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Abstract 
 
The mechanical response of a hollow circular cylinder to internal pressure represents an important 
theoretical model which can be helpful in the design of tubular structures, and in the biomechanical 
research of tissues like arteries. It has been shown that arteries in vivo, in addition to pressure loading, 
sustain significant axial extension.  It is manifested as a retraction that is observed when they are excised 
from a body. Previous research has shown that the axial prestretch ensures that the longitudinal motion 
of arteries is negligible under physiological conditions. The magnitude of the axial prestretch at which 
a tube does not change its length during pressurization, is referred to as the inversion point, because at 
this point mechanical response changes from pressure-induced elongation to pressure-induced 
shortening. In the present paper, another property observed when a nonlinear elastic tube is inflated at  
a constant axial load is studied. It is shown that at axial prestretching corresponding to the inversion 
point, when a tube exhibits no axial movement, the maximum internal volume of the pressurized tube is 
attained. This property is shown for thin-walled tubes made from material that is characterized with 
Mooney-Rivlin and Gent strain energy density function. Differences in the inflation-extension response 
obtained for Gent’s material, and for the human abdominal aorta that is considered to be anisotropic and 
is described with exponential strain energy density, are studied in the paper. To the best of our 
knowledge, our study is the first showing that the maximum internal volume of the inflated tube is 
intimately linked with its axial prestretch.  
 
 
 
 
 
 
 
 
Keywords: Axial prestretch, hyperelasticity, inflation-extension behaviour, maximum volume, 
pressure, thin-walled tube. 
 
 
 
 
 
 
 
 
 

https://doi.org/10.1016/j.ijnonlinmec.2020.103530
mailto:Lukas.horny@fs.cvut.cz


Horný L., and Petřivý Z. (2020) Inversion Point and Internal Volume of Pressurized Nonlinearly Elastic Tube. International 
Journal of Non-Linear Mechanics, in press. Manuscript version which has been accepted for publication. Publisher’s 
version is available via https://doi.org/10.1016/j.ijnonlinmec.2020.103530. 
 

2 
 

 
1. Introduction 
 
The mechanical response of a nonlinearly elastic hollow circular cylinder to internal pressure represents 
an important theoretical model which can be helpful when studying the behaviour of tubular tissues like 
arteries or veins [1-3]. As well as biomechanical examples, elastomer pipes used in a variety of industrial 
applications can also be modelled as nonlinear cylindrical tubes loaded by internal pressure. 
 
It has been shown that arteries, in addition to pressure loading, sustain significant axial extension [3-
10].  This is manifested as a retraction that is observed in autopsy or surgery, when arteries are excised 
from a body. It follows that they have to be considered as longitudinally prestretched and the specific 
value of the prestretch is determined as a ratio of in situ length to ex situ length. The magnitude of the 
prestretch depends on anatomical location (see works by Horný and colleagues for detailed description 
of the prestretch in the human abdominal aorta and carotid arteries [3, 6-8], and Kamenskiy et al. for 
results obtained in popliteal artery [9,10], and Schulze-Bauer et al. for the prestretch measured in iliac 
arteries [11]). Since age-related changes significantly affect our cardiovascular system, the prestretch 
depends also on age [3,6-12].    
 
The fact that arteries are axially prestretched has important consequences for their mechanical response. 
Theoretical analysis based on thin-walled, as well as thick-walled tube models, and also ex vivo 
experiments, have shown that it is axial prestretch which ensures that the longitudinal motion of the 
aorta is almost negligible under physiological conditions [3,13-15]. Originally, it was assumed that 
almost zero axial deformation during pressure pulse transmission, is a consequence of significant 
tethering (attachment to surrounding tissue) [13]. At present we would rather say that the longitudinal 
immobility of arteries results from a biological tuning that couples constitutive properties, internal 
structure and the physiological range of arterial loading. 
 
To be more specific, it was found that a typical in vitro inflation behaviour of an artery, held at constant 
length, is such that there is a value of the axial stretching, above which the force–pressure relationship 
creates an increasing curve, and under a stretch smaller than this value, the force–pressure relationship 
is decreasing [14-16]. On the other hand, when constant force is considered instead of constant axial 
deformation (which can, for example, be carried out by hanging a weight during inflation of vertically 
oriented tube), pressurization experiments have shown that for small values of the load the arteries 
elongate, whereas at bigger values of axial load, they shorten during pressurization [11,17-18]. It is 
generally accepted that the in vivo value of this prestretch is exactly the value under which an artery 
neither shortens nor elongates in the pressure cycle. This value is referred to by some authors as the 
inversion stretch, or the stretch at inversion point, because it creates a boundary in the mechanical 
response of the tube. At this point, which, in what follows will be denoted as λZ

inv, the response changes 
from pressure-induced elongation to pressure-induced shortening [11,17-18]. 
 
In the present paper we would like to demonstrate another interesting property which can be observed 
when a nonlinear elastic tube is inflated at a constant axial load. It will be shown that at axial 
prestretching corresponding to the inversion point, when no axial movement is exhibited during 
inflation, the maximum internal volume of the pressurized tube is attained. This property will be 
demonstrated by means of an analytical model based on a thin-wall assumption, and adopting Mooney-
Rivlin and Gent’s strain energy density function, which are known from elastomer elasticity [12,19-21]. 
Results obtained with anisotropic elastic potential, corresponding to the human abdominal aorta [22], 
will suggest that a phenomenon of volume maximization also takes place in the inflation-extension 
response of the human arteries, but the inversion in axial response can no longer be understood as a 
global property. To the best of our knowledge, our study is the first showing that the axial prestretch can 
optimize inflation volume. This feature may be found valuable when one considers cylindrical tubes as 
pressurized containers that feed some type of medium.    
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2. Methods 
 
2.1 Kinematics of inflation–extension response 
 
In our study, we are focused on the mechanics of a circular cylindrical tube which is in an axial direction 
loaded by a weight in order to induce initial axial extension, λZ

ini, referred to as axial prestretch. When 
the tube is prestretched, loading by internal pressure follows. In the reference configuration, the 
geometry of the tube is in cylindrical polar coordinates (R, Θ, Z) defined by  
 

,     0 2 ,     0 ,i oR R R Z Lπ≤ ≤ ≤ Θ ≤ ≤ ≤         (1) 
 
where Ri, Ro, and L denote inner radius, outer radius and length of the tube, respectively. It is assumed 
that the deformation of the tube is expressed by the equations  
 

( )2 2 1 2 2 ,     ,     ,i Z i Zr r R R z Zλ θ λ−− = − = Θ =        (2)  
 
where (r, θ, z) are cylindrical polar coordinates in the deformed configuration, and ri denotes the inner 
radius of the deformed tube.  The equations (2) express the fact that the tube uniformly inflates and 
extends, and that it does not twist. Hence the deformation gradient F is diagonal and can be in the matrix 
form written as F = diag[λR, λΘ, λZ]. The material of the tube is assumed to be incompressible thus  
det(F) = λRλΘλZ = 1. Particular value of the circumferential stretch is given by λΘ = r/R. When λZ is 
known, radial stretch λR can be obtained by means of the incompressibility condition. Further discussion 
of the described kinematics can be found in [1,17,30,40-41].  
 
 
2.2 Constitutive models 
 
It is assumed that the tube is made from nonlinearly elastic material characterized with an elastic 
potential W. For such a material, a constitutive equation can be written in the form of (3). Here σ is the 
Cauchy stress tensor, I denotes second-order unit tensor, and p plays a role of the Lagrangean multiplier 
which is determined by means of a force boundary condition. 
 

TW p∂
= −
∂

F I
F

σ            (3)  

 
 
Elastomer tube. The simplest form of the strain energy density W is a classical neo-Hookean model  
 

( )1 3
2

W Iµ
= − .           (4) 

 
Here µ is the stress-like material parameter, which at infinitesimal strains corresponds to the shear 
modulus, and I1 is the first principal invariant of the right Cauchy-Green strain tensor C, C = FTF. This 
model however has quite limited applicability when confronted with typical elastomer experimental 
data. A simple extension of (4) by means of adding linear term with the second invariant of C, I2, gives 
 

( ) ( )1 23 3
2 2

W I Iµ ν
= − + − ,         (5) 
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which is referred to as the Mooney-Rivlin model. Similarly to µ, ν is a stress-like parameter. Although 
(5) includes a new independent variable, it also fails to accurately describe stiffening of macromolecular 
materials observed at large strains. 
One of the simplest models that is known to be capable of reproducing the nonlinear mechanical 
behaviour of elastomers, is the Gent’s strain energy density function [19-21, 23, 30]. This model is also 
sometimes used to describe soft tissues (including arterial walls) when their mechanical behaviour is 
modelled as isotropic [12, 30]. Its particular form is 
 

1 31
2

m

m

J IW ln
J

µ  −
= − − 

 
.         (6) 

 
Here µ is the stress-like material parameter, which at infinitesimal strains corresponds to the shear 
modulus, and Jm is the dimensionless parameter modulating nonlinear behaviour of the material. Gent’s 
material model belongs to the class of so-called limiting chain extensibility models, which means that 
admissible deformations are restricted to a certain subset in the space of all deformations. It is clear from 
(6) that admissible deformation has to satisfy I1 < Jm + 3. Due to this fact, stress-strain curves obtained 
for Gent’s material exhibit significant large strain stiffening when I1 approaches Jm + 3. 
 
 
Human abdominal aorta. To show whether axial prestretch may lead to a maximization of the internal 
volume of an inflated artery, a constitutive model describing the mechanical response of the human 
abdominal aorta is adopted from [22]. Its specific form is expressed in (7)   
 

( ) ( )22 10 1
1

4,6 2

3 1
2 2

jk I

j

c kW I e
k

−

=

 = − + − 
 ∑ .        (7) 

  
The model (7) splits stored energy into two portions. The first corresponds to a contribution represented 
by the isotropic component of the artery wall, and in (7) is expressed with the Neo-Hookean term. 
Typically, the mechanical response of elastic fibres, smooth muscle cells in their passive state, and the 
response of other proteoglycans is assumed to be captured by this term [22, 24, 25].  
 
The nonlinear part of (7), that is a sum of exponential functions, is interpreted as a contribution of 
collagen fibres which are generally accepted to be responsible for the large strain stiffening observed in 
the mechanical response of arteries. It is assumed that collagen fibres are arranged into two families of 
helically oriented bundles of fibres, which are symmetrically disposed with respect to circumferential 
axis by angle ±β.  Thus the model (7) regards the artery wall as a continuum with two preferred directions 
that are in polar cylindrical coordinates (R, Θ, Z) characterized with unit material vectors  
M = (0, cos(β), sin(β))T, and N = (0, cos(−β), sin(−β))T. It follows from the existence of preferred 
directions, that additional deformation invariants, induced by an anisotropy, can be defined. The model 
(7) employs I4 and I6 that are obtained as 
 

( ) ( )2 2 2 2
4 ZI cos sinλ β λ βΘ= ⋅ = +CM M , ( ) ( )2 2 2 2

6 ZI cos sinλ β λ βΘ= ⋅ = − + −CN N . (8) 
 
Thus (7) includes four material parameters c0, k1, k2, and β. The model (7) was introduced by G. A. 
Holzapfel, T. C. Gasser, and R. W. Ogden in [24] and is now frequently referred to as the HGO model. 
Later on, the authors have modified this model to take into account the imperfect directional arrangement 
of fibres, by considering their dispersion around preferred direction [25]. Some authors also use (7) in 
the form that incorporate more than two preferred directions [34-37]. Further information about 
anisotropic elasticity can be found for instance in [41, 42]. 
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It is worth noting at this point that (7) is only a model, and although it has a clear structural interpretation, 
readers should not confuse it with the true internal architecture of our arteries. Nevertheless, we are here 
focused on the effect of axial prestretch and details of arterial histology are beyond our scope.  
 
 
 
2.3 Equilibrium of a tube during simultaneous inflation and extension 
 
The equilibrium equations in a local form can be, under absence of body and inertial forces, compactly 
written as div(σ) = 0. Due to circular symmetry, axial uniformity, and absence of shear stresses, the only 
component that is not satisfied trivially is 
 

0rrrrd
dr r

θθσ σσ −
+ = ,          (9)  

 
which expresses an equilibrium in a radial direction. Boundary conditions that are considered in our 
problem are σrr(ri) = −P, σrr(ro) = 0. Using boundary conditions and constitutive equations for 
incompressible material written in the form of  
 

ˆ
rr

W
θθσ σ λ

λΘ
Θ

∂
− =

∂
, 

ˆ
zz rr Z

Z

Wσ σ λ
λ
∂

− =
∂

,        (10) 

 
(9) can be integrated to (11) 
 

ˆo

i

r

r

W drP
r

λ
λΘ
Θ

∂
=

∂∫ .          (11)   

 
Here Ŵ denotes W after λR is substituted with 1/(λΘλZ). Details of the derivation can be found, for 
instance, in [38, 39]. Further substitution of r by λΘ, with a help of r = λΘR and dr = R/(1 – λΘ2λZ)dλΘ, 
gives (12) 
 

,          (12) 

 
where notations λΘi = ri/Ri, and λΘo = ro/Ro are introduced. In this study, we will restrict our attention to 
a thin-walled approximation, which is obtained from (12) by means of the mean value theorem. Volume 
preservation condition is used to derive λΘi – λΘo = ελΘ-1λZ

 -1(λΘ2λZ – 1), where the parameter  
ε = H/Ri = (Ro – Ri)/Ri is considered to be small. The final equation, that expresses how to compute 
internal pressure when the deformation and constitutive properties of the thin-walled cylindrical 
membrane tube are given, is in (13), 
 

ˆ

Z

WP ε
λ λ λΘ Θ

∂
=

∂
.           (13) 

 
Further details of the used approach can be found for instance in [40-42].  
 
Since our attention is aimed at the effect of axial prestretching, the axial equilibrium of the pressurized 
cylindrical tube will also be employed. It can be written in the following way 
 

2

ˆ

1

i

o Z

dWP
λ

λ

λ
λ λ λ

Θ

Θ

Θ

Θ Θ

∂
=

∂ −∫
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2 2
o

i

r

red i zz
r

F r P rdrπ π σ+ = ∫ .          (14) 

 
This equation expresses that the reduced axial force, Fred, which is the force inducing axial prestretch 
and pressure, acting at closed ends of the tube, are balanced by axial stress σzz. With the help of (10)2, 
boundary conditions, 2r = d(r2)/dr, and integration per partes, (14) can be transformed to the following 
form 

ˆ ˆ
2

o

i

r

red Z
Zr

W WF rdrπ λ λ
λ λΘ

Θ

 ∂ ∂
= −  ∂ ∂ 
∫ .        (15) 

 
All necessary steps are explained in detail, for example, in [38, 39]. Now, similarly to (11) and (12), the 
independent variable in the equation (15) is changed from r to λΘ. This is obtained by the same steps as 
described above for (11), and by using (2)1 written in the form R2 = (λZri

2 – Ri
2)/(λΘ2λZ – 1). Reduced 

axial force is then given as  
 

( )
( )

2 2
22

ˆ ˆ
1 2

1

i

o

red i i Z Z
Z Z

W WF R d
λ

λ

λ
π λ λ λ λ λ

λ λ λ λ

Θ

Θ

Θ
Θ Θ Θ

Θ Θ

 ∂ ∂
= − −  ∂ ∂ − 

∫ .      (16) 

 
The final step is again application of the mean value theorem. It results in (17), that in the case of the 
thin-walled cylindrical membrane approximates Fred,   
 

2
ˆ ˆ

2red i
Z Z

W WF R λ
π ε

λ λ λ
Θ

Θ

 ∂ ∂
= −  ∂ ∂ 

.         (17) 

 
 
3. Inversion in axial deformation of the pressurized thin-walled tube 
 
 
As was mentioned in the introduction, an axially prestretched tube may exhibit inversion in its axial 
response to internal pressure. It means that the tube, which is prestretched by Fred to λZ

ini and 
subsequently loaded by pressure P, may show pressure-induced elongation (λZ–P curve is increasing), 
pressure-induced shortening (λZ–P curve is decreasing), or may withstand pressurization without any 
change of its length. In the latter case, the tube is prestretched exactly to λZ

ini = λZ
inv at which the length 

of the tube is independent of applied pressure. This is of course not a general feature of all tubes. R. W. 
Ogden and C. A. J. Schulze-Bauer studied this property in their work [17], and derived a condition that 
the strain energy density function has to satisfy in order to exhibit axial inversion in the mathematical 
model based on (13) and (17). 
 
This condition can be obtained from traces of Fred = constant in λΘ–λZ plane. The fact that the length of 
the tube does not change during pressurization means that λZ is independent of λΘ, and the condition of 
inversion point is given as ∂λZ/∂λΘ = 0. In order to express it by means of the strain energy W, one can 
employ a derivative of a function given implicitly with Fred as an equation coupling λΘ and λZ. It results 
in  
 

2 2

2

ˆ ˆ ˆ
2 0Z

Z

W W Wλ λ
λ λ λ λΘ
Θ Θ Θ

∂ ∂ ∂
+ − =

∂ ∂ ∂ ∂
.        (18) 

 
This equation can be found in [17, 30, 40]. When a root of (18) independent of λΘ is found, it follows 
that given W exhibits inversion point.   
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It is easy to show that neo-Hookean strain energy (4) does not exhibit inversion point because the root 
of (18) is λΘ-2 in this case. However, the Mooney-Rivlin model (5) gives √(µ/ν) which is independent 
of λΘ. Thus Mooney-Rivlin strain energy density seems to be the simplest model that exhibits inversion 
point. Figure 1 depicts this property by means of the numerical solution of (13) and (17) for µ/ν = 2. A 
similar graph created for neo-Hookean model can, for interested readers, be found in [29] (cf. Figure 2 
in [29]).       
 

 
Figure 1. Numerical results of the simulation of the pressurization of an axially prestretched thin-

walled tube with the elastic potential modelled by Mooney-Rivlin strain energy density with µ/ν = 2. 
Inversion in the axial response is depicted with a line created by open black circles at position λZ = √2. 
 
   
 
Existence of the inversion point in Gent’s model has been thoroughly studied in [30, 40]. In this case, 
the equation (18) gives a root independent of the circumferential stretch and it applies that  
λZ

inv = √(1 + Jm/3). Pressurization of an axially prestretched tube with the strain energy density 
corresponding to the Gent model is illustrated in Figure 2 for Jm = 3. The Gent model is in [30, 40] 
compared with Fung-Demiray strain energy density 
 

( )( )1 3 1
2

b IW e
b
µ −= − ,          (19)  

 
which has been in various papers used to model the mechanical properties of biological tissues, and may 
be understood as the exponential counterpart of the Gent model. It is shown in [30, 40] that (18) does 
not have a solution independent of λΘ for (19) and thus the Fung-Demiray model does not show the 
inversion point in its inflation-extension response (cf. Figure 1 in [29]). 
 
With regard to the anisotropic strain energy density function (7), we tried to solve (18) with the help of 
the computer algebra system Maple (version 2019) because the resulting equation was very complicated. 
However, we were not able to find λZ that would be satisfied (18) independently of λΘ. It shows that the 
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inversion point in the model (7) does not exist. Inflation-extension response of the model (7) with 
material parameters corresponding the human abdominal aorta is depicted in Figure 3 (details of the 
simulation are described in the following).    
 
 
 
 
 
 

 
Figure 2. Numerical results of the simulation of the pressurization of an axially prestretched thin-

walled tube with the elastic potential modelled by Gent’s strain energy density with Jm = 3. Inversion 
in the axial response is depicted with line created by open black circles at position λZ = √2. 

 
 
4. Internal volume of the axially prestretched thin-walled tube 
 
 
Many pressure vessels serve as conduits for some medium. This is also the case with our arteries. With 
every pulse, the aorta accommodates blood ejected from the heart that is under physiological conditions 
almost constant at a short-time scale. From this point of view, it seems to be interesting to pose the 
question as to how does the axial prestretch affect internal volume that an inflated tube has.  
 
Instead of absolute volume, we will restrict our attention to dimensionless volume ratio of deformed to 
reference internal volume  
 

2
2

2
i

Z
i

r lv
R L
π

λ λ
π Θ= = ,          (20)    

 
where l denotes a deformed length of the inflated tube, and (20)3 is used because we work with a thin-
wall approximation. 
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Now our particular question is: Does a certain value of the prestretch exist, so that a tube, pressurized at 
this prestretch, attains maximal internal volume? We chose a similar approach as in the case of a 
derivation of the condition (18). However, now ∂v/∂λZ = 0 is not expressed by means of Fred = constant, 
but with a help of P = constant. It is because our objective is, in fact, to find λZ that maximizes v at a 
given pressure. What follows is a standard use of an implicit function theorem as in the above case. 
Before doing so, λΘ is in (13) substituted from (20), λΘ = √(v/λZ). Thus overall procedure can be 
expressed as 
 

ˆ
0

Z

vZ Z

W

λ
λ

ε
λ λ λ λ

Θ
Θ Θ =

 ∂ ∂
= ∂ ∂ 

.         (21) 

 
 
We will omit here specific forms of equations obtained by (21) for the material models discussed above, 
because particular expressions are rather complicated. However, (21) gives the same values of λZ as 
(18), when independency of v is required. Thus a neo-Hookean model has no optimal axial prestretch 
for a pressurized tube, in contrast to the Mooney-Rivlin model that gives maximum volume of the 
pressurized tube when it is prestretched to λZ

ini = λZ
inv = √(µ/ν). Similarly, a tube made from a material 

that corresponds to the Gent strain energy density, exhibits maximum inflation volume when 
prestretched to λZ

ini = λZ
inv = √(1 + Jm/3). Finally for exponential models (7) and (19), we did not receive 

any constant value of the axial prestretch, i.e. independent of applied pressure, under which a tube would 
be inflated to maximum volume. 
 
        
5. Simulation of the inflation and extension of a thin-walled tube 
 
 
In order to demonstrate in detail how axial prestretch affects the inflation-extension behaviour of a tube, 
previous results will be completed with a numerical simulation of the mechanical response obtained by 
means of a solution of (13) and (17) for Mooney-Rivlin, Gent, and HGO model.   
 
A prediction of inflation-extension response is obtained in two steps. First, axial prestretch of the tube 
is induced by assigning λZ = λZ

ini at zero pressure. In this step, the system (13, 17) is used to compute 
Fred necessary to pre-elongate the tube. Simultaneously the initial circumferential stretch λΘini is 
obtained. The second step differs depending on the material model. In case of Monney-Rivlin strain 
energy density, the system (13, 17) is solved for unknown λZ and P with Fred and λΘ being assigned. It 
is due to limiting value of the pressure in the Mooney-Rivlin response (see Figure 1). In the case of the 
Gent model and HGO, (13, 17) are solved for unknown λΘ and λZ whereas P and Fred are assigned.  
 
Calculations were carried out for µ/ν = 2 (Mooney-Rivlin), Jm = 3 (Gent), and results are presented in 
dimensionless form in these cases (Pµ = P/µ). Parameter ε was considered to be 0.1. The values of the 
material parameters for the human abdominal aorta were chosen from [22] and correspond to a 38 year 
old male donor (denoted in [22] as M38). Specific values for parameters and geometry are listed in Table 
1. All computations were carried out with a help of the computer algebra system, Maple (version 2019). 
A procedure of solving equations was based on fsolve command. 
 

Table 1 Material parameters and geometry adopted from [22]. 

ID in [22] µ 
[kPa] 

k1 
[kPa] 

k2 
[-] 

β 
[°] 

Ri 
[mm] 

H 
[mm] 

M38 24.39 19.28 3.216 41.60 5.3 1.22 
 
 

https://doi.org/10.1016/j.ijnonlinmec.2020.103530


Horný L., and Petřivý Z. (2020) Inversion Point and Internal Volume of Pressurized Nonlinearly Elastic Tube. International 
Journal of Non-Linear Mechanics, in press. Manuscript version which has been accepted for publication. Publisher’s 
version is available via https://doi.org/10.1016/j.ijnonlinmec.2020.103530. 
 

10 
 

 
 
 
 
 
 
 
 
 
 

 
Figure 3. Numerical results of the simulation of the pressurization of axially prestretched thin-walled 

tube with the elastic potential corresponding to the human abdominal aorta modelled by (7) with 
parameters µ = 24.39 kPa, k1 = 19.28 kPa, k2 = 3.216, β = 41.6°, and Ri = 5.3 mm, H = 1.22 mm 
(sample M38 in [22]). Points satisfying ∂λZ/∂λΘ = 0 and ∂v/∂λZ = 0 are depicted with open black 

circles. Black circles in λZ–P suggest that for P < 2.5 kPa the prestretch determined from ∂λZ/∂λΘ = 0 
(and as well as from ∂v/∂λZ = 0) satisfies λZ

ini  < 1.      
 
 
 
6. Results of the simulation 
 
 
Figure 1, 2, and 3 display numerical results for Mooney-Rivlin, Gent, and HGO models, respectively. 
Responses obtained at different values of the prestretch are distinguished by a colour. All figures have 
the same structure. Particularly, in the upper row the first panel shows  
λZ–P response, the second λΘ–P, and the third P–v. The lower row shows traces of the inflation-
extension simulation in λΘ–λZ and λZ–v planes. In these planes, contours of P = constant are also 
presented, and it is worth remembering that inflation-extension traces are in fact contours of Fred = 
constant.  Points that correspond to ∂λZ/∂λΘ = 0 (axial inversion) and ∂v/∂λZ = 0 (volume maximization) 
are indicated by open black circles.  
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Results clearly show that in Figure 1 and 2, there is a value of the prestretch under which pressure-
induced elongation inverts to pressure-induced shortening. For numerical values specified above, this 
happens just at λZ

inv = √2 and axial inversion creates a line that is perpendicular to horizontal  
(λZ–P, λZ–v) or vertical (λΘ–λZ) axis. 
 
Some aspects of the inflation-extension response obtained under different values of the prestretch have 
already been more or less discussed in various papers [3, 17, 29-33]. However, to the best of our 
knowledge, a property depicted in P–v panels of Figure 1 and 2, has not, as yet, attracted scientific 
attention. These results show, in accordance with (21), that the maximum internal volume of a 
pressurized tube, made from a material that is modelled by Mooney-Rivlin and Gent elastic potential, is 
attained if the tube is axially prestretched to λZ

ini = λZ
inv. 

 
This property is also well documented in λZ–v panels (Figure 1 and 2). They display v = v(λZ) with an 
effect of the pressure illustrated by means of  contours of constant P. Maximization of the volume is 
obvious from a fact that the line created with black empty circles intersects dotted curves of constant 
pressure in their peaks which correspond to maximum v. 
 
One might expect that maximum volume inside a pressurized tube could be attained under a condition 
of maximal radial distension. However, it is not true, as documented in λΘ–λZ panels of Figure 1 and 2. 
Contours of a constant pressure, which are depicted with dotted curves, do not intersect line of λZ

inv at 
maximal λΘ. It is clearly visible especially for low pressures.   
 
An application of the volume maximization by axial prestretching could be the prestretch found in our 
arteries. In the introduction, it was mentioned that elastic arteries are significantly axially prestretched 
[3-10]. A hypothesis that may be derived from the results presented above, is that if arteries are 
prestretched to λZ

ini = λZ
inv, the volume accommodated in one pressure pulse will always be maximal, 

irrespective of the pressure that is used to inflate the artery.  
 
Figure 3 summarizes results obtained in the simulation of the inflation-extension behaviour of the human 
abdominal aorta. Maximum volume trajectory, ∂v/∂λZ = 0, is again depicted with empty black circles 
and it coincides with axial inversion determined from ∂λZ/∂λΘ = 0. It is clear, however, that there is a 
significant difference between (5) and (6) on the one side, and (7) on the other side. In contrast to Money-
Rivlin and Gent, HGO model does not exhibit λZ

inv as the vertical line in λZ–P graph and horizontal line 
in λΘ–λZ. λZ

ini = λZ
inv = constant does not hold in Figure 3.  

 
However the inversion property as such is exhibited by the curves of λZ

ini. From the first panel it is clear 
that there are curves that at a given λZ

ini exhibit pressure-induced shortening (dλZ(P) < 0), subsequently 
pass through a point where they are locally vertical, that is dλZ(P) = 0, and continue with pressure-
induced elongation (dλZ(P) > 0). This means that Figure 3 suggests that instead λZ

ini = λZ
inv = constant, 

the model (7) has the inversion property in a sense that λZ
inv = λZ

inv(P,λZ
ini). 

 
It leads us to a modified definition of λZ

inv which does not understand the inversion in the axial response 
of the tube as a global property holding for all inflating pressures. Rather we can understand it as a local 
property which λZ–P curve may exhibit. Thus we say that λZ

inv is not a line in λZ–P graph but it is a point 
on λZ–P graph, where the tangent made to the graph is vertical. This is in contrast to [17, 30, 40] where 
inversion is strictly understood as the line separating λZ–P curves with respect to a monotony. Here 
presented relaxation of the definition exactly corresponds to accepting roots of (18) that are not 
independent of λΘ as is discussed in [40]. Proposed relaxation could be of particular interest in  research 
where the inflation-extension response of a tube is studied with respect to a certain interval of pressures. 
Arteries are a good example, because their mechanical response at a pressure that falls into an interval 
bounded with diastole and systolic, is clinically the most relevant.    
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7. Conclusion 
 
 
This study dealt with an effect of the axial prestretch on the mechanical response of thin-walled tubes. 
Previous results showing that a prestretched tube may exhibit axial inversion, were extended with a 
finding that the same prestretch also leads to maximization of a volume accommodated in the tube. From 
known strain energy density functions, the Monney-Rivlin and Gent models were proved to have this 
property. The inversion in axial deformation of the HGO model for the human abdominal aorta was also 
studied. It was found that the inversion in a form of a line, that would separate λZ–P graph into pressure-
induced elongation and pressure-induced shortening, does not exist in this case. However, when this 
property was studied from a local point of view, Fred = constant responses exhibited inversion points 
that depended on applied pressure. Numerical results showed that these local inversion points 
correspond to states of maximal internal volume of a pressurized tube.      
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