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Summary. This paper is focused on developing the theory which describes the Mullins effect 
in human arterial tissue. Cyclic uni-axial tensile tests were performed to obtain data 
characterizing the Mullins effect in arterial tissue. 

In order to account anisotropy of arterial tissue, longitudinally as well as circumferentially 
resected samples of human aorta were tested. Each sample underwent repeated (four times) 
loading and unloading to a certain value of maximum stretch. This limiting stretch increased 
in several consecutive steps.  

The arterial wall is considered as hyperelastic, locally orthotropic, incompressible material. 
A strain energy function is adopted in the limiting fiber extensibility form. Description of 
primary material response, followed by material stress softening in the repeated cycles, is 
based on pseudo-elastic constitutive model proposed by Dorfmann and Ogden. This theory is 
developed using anisotropic form of the softening variable. The primary loading curve and the 
fourth unloading curve of each set of cycles are chosen for regression analysis. The model 
with thus estimated parameters successfully fits experimental data and is suitable for 
application in biomedicine. 

 
 
1 INTRODUCTION 

Due to cardiac cycle, arteries are subjected to cyclic loading and unloading in their 
physiological conditions. In vitro, mechanical response of arteries is mostly realized by cyclic 
inflation tests and tensile tests. Some irreversible effects are observed during these tests. One 
of them is known as the Mullins effect (Fig.1). This softening phenomenon is characterized 
by the following features: when a so called virgin material (previously undeformed) is loaded 
to a certain value of deformation (under uniaxial tension), stress–stretch curve follows so 
called primary loading curve (Fig.1 – green curve). Subsequent unloading (Fig.1 – yellow and 
red curve) exhibits stress softening. Next reloading follows the former unloading curve until 
the previous maximum stretch is reached. At this moment the loading path starts to trace the 
primary loading curve.  

Purely elastic response of soft tissues is often modeled within the framework of 
hyperelasticity, see [1, 2] for examples. Concerning with the Mullins effect, soft tissue is most 
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frequently modeled within two conceptions. The first one is based on Continuum Damage 
Mechanics (CDM). The CDM describes the Mullins effect using a system of internal 
variables reflecting irreversible effects. See e.g. Peña et al. [3], who considered the internal 
variables corresponding to separated contribution of the matrix and the fibers in a model of 
arterial wall. 

 The second conception results from theory of pseudo-elasticity. Ogden and Roxburgh [4], 
Beatty and Krisnaswamy [5] and Dorfmann and Ogden [6] formulated pseudo-elastic models 
of the Mullins effect in rubber-like materials. Such a model describes irreversible behavior 
incorporating softening variable, which is included into the strain energy density function 
(SEDF). Peña and Doblaré [7] suggested an anisotropic extension of the pseudo-elastic model 
of Ogden and Roxburgh [4] with anisotropic form of softening variable. The variable is 
different for matrix and fibers, which are arranged in two preferred directions. This model 
successfully described the softening behavior of sheep vena cava under uniaxial tension.  

The aim of this paper is to extend the theory of pseudo-elasticity developed by Dorfmann 
and Ogden [6]. The pseudo-energy function in limiting fiber extensibility form [8] is used. 
Contrary Dorfmann and Ogden, the anisotropic form of the softening variable is suggested.  

2 METHODS 

In order to illustrate the Mullins effect in human aorta, cyclic uniaxial tension tests were 
performed on MTS Mini Bionix testing machine (MTS, Eden Prairie, USA). Two samples of 
human thoracic aorta were resected from cadaveric donors with the approval of the Ethic 
Committee of the University Hospital Na Kralovskych Vinohradech in Prague. Respecting 
anisotropy of the aorta, samples were resected in the circumferential and longitudinal 
directions. The arteries were stored in physiological solution at a temperature of about 5°C till 
the beginning of the experiment. Post mortem interval was about 40–48 hours. The 
temperature during the test was 23°C.   

An extension and loading force were measured by MTS testing machine. Five levels of 
maximum stretch were performed during the tests: λm = 1.1, λm = 1.2, λm = 1.3, λm = 1.4 and λm 
= 1.5, where λm is the maximum ratio between current length l and referential length L. 
Recorded data are shown in Fig. 1. 

Each level represented four-cycle of loading. Considering the incompressibility of the 
tissue, loading stresses were obtained according to the following relation: 

F F l

s L B H

σ
⋅

= =
⋅ ⋅

 

(1) 

where F denotes applied force and s the current cross-section. B and H denote width and 
thickness of a sample in the reference configuration. 
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Figure 1: Stress–strain response of the human thoracic aorta under cyclic uniaxial tension . Maximum stretch 
has increased after 4 cycles due to stabilizing mechanical response of the aorta. Colored points correspond to 

cycles used within regression analysis 

 

3 MODEL 

Primary response of the artery was modeled as an incompressible, hyperelastic, locally 
orthotropic continuum. Deformation was described with the deformation gradient F, which 
was assumed in the form of: 

1
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(2) 

where λi are principal stretches. Strain energy density function for incompressible 
rectangular sample embodied in x1x2 plane of Cartesian coordinate system x1x2x3, is expressed 
in form: 

)()( 40aniso10iso0
IWIWW +=  (3) 

which reflects the microstructure of an transversally isotropic material, composed of a 
ground isotropic matrix and fibrous network. Ii are the principal invariants of the right 
Cauchy-Green tensor. 

SEDF is incorporated in limiting fiber extensibility form as follows [8]: 
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where µ and c  are stress-like material parameters, Jf +1 is the limiting stretch of the 
reinforcing fibres, β is an angle of enforcing fibres with coordinate axis x1. 
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Let us assume that sample is loaded in the direction of coordinate axis xα (α = 1,2). 
Corresponding Cauchy stresses in the direction of (unidirectional) loading are: 

1, 2,
0

0

W
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∂
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(5) 

where p0 denotes a Lagrange multiplier associated with the incompressibility constrain 
λ1λ2λ3=1. The Eq. (5) describes stresses at the “virgin” material (primary loading). Within 
unloading a stress softening occurs, and stresses should be reduced by a factor ηα: 
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The softening variable ηα may be active or inactive and this change from inactive to active 
state is induced when unloading is initiated: 
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The reduction of stresses (Mullins effect, ηα < 1) occurs as soon as the actual energy W0 is 
less than maximum value Wmα attained during the whole previous deformation history. The 
stress reduction increases with the increasing difference Wmα - W0 and is approximated by the 
following empirical formula: 
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where f(t) can be any monotonically increasing and bounded function, e.g. Error function 
Erf(t) [4]. Resulting model has 6 parameters: c, µ, β, Jf, r, s that should be identified by 
experiments.  

We suggest material parameter kα in the form which incorporates material anisotropy, in 
the meaning of the Young modulus of the material in the initial (virgin) reference 
configuration. Its advantage is in not increasing number of material parameters: 
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4 RESULTS  

Due to the testing machine design, only displacements in loading directions (α =1 and α=2) 
were measured. Displacements in the transversal direction were eliminated using the 
boundary conditions of zero transversal stresses. Parameters p0 and p were determined from 
Eq.  (5, 6) considering σ3 = 0.  
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Primary loading curve and fourth unloading curve for λm = 1.1 and λm = 1.2 were included 
in the regression analysis. Assuming the idealized Mullins effect, following reloading was 
identified with previous unloading. Primary material responses of loading with λm > 1.2 were 
not considered because of their non-convexity in longitudinal samples (see Fig. 1). Regression 
analysis was performed using weighted least square method in Maple (Maplesoft, Waterloo, 
Canada).  

Using form of the softening variable expressed by Error function, we estimated parameters 
Jf, c, µ, sin2

β, r and s that are summarized in Table 1.  Experimental and numerical results for 
loading and unloading of the thoracic aorta are shown in Fig. 2. Regression results were also 
checked on the condition I4 >1. Because I4 models reinforcement with collagen fibers they 
may contribute to the stored energy only in tensile strains. It was found that this condition was 
satisfied in all data points. 

 

Figure 2: Comparison of the experiment and numerical model of loading and unloading curves in human 
thoracic aorta with maximum stretches of   λm = 1.1 and λm = 1.2.  Numerical simulations have been performed 
using the pseudo-elastic model with anisotropic form of the softening variable. The softening variable has been 

designed in form incorporating Error function. 

Table 1: Material parameters of the pseudo-elastic model 

 

 

 

 

5 DISCUSSION 

The strain-induced stress softening in human aorta has been described by means of the 
stress reduction factor η. Particular mathematical form of η has been adopted from the 
pseudo-elasticity theory introduced by Dorfmann and Ogden [4] who successfully described 
the Mullins effect in particle-reinforced rubber. We used anisotropic form of the softening 

sample Material parameter 
Jf  [1] 0.0786 
c [Pa] 96401 
µ[Pa] 116744 

sin2
β [1] 0.5863 

s[1] 2.47E-5 

 
Thoracic 

aorta 
 
 
 r[1] 3.2058 
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variable in contrast of these authors. It means that model is able to reflect dependence of the 
stress softening on the direction in which the tension is applied. 

The main advantage of the present model is a small number of material parameters. Only 2 
of the proposed 6 parameters belong to the pseudo-elastic theory. The anisotropic model 
suggested by Peña and Doblaré [7] fits the data using 7 pseudo-elastic material parameters. 

However present study has some limitations.  The first one is due to the limited number of 
experimental data. Also the design of the experiment does not enable to measure transversal 
stretches. Finally, the model in the present form is not able to describe permanent strains 
usually observed during cyclic experiments. 

In spite of all these limitations, experimental and numerical simulations show good 
agreement. 

6 CONCLUSIONS 

Under cyclic loading conditions, large strain-induced softening (known as the Mullins 
effect) was observed during uniaxial tension of human thoracic aorta. Purely elastic response 
of arterial tissue was successfully fitted using SEDF in limiting fiber extensibility form. The 
Mullins effect was modeled within the theory of pseudo-elasticity. The pseudo-elastic model 
of Ogden and Roxburgh [4] has been extended by applying anisotropic form of the softening 
variable. This has been suggested in the form incorporating Error function. The model 
described experimental data successfully and is applicable to model the Mullins effect in 
arterial tissue.  

ACKNOWLEDGEMENTS 

This work has been supported by the Czech Ministry of Education project 
MSM6840770012; Czech Science Foundation GA106/08/0557; and Grant Agency of the 
Czech Technical University in Prague SGS10/247/OHK2/3T/12.  

REFERENCES 

[1] Holzapfel, G.A.; Gasser, T.C. and Ogden, R.W. A new constitutive framework for arterial 
wall mechanics and a comparative study of material models. J Elast (2000) 61:1–48. 

[2] Humphrey, J.D. Continuum biomechanics of soft biological tissues. Proc R Soc Lond A 
(2003) 459: 3-46. 

[3] Pena, E.; Pena, J.A. and Doblare, M. On the Mullins effect and hysteresis of fibered 
biological materials: A comparison between continuous and discontinuous damage 
models. Int J Solids Struct (2009) 46:1727–1735. 

[4] Ogden, R.W. and Roxburgh, D.G. A pseudo-elastic model for the Mullins effect in filled 
rubber. Proc R Soc London A (1999) 455:2861–2877. 

[5] Beatty, M. and Krishnaswamy, S. The Mullins effect in equibiaxial deformation. Z Angew 
Phys (2000) 51: 984 –1015. 

[6] Dorfmann, A. and Ogden, R. A pseudo-elastic model for loading, partial unloading and 
reloading of particle-reinforced rubbers. Int J Solids and Struct (2003) 40: 2699-2714. 

[7] Pena, E. and Doblare, M. An anisotropic pseudo-elastic approach for modelling Mullins 
effect in fibrous biological materials. Mech Res Commun (2009) 36:784–790. 

[8] Horgan, C.O. and Saccomandi, G. A new constitutive theory for fiber-reinforced 



Eva Gultova, Lukas Horny, Hynek Chlup and Rudolf Zitny. 

 7 

incompressible nonlinearly elastic solids. J Mech Phys Solids (2005) 53:1985–2015. 


