

Biomass

- energy recovery
- types of biomass

Biomass

traditional source

- the basic energy source in the past
- biomass energy potential 10 times exceeds the energy needs

						Industrial Revolution				ì	Future Transformations						
						Transition to fossil fuels 7			□ Deviation from fossil energy								
3500	-3000	-2500	-2000	-1500	-1000	-500	0	500	1000	1500	2000	2500	3000	3500	4000	4500	

BIOMASS

coal = 155 years
oil = 42 years
natural gas = 67 years
Nuclear energy III. = 85 years

Biomass

local source - available in the given location

- cultivation promotes local employment
- utilization supports the local economy
- development of regions
- resource decentralization, energy self-sufficiency

Biomass – by type:

of animal origin

of plant origin – <u>phytomass</u>

Biomass – of animal origin:

excrements - agricultural production,

stable animals

waste – landfilling,

sewage from water treatment plant

Biomass – of plant origin – <u>phytomass</u>

fire wood,

pellets,

briquettes

Biomass – of plant origin – <u>fytomass</u>

straw bundles

grass bundles

agro-pellets

Biomass – of plant origin – <u>fytomass</u>

energy plants – targeted cultivars

cereals and grasses (parcels)

crops - oil (seeds), sugars (fruits, sugar beet, etc.), starches (corn,

potatoes, etc.)

Biomass – fytomass

Fytomass (plants) is the basis of all produced biomass (food chain)

energy aspects

- replacement of fossil fuels
- reduction of fuel imports
- increasing domestic fuel reserves

social aspects

- non-food production of land (arable + meadows) not used for food, <u>does not compete</u> on food market = <u>use of surplus</u> land
- local energy
- local employment
- local economy

ecological aspects

intensive vegetation

CO₂ from the air is used for photosynthesis

 consistent and efficient cultivation of land, landscaping, landscape care

ecological aspects

anti-erosion measures, water retention in the landscape

YES

ecological aspects

- new species, species diversity, stability of ecosystems
- waste disposal, the efficient management of agricultural waste and surpluses

Energy use of biomass

Energy use from biomass

- direct use
 - combustion production of hot water, hot air, steam
- indirect use as secondary fuel (storage, use)
 - dry processes
 - gasification gases
 - pyrolysis pyrolysis oils, gases
 - wet processes
 - ethanol fermentation fermentation and distillation of bio-alcohol (bioethanol)
 - extraction of vegetable oil crushing, pressing, production of crude oil
 - esterification of crude oils, methyl esters of oils, production of biodiesel
 - anaerobic digestion biogas production of animal or plant origin
 - uncontrolled fermentation landfill gas formation

Photosynthesis

Use solar radiation, synthesis of organic compounds from carbon dioxide CO₂, and water H₂O (+ chlorophyll as photosynthesis catalyst)

Organic compounds = chemical energy stored in carbohydrate molecules such as sugars.

Oxygen is also released as a waste product.

$$6 \text{ CO}_2 + 6 \text{ H}_2\text{O} + \text{solar energy} = \text{C}_6\text{H}_{12}\text{O}_6 + 6 \text{ O}_2$$
 (+ trace elements from the soil)

phytomass = renewable fuel,

accumulated solar energy

carbon cycle of phytomass

During the formation of the phytomass the carbon is removed from the atmosphere and deposited in the organic material

phytomass = CO₂ neutral

(agreement: emission factor $CO_2 = 0$)

Monitor also CO, C_xH_v, dust, NO_x emissions!

in units of Mg C /ha (/hectare)

Phytomass sources

natural waste biomass

- residues from growing agricultural crops for food purposes,
- residues after harvest (straw, etc.),
- residues from forestry (branches, bark);

energy plants

- intentionally grown for energy use,
- fast-growing woody plants, cereals and grasses, sugar and starchy crops, oilseeds, etc.

industrial waste biomass

- wood biomass from the wood processing industry
- waste from agricultural and food production

Phytomass fuel – wood substance

logs wood

- cutting, splitting
- residual biomass
- use in households
- low price
- high storage space requirements
- low proportion of automation
- boiler with manual attachment

Phytomass fuel – wood substance

- Chips size 1 to 10 cm
- Green chips
 - fresh wood from forest extraction (needles, leaves)
 - for power plants, wood burning plant

Brown chips

- old wood: more bark, without needles
- low humidity, good storage

White chips

debarked wood, sawmills, plates production

automatic boilers (loose fuel)

Extraction and processing of wood biomass

Wood logging

- 70% will be used for further processing
- 30% of mining is waste (mining residues)
- another 25% is waste from wood processing

Mining residues processing

- mining residues (small branches...)
 - Source of nutrients for the soil. The protectors warn of "clearing" the forest
 - soil polluted biomass
 - Crushers ... for contaminated biomass
 - Chippers ... for clean biomass

Mining residues processing

Crushers

Energy forestry

fast growing trees

- varieties of Poplar, Willow,...
- Production plantation, 3-6 years
- repeated harvest
- chips for automatic boilers

reasons

- sources of waste biomass are limited
- there is no biomass market local character
- target: 50-60% biomass targeted cultivation

Energy forestry

Straw

Straw (dried stalks of grain)

- low density
- pressed packages
- high content of volatile (80%)
- high content of chlorine (fertilizers,..)
- high ash content
- low softening point and melting point
- special straw boilers

Grasses

- grasses, fast growing plants
 - annual: industrial Canabis

- multi-year: no need to plant stands, seed savings
 sorrel(Rumex OK2) endurance of stands,
 height 1.8 2.5 m, yield 10 t / ha
- for pellets and briquettes
- automatic or manual boilers
- combustion in large appliances

Standardized fuels - briquettes

wooden briquettes

- high quality wood waste sawdust, shavings
- high pressure compression
- high calorific value min. 16.5 MJ / kg
- size 4 10 cm, length 30 cm

agro briquettes

- more accessible materiál
- stalks, straw, oilseed rape
- contains a lot of ash
- calorific value from 12 to 17 MJ / kg

boilers with manual insertion

Standardized fuels - pellets

White pellets (wooden)

- quality clean wood waste sawdust
- high pressure compression
- diameter 6 to 8 mm, length up to 50 mm
- high calorific value min. 16.5 MJ / kg

- hay, rapeseed straw,
- can not be burned in the same boilers
 as white pellets high ash content
- calorific value 15.4 MJ / kg

automatic boilers (bulk fuel)

small and large sources

Chemical composition of biomass

druh	С	Н	0	N	s	Cl
wood	50	6,2	43	0,1	0,02	0,01
straw	49	6,3	43	0,5	0,1	0,4
cereal grain	46	6,6	45	2,0	0,1	0,1
hay (grass)	49	6,3	43	1,4	0,2	8,0
brown coal	68,9	6,0	23	1,0	1,0	0,03

high oxygen content (O) instead?? / at the expense of carbon (C)

.... lower calorific value

content of volatile flammability: wood 75 %

straw, grass: 80 - 85%

Ash content (inorganic substances)

biomass

straw, grass: 3 - 5%

bark: up to 6%

wood mass: <2%</p>

wood pellets: <1%</p>

plant pellets: up to 5%

it also depends on the method:

cultivation

storage

black coal 10 - 15%

brown coal 10 - 30%

coal briquettes 10 - 40%

Ash content (inorganic substances)

ash melting temperature

- So high in most phytomass species 1100 to 1200 °C
- straw, grass 800 to 900 °C

If: melting temperature < flame temperature</p>

- melting ash
- sealing the grate and baking
- it is necessary to combine two fuels low melting ash + high melting ash
- special boilers

Humidity

definitions for energy use

typical values

fresh wood 40 to 60%

green plants: up to 80%

wood after 1 - 2 years drying out: 15 to 20%

pellets, briquettes: <10%</p>

depends on the method and length of storage

Humidity

influence on calorific value

- effectiveness
- power
- fuel consumption

combustion quality

- emission
- boiler lifetime

$$H = \frac{18.6 \cdot (100 - W) - 2.453 \cdot W}{100}$$

Energy content in biomass

calorific value

- the amount of heat you get by burning (oxidizing) 1 kg of wood
- is measured calorimetrically

combustion heat

- higher on the heat of the water
- the difference can be released by condensation from flue gas

Average estimates of forest wood biomass potentials in Europe.

