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Abstract—Cyclic uniaxial tensile tests with samples of human 

aorta were performed with an aim to obtain data describing the 

Mullins effect of arterial tissue. Due to presumed anisotropy of an 

aorta, reported widely, both samples oriented longitudinally and 

circumferentially were tested in each case. Every tested sample 

underwent cyclic tension limited to a certain value of a stretch 

four times, consecutively the limit of sustained deformation was 

increased and subsequent four cycles were performed. Significant 

stress softening of aortic tissue and residual strains were 

confirmed. An idealization was made in such a way that reloading 

and unloading curves are coincident.   It was hypothesized that 

the stress softening observed within reloading of previously 

loaded tissue may be described by an evolution of material 

parameters. These parameters should be related to an alternation 

of internal structure. The model based on changes in limiting 

fiber extensibility of fibrillar component of the aortic wall, 

primarily represented by a collagen, was proposed. The arterial 

wall was assumed to be hyperelastic transversely isotropic 

material with different response under primary loading and 

unloading. A stored energy function was additively split into 

isotropic and anisotropic part. Preferred direction in continuum, 

defined in referential configuration, was assumed to be 

unchanged with cyclic loading. Every straining level in the cyclic 

test had its own value of fiber extensibility. Explicit form of the 

relation between evolving limiting extensibility of fibers and 
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maximum previously sustained deformation was proposed in such 

a way that limiting extensibility under primary loading is 

considered as the limit. The isotropic matrix response was 

modeled using Neo-Hooke term with shear modulus values 

different under primary loading and reloading, however all 

reloading values were held the same. The predictions of the model 

described above were in good agreement with observations. 

 
Index Terms—aorta, damage, limiting fiber extensibility, 

Mullins effect, stress softening.  

 

I. INTRODUCTION 

IGNIFICANT progress has been made in an area of blood 
vessels constitutive modeling in last decade. Since 2000 

when Holzapfel et al. [1] have published their model of an 
artery where anisotropy arises from helically arranged bundles 
of collagenous fibrils, this approach seems to be dominant. 
Successful applications in computational analyses were 
reported for example by Cacho et al. [2] in a coronary artery 
bypass surgery simulation or by Holzapfel et al. [3] in an 
artery-stent interaction. This model has recently been modified 
to account for distributed collagen fibrils orientations, Gasser 
et al. [4].  

A strain energy function based on exponential terms 
originates from Y. C. Fung and his research in seventies of the 
last century. This mathematical form was many times validated 
to be able to capture a material nonlinearity of biological 
tissues. In 2005 Horgan and Saccomandi [5] suggested a 
model of the strain energy function motivated by the idea of 
limiting chain extensibility which has been successfully used in 
polymer mechanics; see Gent [6], or Horgan and Saccomandi 
[7]. In [5] this approach was modified to limiting fiber 

extensibility suitable for composite materials with progressive 
large strain stiffening. Horny et al. [8] used this model to 
describe mechanical response of a coronary artery bypass graft 
and in a constitutive modeling of human aorta [9].  

Models mentioned above are capable to describe elastic 
arterial response. However, it is well known that blood vessels 
show some inelastic effects [1]. A visco-elastic behavior 
(dumping, creep, relaxation) can be captured using an internal 
variables approach [10]. Another inelastic phenomenon in 
vitro observable in arteries is a stress-softening similar to the 
Mullins effect well known in polymer physics. This kind of 
strain-induced softening is named after Leonard Mullins due to 
his extensive research on this topic within the last century 
[11,12]. The Mullins effect in idealized form is described as 
follows. When previously non-loaded (so-called virgin) 
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material is loaded to a particular value of the deformation, a 
stress-strain curve is usually called as primary loading curve. 
Within unloading process the stress-strain curve does not 
coincide with primary loading and a stress softening is 
attained. Subsequent loading curve coincide with unloading 
related to previous cycle. When the value of previous 
maximum deformation is reached, then the stress-strain curve 
returns to previous stress maximum and primary loading 
continues. Described behavior is depicted in Fig. 1. 

Except the Mullins effect soft tissues exhibit further 
softening within so-called preconditioning that is defined as 
deformation process necessary to obtain repeatable mechanical 
response under cyclic loading.  

 

 
Fig. 1 Stress-strain curves recorded for cyclic uniaxial tension 
of the human thoracic aorta. Each level of maximum stretch 

(λ=1.1;1.2;1.3;1.4 and 1.5) was cycled four times. Unloading 
and reloading curves do not coincide exactly and significant 

hysteresis remains after four cycles. However, maximum of the 
stress-softening phenomenon is realized between primary 

loading and the first unloading. Colored points correspond to 
cycles used within regression analysis – green circles - primary 
loading; yellow circles - λ=1.1 fourth unloading; red circles - 

λ=1.2 fourth unloading.   

The Mullins effect in elastomeric materials is also related with 
a presence of residual strains and induced anisotropy, see 
Diani et al. [13,14]. 

Many attempts were made to find suitable constitutive 
description of the Mullins effect [13]. However, the best 
choice is still in question. There are two main theories in use. 
The first approach is based on Continuum Damage Mechanics 
which operates with a damage parameter considered as an 
internal variable. The method was proposed by Simo [15] and 
applied for example by Guo and Sluys [16] or Gracia et al. 
[17]. Ogden and Roxburgh [18] proposed pseudo-elastic 
model to describe the Mullins effect. This was further 
modified with Dorfmann and Ogden [19] to capture residual 
strains. Both continuum damage theory and theory of pseudo-
elasticity are similar, however the first explicitly employs 
Clausius-Planck inequality.  

Above mentioned models are purely phenomenological. 
Second main approach is physically motivated and several 
considerations for internal structure of a material are being 
made [13]. The leading is so called network alternation 

theory, see e.g.  Marckmann et al. [20].  Similar idea may be 
traced back to Mullins and Tobin [12] who supposed that 
rubber is a two phase continuum in which stiff phase is 
transformed to compliant one depending on a deformation. 
Modern network alternation incorporates knowledge about 
macromolecular structure of a rubber. The Mullins effect is 
considered to be a consequence of a breakage of links and 
increasing length of chains, Chagnon et al. [21], thus softening 
is based on the deformation depending network evolution. 

The softening effect and pseudo-elastic mechanical 
response of arteries have been known for a long time [22]. 
However, only few attempts have been made to develop new 
theories.  Especially in last two years a publication activity has 
grown. Pena and Doblare [23] used anisotropic pseudo-elastic 
approach to reproduce the Mullins effect observed in an 
uniaxial tension of a vena cava. Damage mechanics was 
employed by Pena et al. [24] in modeling of aortic uniaxial 
tension. A generalized model based on internal variables 
applicable to arteries was also proposed by Ehret and Itskov 
[25]. This model can take account for a preconditioning 
behavior. 

The main goal of this paper is to present hypothesis that the 
Mullins effect observed in uniaxial tension of an artery can be 
captured by methods of pseudo-hyperelasticity using limiting 
fiber extensibility depending on maximum previous 
deformation. There are supposed two ways of material 
response both governed by hyperelastic description. The first 
is primary loading and second is unloading/reloading 
described with changed limiting fiber extensibility parameter. 
To account for changed response of an isotropic matrix shear 
modulus values different under primary loading and reloading 
are also supposed, however constant value for every 
unloading/reloading is held. Explicit form of limiting fiber 
extensibility dependence on maximum previous stretch is 
suggested. 
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II. METHODS  

Cyclic uniaxial tensile tests with four samples of human 
thoracic aorta were performed with MTS Mini Bionix testing 
machine (MTS, Eden Prairie, USA). Samples were obtained 
from cadaveric donors with the approval of the ethic 
committee in the University Hospital Na Kralovskych 
Vinohradech in Prague. All experiments were performed 
within 48 hours after the death. Two samples were tested in the 
direction aligned circumferentially with respect to natural 
configuration of an artery and other two aligned longitudinally. 
Referential geometries were obtained via digital images 
analyses performed in NIS-Elements software (Nikon 
Instruments Inc., Melville, USA).  

An extension and loading force were measured by MTS 
testing machine. The cyclic loading was applied as follows: 
five levels of maximum deformation were performed 
according to stretch λ=1.1; 1.2; 1.3; 1.4 and 1.5, where λ is 
the ratio between current length l and referential length L. 
Each level was cycled four times. It means that for instance 
after four cycles limited to λ=1.1 the maximum of the 
deformation was increased to 1.2 and new four cycles 
performed. True recorded data are shown in Fig. 1. 

Employing incompressibility assumption loading stresses σ 
were obtained as  

F

S

λ
σ =                     (1) 

In (1) F denotes applied force and S is the cross-section in the 
reference configuration. 

III. MODEL 

Arteries were modeled as an incompressible hyperelastic 
continuum in which the anisotropy rises from the 
reinforcement by one family of fibers. In such a case 
constitutive equations can be read in the form of (2). 

   1 2 3, ,
i i
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∂
             (2)  

Here p is the Lagrangean multiplicator determined from 
boundary conditions. W denotes stored energy function. The 
model based on limiting fiber extensibility, originally 
proposed in [5] was incorporated in the form published in [8]. 
It is expressed in (3). 
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Here I1 denotes first invariant of right Cauchy-Green strain 
tensor (4). 

2 2 2
1 1 2 3I λ λ λ= + +                 (4) 

c and µ are stress-like material parameters, and Jf is so-called 
limiting fiber extensibility parameter (dimension-less). 
Additional strain invariant I4 is expressed as follows. 

2 2 2 2 2
4 1 2cos sin

f
I λ λ β λ β= = +           (5) 

It arises from material anisotropy and has the meaning of 
square of the stretch in preferred (fiber) direction.  β denotes 

declination of fibers relative to circumferential direction in 
natural configuration of an artery. λ1 is the stretch ratio of the 
strip aligned with circumferential direction of an artery (λ2 is 
aligned longitudinally). The model (3) is called limiting 
extensibility model due to the existence of a finite value of a 
fiber stretch λf

 = √(Jf + 1) in which the stored energy 
approaches infinity. Equation (3) should be combined with the 
condition I4 > 1 to ensure that fibers, which are modeled via 
preferred direction in continuum, contribute to the stored 
energy only under a tension. Shear strains/stresses were not 
considered in the model.  

As mentioned above the crucial hypothesis of this paper is 
such that the stress-softening can be captured via changing Jf. 
This is motivated by the approach proposed by Chagnon et al. 
[21] who modeled Mullins effect in elastomers with the Gent 
model (isotropic counterpart to limiting fiber extensibility 
model). They suggested an evolution of limiting chain 
extensibility parameter (and referential shear modulus) in 
exponential form.  Current value of these parameters was 
related to maximum previously sustained value of the first 
invariant of right Cauchy-Green strain tensor.  

In order to meet the simplicity of the model and mimicking 
the main idea of (3), limiting fiber extensibility, here we 
suggest equation (6) as the model for the material alternation. 

0f f
J J=                           if λmax = 1    

( )21
1

2
0 1

maxk

f f
J J e

λ− − 
= −  

 
 if λmax>1               (6) 

In (6) Jf is the current value of limiting extensibility parameter. 
It depends on two positive material parameters Jf0, k and 
maximum tensile stretch sustained within loading history 
(which was used to initiate unloading), λmax. Equation (6) 
governs the evolution of the fiber extensibility in such a way 
that maximum admissible value of Jf is Jf0. This is in contrast 
to [21] where no limit for the evolution is considered.  

Jf0 is related to the behavior during primary loading. This 
value is prescribed directly because of no unloading process, 
which releases the stress softening, have been performed in 
primary loading path. In other words it means, because λmax is 
the maximum value of the stretch in the loading history with 
realized unloading, that λmax=1 for primary loading.  

Equation (6) is increasing function (if softening was 
initiated) of λmax. Contrary to (6), where limiting extensibility 
is considered as increasing function of λmax, isotropic shear 
modulus is modeled as decreasing. It is in accordance with 
Chagnon et al. [21]. They suggested an exponential equation 
with two material parameters to describe its softening. Here we 
do not want to raise number of model parameters and only two 
values of µ, see (3), are supposed. µ0 is related to primary 
loading and its softened value is µ12. 

    According to (2) σ1 and σ2 can be computed (σ3=0 to 
determine p). Equation (3) generally involves three stretch 
ratios, reduced to two assuming material incompressibility 
(7). 
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1 1 3 1λ λ λ =                    (7) 

However, only displacements in loading directions were 
recorded (due to the testing machine design). Thus we 
incorporated additional boundary condition which restricts the 
value of the transversal stress to be zero (lateral surfaces of 
the strip are non-loaded within uniaxial tensile test).  

IV. RESULTS 

Recorded data engaged in parameters estimation are 
depicted in Fig. 2. Primary loading curve and the fourth 
unloading curve for λ=1.1 and λ=1.2 were included in 
regression analysis (the idealization assumes 
unloading=reloading). Subsequent material responses were not 
considered due to non-convexity of primary loading for λ > 
1.2 in longitudinal strip (see Fig. 1). This kind of behavior was 
not repeated in the circumferential strip and may not be 
materially intrinsic (e.g. possible slippage in clamps). Material 
parameters were estimated using weighted least square method 
in Maple (Maplesoft, Wareloo, Canada). They are summarized 
in Tab. 1. Parameters c and β were held the same for all data. 
Shear modulus µ0 was considered for primary loading curve 
and µ12 for unloading curves. The limiting extensibility 
parameter was being varied with successive loading as 
described above. Thus, used material parameters can be 
summarized this way: primary loading parameters – c, µ0, Jf0 
and β; all unloading/reloading – c, µ12, Jf0, k and β. Results are 
displayed graphically in Fig. 2.  

Total number of used data points was 81. The numerical 
procedure satisfied the condition of tensile loading in the 
preferred direction (I4 > 1) in all points except two. Boundary 
conditions used to determine lateral deformation were satisfied 
properly everywhere (values did not exceed 7% of magnitude 
of loading stress). 

Table 1 Material parameters 

c µ0 µ12 Jf0 k β 
[kPa] [kPa] [kPa] [1] [1] [°] 

85.64 3000 5 0.120
2 

1.515
7 

49.2 
 

V. CONCLUSIONS 

All experiments proved the presence of the Mullins effect 
within cyclic loading of human thoracic aorta. Two 
perpendicular strips were engaged in the regression analysis.  
It was found that the stored energy density function (3) based 
on limiting fiber extensibility is capable to describe stress-
strain curves obtained from cyclic uniaxial tensile test. Varying 
two parameters (µ and Jf) was sufficient for the description of 
the stress softening like the Mullins effect. It was suggested 
that changes in these parameters were strain-induced, probably 
due to an alternation in internal structure of the material.   

Explicit form of the limiting fiber extensibility evolution 
based on exponential function was suggested (6). The 
functional dependence mimics the idea of limiting 
extensibility. To meet simplicity and do not rise errors in the 
model (lateral deformation was not measured but determined 

from boundary condition) evolving Jf is considered as function 
of maximum previously sustained deformation in the loading 
direction. One may expect that relating current value of Jf to 
maximum stretch in the fiber direction could be more 
appropriate; however results show that proposed description 
fits experimental data well.  

 
 

Fig. 2 Typical stress-strain curves and model fitting. Only 
points selected for the regression analysis are presented. 
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