

Biomass - combustion

- combustion proces
- combustion equipment
- emission
- designing
- economy

Direct combustion of phytomass

combustion = oxidation

$$\begin{aligned} & \mathsf{C_6H_{12}O_6} \\ & + \mathsf{O_2} \\ & = \mathsf{CO_2} \\ & + \mathsf{H_2O} \\ & + \mathsf{energy released} \end{aligned}$$

$$C_6H_{12}O_6 + 6 O_2 = 6 CO_2 + 6 H_2O + energy released$$

Direct combustion of phytomass

Phytomass ... high O₂ content

- lower calorific value than fossil fuels (=carbonization, hydrocarbons, high calorific value), phytomass: higher fuel consumption, higher fuel volumes
- high volatile* content (70-80% in dry matter), release at temperatures > 200 ° C
 multistage combustion: gasification + combustion of gases
- large quantities of combustion gases = considerably longer flames, longer burning time: greater space for burning gases
- Difficult penetration of combustion air into flames, increased need for air supply for combustion: : Higher combustion air excess ratio λ

Phytomass ... low ash content (excluding stalks)

^{*} volatile content is material that can be easily transformed into a vapor.

Combustion (fireplace stove)

Primary Air

- comes in through the ash pan when you first start the stove
- going and up to operating temperature

Combustion (fireplace stove)

Secondary Air

pre heated air, enters the chamber around the top of door

- after start up to keep the stove operating efficiently
- flushes down over the glass it keeps it clear

Combustion (fireplace stove)

Tertiary Air

- comes in through air bars on the back of the stove,
- not controllable
- inject more oxygen/air into the chamber
- improve the efficiency ... the gases from the primary combustion are re-ignited for a cleaner and more efficient burn

Direct combustion of phytomass

Burners

fireplace (3) drying, gasification

combustion chamber (10) combustion of gases

heat exchanger (12) heat transfer

air supply
primary (7)
secondary (9)

flue gas extraction fan (15) ash extraction (4)

Direct combustion of phytomass (endotermic)

1. fuel heating (up to 100° C)

heat from the burning fuel, increasing its temperature

2. drying of fuel (100 to 150 ° C)

evaporation of water bound in fuel, leaves as water vapor

3. pyrolytic decomposition (150 - 230°C) - no oxygen access

- complex hydrocarbon chains degrade to simpler: gaseous hydrocarbons, CO
- Pyrolytic decomposition does not require the presence of oxygen

Direct combustion of phytomass (exotermic)

4. dry gasification (230 to 500°C) - with oxygen access

- thermal decomposition of the fuel above the ignition temperature (230 °C) in the furnace, oxygen supplied in the primary combustion air, releasing heat
- effects on solid and liquid products of pyrolysis (carbon, tar) oxidation

5. solid carbon gasification (500 to 700°C)

with the contribution of CO₂, H₂O, O₂, combustible CO is formed: visible flame

6. oxidation of combustible gases (700 to 1400°C), optimum 900°C

- combustion of gases generated in the previous phases supply of secondary combustion air for perfect combustion
- temperatures above 1200°C: load of the furnace and exchanger structure, NOx formation,

combustion air excess ratio λ

Combustion equipment - requirements

- simple operation and easy maintenance fuel loading, ash removal
- high quality combustion, low emissions
 CO, C_xH_y, NO_x
- high efficiency
- wide range of performance control while maintaining burning quality
- long life
- traffic safety
- low costs investment, operational

Combustion equipment - types

small family-run facilities

- piece wood, briquettes fireplaces, stoves, gasification boilers
- pellets automatic operation

middle appliances (schools, retirement homes, ...)

necessary individual assessment: pellets x chips

large appliances (heating plants)

- hot water, steam boilers
- possibility of combustion of lower quality fuels with a humidity above 30%, bulk material
- the low price x the heat losses in the distribution system

Local Biomass Combustion (family houses)

open fireplaces

high combustion air consumption, low efficiency <20%</p>

fireplace inserts

- closed furnace, low temperature in the furnace
- low efficiency <40%</p>

stoves

- stand-alone interior heaters
- fans, storage pads, pellet burners
- efficiency (for pellet stoves) up to 80%

tiled stove

accumulation mass in flue gas path, delayed heat transfer

Local Biomass Combustion (family houses)

wood fireplace stove

pellet fireplace stove

ceramic glazed tile accumulating (ceramic glazed tile) stoves

Central biomass combustion device

(family houses)

classic solid fuel boilers (wood)

gasifying boilers for piece wood

automatic pellet boilers (chips)

Central biomass combustion device

(family houses)

classic solid fuel boilers (wood)

- fuel burned directly in the furnace burning on the grate
- regulation with limited air supply, limited power control, efficiency 65 70%

classic solid fuel boilers (wood)

storage requirement difficult regulation, emissions

Central biomass combustion device

(family houses)

gasifying boilers for piece wood

gasification in the furnace, then combustion of gases in the combustion chamber

power regulation 50 - 100% (primary air supply), efficiency 80 - 90% (at nominal

power)

Central biomass combustion device

(family houses)

automatic pellet boilers (chips)

- gasification in the furnace, combustion of gases in the combustion chamber
- free operation, feeder, burner
- power regulation 25 100%, efficiency 85 92% in the control range

automatic pellet boilers

automatic chip boilers

automatic fuel supply automatic ash extraction

automatic pellet boilers

wall pellet boiler

2 - 7 kW

(lowenergy houses)

Integration of pellet burner in boiler

Combustion equipment for chips

Biomass combustion devices (large appliances)

combustion on the grate (in the layer)

spalování na roštu (ve vrstvě)

- fuel with high humidity> 40%, outputs up to 50 MW, efficiency up to 85%
- multiple air supply (optimization), multistage combustion

Grate boilers for wood chips, sawdust up to 10 MW

Big combustion and afterburner chamber

big accumulation – fireclay

tertiary air

Straw burning equipment

Biomass combustion devices (large appliances)

fluidized bed combustion

- uptake of fuel particles by flue gas and air, high heat transfer and substance, circulation layer, efficiency 85-88%
- only 700 to 900 ° C, lower NOx production, rapid combustion, wet biomass
- cyclone separators

Fluidized bed boilers - fluidized bed combustion

stationary fluidized bed grate

smaller output boilers

circulating fluidized bed, cyclone

burning less valuable fuels

Efficiency x Power Regulation

- Power regulation by limiting the combustion air supply
 - manual stoking the boilers
 - incomplete combustion
 - CO emissions
 - reduction in efficiency ------

- Power regulation by limiting fuel supply
 - automatic boilers on pellets, chips

Principles of proper combustion of biomass

wood burning

- 2-3 degree: wood gasification + combustion of generated gases (wood gas)
- furnace gasification, partial air supply (primary air),> 200°C
- combustion in post-combustion (afterburner) chamber, air supply (secondary, eventually tertiary)
- heat transfer for further use (exchanger), flue gas temperature 150°C (chimney loss x chimney draft)

requirements for efficient combustion

- sufficient air supply (excess air I = 1.5 to 2.5)
- low fuel humidity (10 to 20%)
- sufficiently high combustion temperatures (800 to 900 ° C)
- stability of temperature conditions in boiler (accumulation lining, low heat loss)
- stability of pressure conditions in boiler (suitable dimensioning of flue gas path)
- constant operating conditions

Poor combustion

non-compliance with proper combustion principles

biofuel with inappropriate properties (high humidity)

inappropriate device (eg coal-fired boiler used for wood burning) without

power control

result

- low efficiency
- short boiler life
- high pollutant emissions

Phytomass combustion emissions

carbon dioxide (CO₂)

neutral balance, optimal combustion: CO₂ content about 12%

nitrogen oxides (NO_x)

- nitrogen content in phytomass 0.1 to 0.5% (coal 1.4%)
- oxidation of nitrogen in combustion air dependent on combustion temperature (keep up to 1200°C!)

solid particles (dust)

- ash, unburned soot depends mainly on fuel humidity
- the ash: content of wood is a small,

significant component in straw

Phytomass combustion emissions

carbon monoxide (CO)

- product of incomplete combustion, wet fuel, insufficient air supply
- CO is rich in energy ... high CO content in flue gas = low efficiency
- combustion quality indicator, recommended: concentration below 0.1%

hydrocarbons (C_xH_y)

- due to pyrolytic decomposition
- especially when start firing (below 600 ° C), smoke

sulfur oxides (SO_x)

very small amount in straw 0.1% (1% brown coal)

Principles of connection of boilers to systems

- flue gas dew point (condensation)
 - flue gas condensation, flue gas dew point temperature t_{rb} = 50 to 60 ° C
 - aggressive condensate, corrosion

zdroj: Trnobranský

Principles of connection of boilers to systems

three-way thermostatic mixing valve

- boiler inlet water temperature > 65 ° C
- preheating the return water to the boiler
- fireplace (high combustion air excess): no protection required, low dew point

Fuel tank

Pellet storage facilities

pneumatic fuel transport, suction head in the warehouse, emergency tank at the boiler with filling sensor

Pellet storage facilities

Chips storage facilities

Chips storage facilities

Chips storage facilities

