z}} = \frac{\dot{Q}_{k} - P_{el}}{q_{z}} \quad [m]$$

$$S = \frac{\dot{Q}_{V} \cdot s}{q_{z,l}} = \frac{\dot{Q}_{V}}{q_{z,A}} \quad [m^{2}]$$

for a distance s = 1 m $q_{z,l}$  becomes  $q_{z,A}$ 

| Soil type                        | specific heat flow $q_{z,A}$ [W/m²] |
|----------------------------------|-------------------------------------|
| dry sands, non cohesive          | 10 – 15                             |
| dry solid soil                   | 15 – 20                             |
| moist solid soil                 | 20 – 25                             |
| soil saturated with ground water | 25 – 30                             |
| soil with ground water flow      | 35 – 40                             |



# 2 Specific heat flow EN 15 450 (VDI 4650)

| Ground quality                 | Specific heat extraction flow rate |                                   |  |
|--------------------------------|------------------------------------|-----------------------------------|--|
|                                | operation period 1 800 h per year  | operation period 2 400 h per year |  |
| dry, non cohesive soil         | 10 W/m²                            | 8 W/m²                            |  |
| moist cohesive soil            | 20 to 30 W/m²                      | 16 to 24 W/m <sup>2</sup>         |  |
| water saturated sand or gravel | 40 W/m²                            | 32 W/m²                           |  |

annual extracted energy should be between 50 and 70 kWh/m<sup>2</sup>

for nominal conditions determine heat power and COP (at B0/W35)

$$\dot{Q}_{v} = \dot{Q}_{k} \left( 1 - \frac{1}{COP} \right)$$

$$S = \frac{\dot{Q}_{V}}{q_{z,A}} \quad [m^2]$$

 $q_{z,A}$  is considered according to assumed operation time of HP (1800, 2400 h)

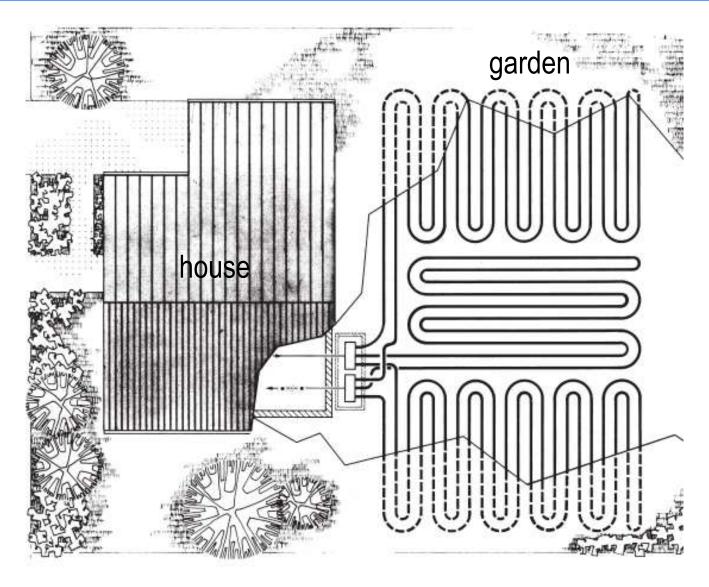


# 2 Alternative sizing

- determination of annual heat delivered by HP Q<sub>HP,del</sub> and COP
- determination of annual extracted energy from borehole Q

$$Q_{v} = Q_{del} \left( 1 - \frac{1}{COP} \right)$$

- operation period  $\Delta \tau_{HP}$ : 1800 (space heating only), 2400 (space heating and DHW)
- determination of average extraction power (at evaporator)



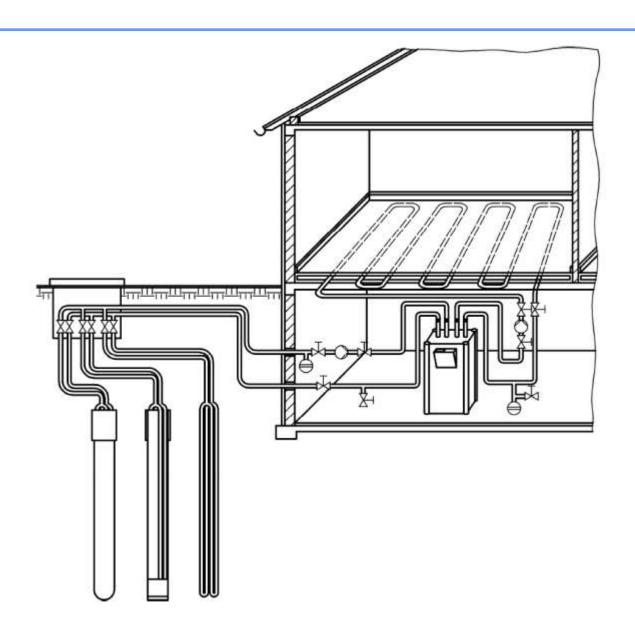

# 2 Construction of ground HX

- length of cirucits should not exceed 100 m for DN25 ... or 400 m for DN40 (pressure loss limitation)
- distribution of flowrate to number of circuits
- circuit from one pipe, no junctions
- surface above HX permeable for rain (no concrete of asphalt layers) for regeneration
- mind the roots!
- make documentation of piping location



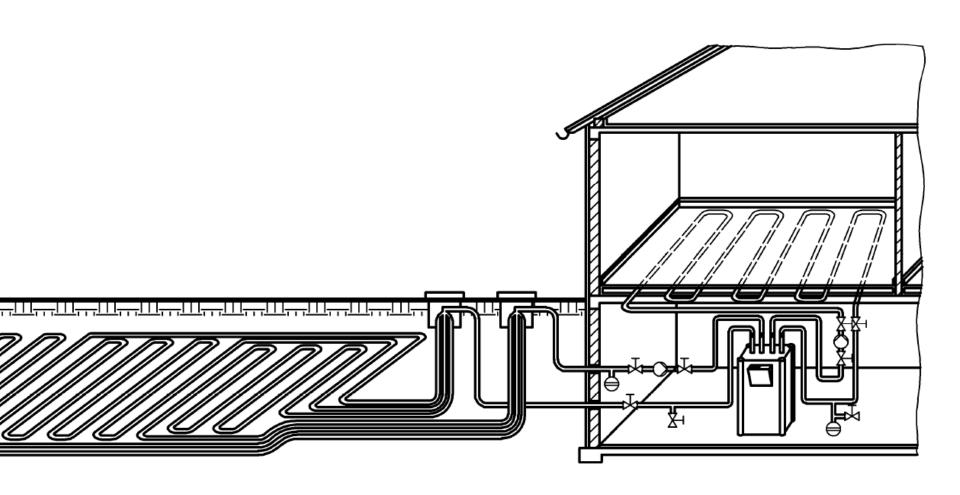
# 2 Construction of ground HX






# 2 Connection to house (borehole, HX)

- brines (t<sub>F</sub> < -10°C): propylenglycol-water (30 / 70 %)</li>
   ethanol-water (40 / 60 %)
- pipe with slope from distributor deaeration
- similar lengths of circuits easy hydraulic balancing
- passage into building in insulated protector
- safety distance from building constructions (basements) –
   pipes under freezing point
- attention for crossing the water installation
- piping inside building in insulation condensation and freezing




#### 2 Borehole connection to house





#### 2 Ground HX connection to house





#### 2 Distributor





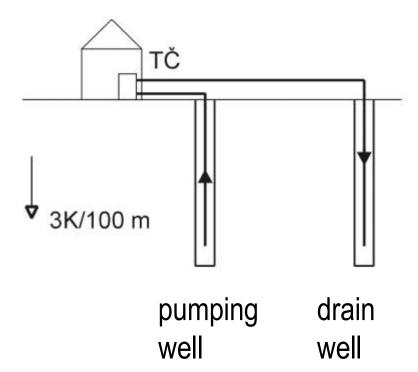
distributor located outside:
platic casing
concrete casing



#### 3 Ground water



- chemical quality
- quantity
- stable water temperature = average annual air temperature




#### Water

- warm waste water: cooling processes t = 20 to 25 °C
- surface water: rivers, lakes
   t = 0 to 18 °C, temperature infulenced by ambient climate
- ground water: wells, boreholes
   t = 7 to 10 °C, uniform temperature during the year
- geothermal water: deep boreholes
   t = 10 to 13 °C, temperature gradient 3 K/100 m
   t > 25 °C, geothermal water



#### 3 Ground water



pumping well (max. 15 m deep:

deeper well means greater pump power)

**drain** well (15 m horizontally from pumping well)

cooling by 3 to 4 K

 $r Q_k = 10 \text{ kW} \sim 1500 \text{ l/h} (0.4 \text{ kg/s})$ 

water quantity (constant flowrate)

$$\dot{M}_{v} = \frac{Q_{v}}{c_{v}(t_{v1} - t_{v2})}$$
 [kg/s

pumping test: 30 days, or more!



# 3 Pumping and drain well





### 3 Water quality

#### chemical content

- corrosion (stainless steel) chlorides, oxygen
- minerals (heat exchanger fouling)
- fine particles filters with automatic cleaning

Table A.1 — Requirements for the quality of extraction water as a heat source

| components / units of measurement               | value       |
|-------------------------------------------------|-------------|
| organic material (possibility of sedimentation) | none        |
| ph – value                                      | 6,5 to 9    |
| electrical conductivity (µS/cm)                 | 50 to 1 000 |
| chloride (mg/litre)                             | < 300       |
| iron and manganese (mg/litre)                   | < 1         |
| sulfate (mg/litre)                              | 0 to 150    |
| O <sub>2</sub> – content (mg/litre)             | < 2         |
| chlorine (mg/litre)                             | 0 to 5      |
| nitrate (mg/litre)                              | 0 to 100    |



# 3 Example: water well sizing

- heat pump  $Q_{HP} = 10 \text{ kW}$ , COP = 4.0
- cooling power of the heat pump

$$Q_v = Q_{HP} (1 - 1/COP) = 7.5 \text{ kW}$$

- $t_{v1} = 10 \, ^{\circ}\text{C}, \, \Delta t = 4 \, \text{K}$
- water flowrate Mw = 0,45 kg/s = 27 l/min

= 1 600 l/hour

 $= 39\ 000\ I/day$ 

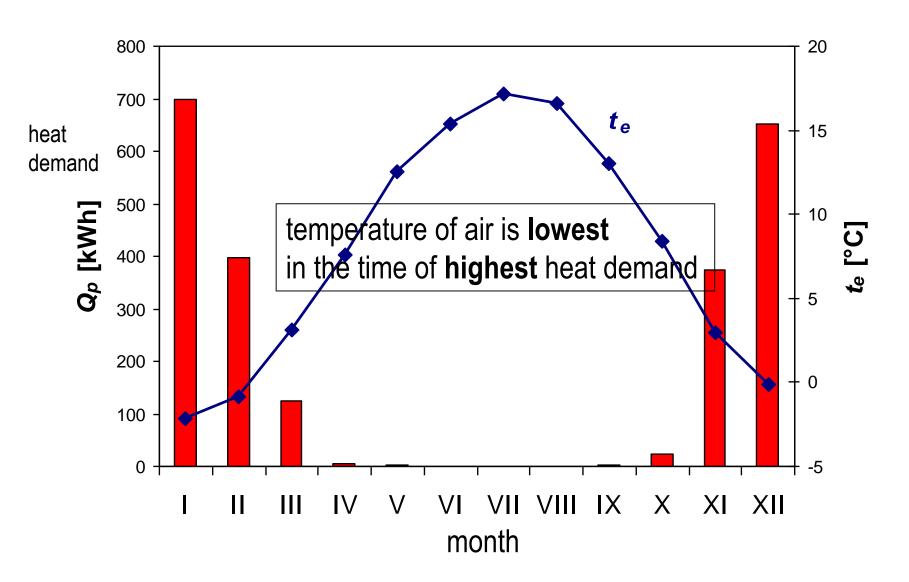
. . .



#### 4 Ambient air



- use of ambient heat
- heat power dependent on climate conditions


winter: COP < 3

summer: COP > 4

- mostly bivalent operation
- removal of condensate
- noise (large flowrates)



#### 4 Ambient air





# 4 Ambient air – energy content, enthalpy

#### enthalpy

$$h = c_a \cdot t + (I_0 + c_D \cdot t) \cdot x = 1010 \cdot t + (2,5.10^6 + 1840 \cdot t) \cdot x$$

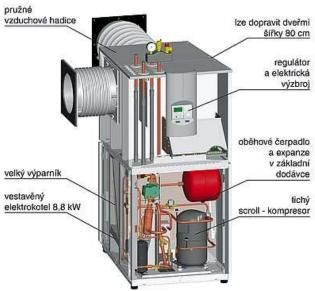
 $c_a$  specific heat of dry air, v J/(kg.K);

t air temperature, v °C;

 $I_0$  latent heat of water (evaporation), v J/kg;

 $c_D$  specific heat of water vapour, v J/(kg.K);

x specific humidity of air, v kg w/kg da.


$$\dot{V}_{v} = \frac{\dot{Q}_{v}}{\rho \cdot (h_{v1} - h_{v2})}$$

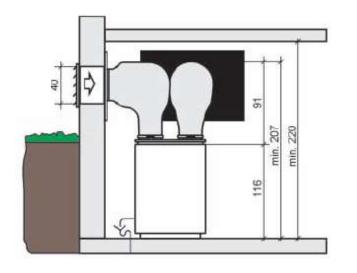


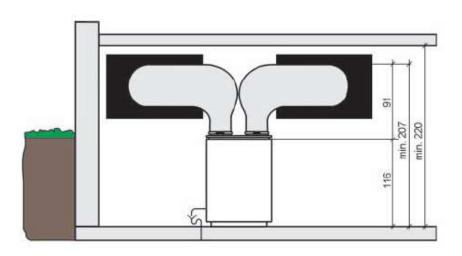
#### **4 Construction**

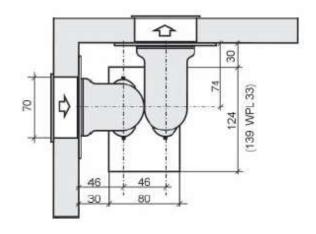
#### indoor units

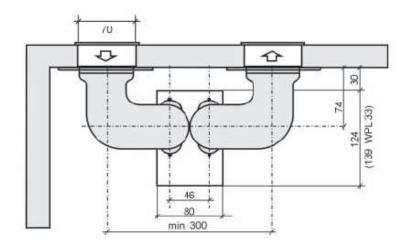





#### outdoor units




### 4 Indoor units







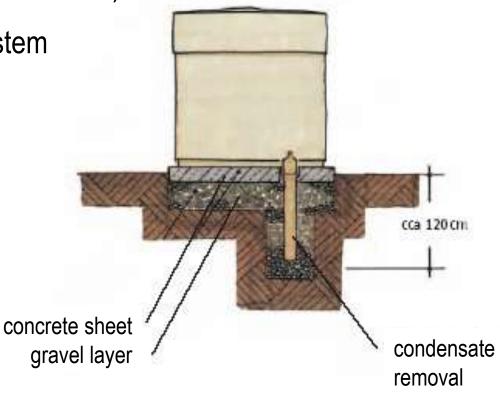




# **4 Outdoor units**






#### 4 Condensate

- condensation of water content in air at evaporator of heat pump
- removal of condensate

drainage to ground (outdoor units)

connection to sewer system (indoor units)

transfer pump

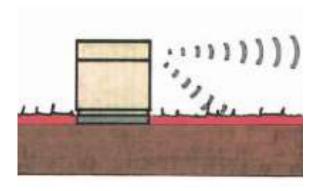


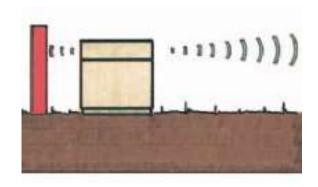


#### 4 Frost

- frosting at evaporator surface
  - reduction of heat transfer
  - decrease of evaporator pressure and temperature, power, COP
  - reduction of cross section, increase of pressure loss, increase of fan power, operation restriction

#### defrosting


- internal cycle (favourable): hot vapor, reverse cycle
- outter heating: electric cables at evaporator


by air above +3 °C, HP is OFF, fan is ON



# 4 Noise protection

- large flowrates at evaporator, big fan source of noise
  - grass not refection surfaces
  - noise barriers (walls, green fences)
  - protection by distance
  - antivibrating layers under HP
  - noise reducers for piping (water, air)



