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Abstract— An anisotropic strain energy density function 

based on limiting fiber extensibility assumption was suggested. 

The function was deduced directly from isotropic Gent model.  

A material was modeled as a composite reinforced with two 

families of helical fibers. The anisotropy of the strain energy 

function was incorporated via pseudo-invariants I4 and I6. 

Mathematical expression includes three material parameters. 

Suitability of the model for a description of arterial mechanical 

response was verified by regression analysis of experimental 

data. Computational model based on a cylindrical thick–

walled tube with residual strains was used to estimate material 

parameters.  Identified material model fits pressure–radius 

data of an aortic inflation test successfully. Further upgrades 

of the model are discussed.  

Keywords— aorta, constitutive model, limiting fiber 

extensibility, orthotropy, strain energy function 

I. INTRODUCTION  

Arterial walls exhibit anisotropic, nonlinear and inelastic 

response to external loads. This response does not only 

occur as passive deformation but active contraction and 

dilation of smooth muscle cells can cause changes in their 

mechanical behavior. Moreover arterial wall is non–

homogenous material with complicated internal structure. 

All these facts make the question about the best material 

model for arterial wall still unanswered.   There are two 

basic approaches to material modeling. First of them is 

phenomenological where mechanical qualities are modeled 

with no information about internal structure and its 

interactions. Second approach is characterized by 

incorporating structural information when considering e.g. 

layers, fibers, fiber orientation or waviness. Typical 

representative of phenomenological approach is exponential 

strain energy density function suggested by Fung et al. [1]. 

This function or its modifications have been successfully 

used by many authors. In two–dimensional formulation 

(thin tube) it can be written in the form below 
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Here ψ means strain energy density function. Ett and Ezz 

denote Green strains in circumferential and axial direction, 

respectively. Material parameters c, b1, b2 and b3 enable 

description of the anisotropic behavior of wall. Isotropic 

form of the function (1) was suggested by Fung in 1967. 

   Structural approach asserts at present. The most frequent 

method how to incorporate structural information is to 

regard arterial wall as a fiber reinforced composite. 

Probably the first who presented this idea was Lanir [2] in 

1983. Nowadays models can be divided into two groups 

according to number of reinforcement directions. One can 

considered reinforcement in a finite number of directions; 

e.g. two like in the case of Holzapfel et al. [3]; or infinite 

number where a probability density of fiber orientation must 

be considered.  

These considerations about preferred directions are 

subsequently implemented into the framework of continuum 

mechanics. The leading approach to building constitutive 

models is the theory of hyperelastic materials. Thus 

mechanical response of an arterial wall is supposed to be 

governed by a strain energy (or free energy) density 

function like in (1). The theory of hyperelastic materials is 

widely applied and studied in details in polymer science. 

Due to some phenomenological and structural similarities 

between rubber–like materials and biological tissues, 

methods of polymer physics are frequently applied in 

biomechanics, see Holzapfel [4]. Gent [5] suggested the 

new isotropic model for strain energy density function 

which was based on an assumption of limiting chain 

extensibility in polymer materials. This model has become 

quickly popular and now is implemented in usual FEA 

packages like e.g. ANSYS or ABAQUS. The Gent model 

expresses strain energy as a function of first invariant I1 of 

the right Cauchy-Green strain tensor 
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In equation (2) µ denotes infinitesimal shear modulus and Jm 

denotes limiting value of I1 - 3. The domain of logarithm 

requires I1 - 3 < Jm and Jm can be interpreted as limiting 

value for macromolecular chains stretch.  

The main goal of our study is to show anisotropic 

upgrade of the model (2) and verifying its suitability for 

arterial walls based on experimental data. 
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II. CONSTITUTIVE  MODEL  

It was proved many times that arteries exhibit anisotropic 

behavior. The model proposed by Gent (2) is isotropic. 

Horgan and Saccomandi in [6] suggested its anisotropic 

extension. They recently published its modification based 

on usual concept of anisotropic materials where anisotropy 

arises from fiber reinforcement, see paper [7]. Horgan and 

Saccomandi consider transversely isotropic material where 

anisotropy is induced by reinforcement with one family of 

fibers (one preferred direction).  They use rational 

approximations to relate a strain energy expression to 

Cauchy stress representation formula. Final form of the 

strain energy density function for transversely isotropic 

material with limiting fibers extensibility follows 
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The first term (Neo–Hook) in equation (3) is related to 

energy stored in isotropic matrix as usual. Second part of 

(3) is related to energy stored in fibers. In (3) µm and µf 

denote shear modulus for matrix and fibers, respectively. Jm 

is the material parameter related to limiting extensibility of 

fibers. The similar definitional inequality like in (2) must be 

hold for logarithm in (3). Thus I4 must satisfy (I4 - 1)
2
 < Jm. 

I4 denotes so called fourth pseudo–invariant of the strain 

tensor which arises from the existence of one preferred 

direction in continuum. It is worth to note that total number 

of invariants of the strain tensor is five in the case of 

transversely isotropic material and nine in the case of 

orthotropy. Details can be found in e.g. Holzapfel [8]. 

Introducing of I4 lies in its clear physical interpretation. The 

value of I4 is equal to square of the stretch in the fiber 

direction. Thus it can be written in the following form 

2 2 2 2 2
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In equation (4) λ1, λ2 denotes stretches in (x1,x2) plane. 

Parameter β is related to the internal structure of a material 

and characterizes the direction of fibers in (x1,x2).  

The model (3) can be modified to a form suitable for 

locally orthotropic material in a similar way like e.g. 

Holzapfel, Gasser and Ogden in [9]. Assuming that an 

artery is a composite material reinforced by two families of 

mechanically equivalent fibers, the corresponding general 

form of the anisotropic strain energy density function is:   
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The first term in (5) is the same as in (3). Remaining terms 

reflect the energy stored in two families of fibers (two 

preferred directions). Due to symmetry of fiber coils and  

mechanical equivalence of fibers µf1 = µf2 = µf,  

Jm1 = Jm2, I4 = I6 (⇒ β1 = -β2),  the model (5) reduces to the 

form seemingly similar to Eq.(3), 
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 It is necessary to note the difference in the argument of 

logarithm in (6), where Jm
2
 is used instead of simple Jm in 

(3). This modification allows splitting the logarithm 

according to logarithmic rules 
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This is the form, which is advantageous for solutions of 

several boundary value problems.  

 In the following section the model (7) will be used for 

regression analysis of data collected during an inflation test  

of an artery. The model is reduced only the logarithmic term  

4 4
1 1

1 1f m

m m

I I
J

J J
ln lnψ µ
    − −

= − − + +        
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neglecting the effect of isotropic matrix and taking into 

account only the energy stored in the clockwise and 

anticlockwise coils of collagen fibers in the arterial wall.  

 
 

Fig. 1 Fiber reinforced vessel in the reference (open) configuration: blue 

and yellow – two equivalent families of fibers; red – local coordinate 

system (cylindrical); gray – matrix. 
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III. EXPERIMENT AND REGRESSION ANALYSIS  

In order to verify capability of (8) to govern multi–axial 

mechanical response of an artery, previously published 

experimental data will be adopted, see Horny et al. [9] and 

[10].  

Male 54–year–old sample of thoracic aorta underwent 

inflation test in order to find suitable material model and 

estimate its material parameters. The sample was obtained 

during autopsy at the Institute of Forensic Medicine of the 

University Hospital Na Kralovskych Vinohradech  

in Prague. No significant atherosclerotic changes were 

found. The time between the presumptive death and the 

inflation test was approximately 66 hours. Before 

experiments the specimen was stored at temperature 

approximately of 4°C; inflation test was performed under 

room temperature. The inflation experiments were 

performed under the following conditions. A tubular sample 

was 6 times pressurized in the range 0 kPa – 18 kPa – 0 kPa 

under axial pre–stretch  λz = 1.3 and 3 times in the pressure 

range 0 kPa – 20 kPa – 0 kPa under λz = 1.42, respectively. 

The opening angle was measured after a radial cut of 

specially prepared ring of the artery before pressurization to 

account residual strains and to find a reference 

configuration. Geometrical characteristic of sample were as 

follows: thickness in reference state H = 2.04 mm; opening 

angle α = 83°, reference outer radius Ro = 19.33 mm; 

reference inner radius Ri = 17.29 mm, outer radius of the 

closed but not pressurized artery ro = 10.88 mm; inner 

radius of the closed but not pressurized artery ri = 8.84 mm. 

 

Fig. 2 Inflation test and model prediction: red/square – λz=1.3;  

blue/circle – λz=1.42. 

Measured values of the internal pressure and the outer 

radius with predictions by the model (8) are shown at  

Fig. 1. Boxes (red color) and circles (blue color) at Fig. 1 

display observation points for axial pre–stretch λz = 1.3 and 

λz = 1.42, respectively. Predictions of internal pressure 

based on the model (8) at the given axial pre–stretch λz = 

1.3 and λz = 1.42 are displayed by solid (red color) and 

doted (blue color) curves, respectively. 

Regression analysis based on least square method gave 

the estimations for material parameters µ, Jm and β in the 

model (8). A system of nonlinear equations was solved by 

Levenberg – Marquardt algorithm using in-house software 

package FEMINA.  

Least square optimization was based on a comparison of 

measured and predicted values of internal pressure during 

inflation of cylindrical vessel. Computational model was 

based on radial equilibrium in axially pre–stretched thick–

walled tube with residual strains, assuming incompressible 

material. Shear strains were not included into the model. 

All assumptions mentioned above lead to the solution of 

boundary value problem for thick–walled tube with internal 

pressure given by following equation 
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In the equation (9) p denotes internal pressure. λt means 

stretch in the circumferential direction and r denotes radius. 

The derivative in (9) for (8) has the form as below  
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If one wants to integrate (9), circumferential stretch λt must 

be expressed as a function of the radius r. If residual strains 

are included it can be done in the form 
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The denotation used in (11) is following: α – opening angle; 

r – variable radius; Ro – outer radius in the reference 

configuration (opened up circular sector of the artery); λz – 

axial stretch. It is obvious that inserting (10) and (11) into 

(9) causes (9) to be rather complicated. However,  

in contrast to Fung–type material models now the 

antiderivative for (9) in a closed form of elementary 

function exists. The antiderivative was found and all 

algebraic manipulations were performed using MAPLE 11 

(Maplesoft, Waterloo, Canada).       
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IV. RESULTS AND CONCLUSIONS  

Nonlinear regression analysis described in the above 

section gives estimations for material parameters of the 

model (8) summarized in the Table 1. Results are also 

displayed graphically in the Fig. 1. We can conclude that  

Table 1  Material parameters (8) 

Material 

parameter 
µ Jm β 

[dimension] [kPa] [1] [°] 

value 26 1.044 37.2 

 

proposed material model fits experimental data 

successfully. Thus strain energy density function given in 

(8) is suitable to govern arterial response during its inflation 

and extension.  We can expect that incorporating Neo– 

Hookean term, like in (7), will improve model predictions 

under low pressures. However, fitting of data from the 

inflation test is only one task which must good material 

model carry out. Final decision about the appropriateness of 

the model should be made after successful application in all 

types of mechanical test usual in arterial mechanics. 

Especially biaxial extension tests are necessary and this 

analysis must be performed in future.   
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