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Anotace: Tato práce přináší výsledky analytických simulací inflačně-extenzního chování 

lidské břišní aorty modelované jako uzavřené nelineární, anizotropní, předepjaté silnostěnné  

i tenkostěnné nádoby. Je ukázáno, že podélné předpětí má významný vliv na mechanickou 

odezvu a to i přes to, že s věkem postupně mizí. Je diskutována fyzikální příčina pozitivního 
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Annotation: This study presents the results of an analytical simulation of the inflation-

extension behaviour of the human abdominal aorta treated as nonlinear, anisotropic, prestrained 

thin-walled as well as thick-walled tube with closed ends. Despite significantly decreased 

longitudinal prestretch with age, the biomechanical response of human abdominal aorta changes 

substantially depending on the initial axial stretch used.  The second part of the thesis is devoted 

to an explanation of the positive effect of the prestretch on the circumferential distensibility of 

nonlinear-elastic tubes 
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List of figures 

 

Figure 1. Human abdominal aorta. A – in situ infrarenal aorta at the time of autopsy measurement of 

the prestretch. B – ex situ infrarenal aorta at the time of autopsy measurement of the prestretch. Archive 

of the author. 

 

Figure 2. Opened ring of abdominal aorta. A – Real aortic ring after the radial cut. B – Assumed 

kinematics (opened stress-free configuration and closed but not pressurised). The photo is from author’s 

archive. 

 

Figure 3. Dependence of initial axial prestretch (found in autopsy) on age. Regression model for 

expected value zZini – thick red curve; upper limit zZ,ULini and lower limit zZ,LLini of 95%-prediction 

interval – green dashed curves; observations – blue points. Estimated parameters for regression equation 

(3) are a = 2.4016 [1/year]; b = -0.1957 [-].The data was adopted from Horny et al. (2013a). Since the 

lower limit of the prediction interval approaches 1 at the age of 61 years (no axial prestretch) and 

governed by (4) follows with values smaller than 1 (i.e. axial precompresion), it was decided to prescribe 

zZ,LLini = l for age > 61 years. This was motivated by two facts: (1) Horny et al. (2013a) did not report 

any precompressed artery in their sample, (2) it is not clear whether the constitutive equations used in 

this study are suitable to describe precompressed arteries. 

 

Figure 4. Inflation-extension behaviour of a 38 year old male donor (M38). The upper panel shows 

P–zZ and lower panel P–. Predictions for thick-walled (residual strain incorporated) model for  

are computed at ri (red) and ro (blue) and results based on the thin-walled model are computed at middle 

radius rm (green). However, zZ is constant at all radii hence upper panel, P–zZ, includes only two 

colours. Each triplet (P–) or doublet (P–zZ) of curves corresponds to specific initial axial stretch 

zZini = 1 (continuous curve), 1.1 (long dashed), 1.2 (dashed), 1.3 (dotted), and 1.4 (diamonds). The 

easiest way to understand the panels is to consider that in P–zZ axial prestretch increases from the left 

to the right, in contrast to P– where axial prestretch increases from the right to the left.   This figure 

manifests two basic points: (a) the axial behaviour of the tube for P ∈ [10kPa,16kPa] changes from 

axial extension (low initial axial prestretch) to axial shortening (high initial axial prestretch); and (b) the 

higher initial axial stretch gives P– curves with elevated position of the inflection point (elevated on 

P–axis). Notice that while P–zZ curves show only small differences between computational models 

(thick/thin), P– curves show that at high pressures and high axial prestretches ro) and rm) 

mutually converge more rapidly than ri) and rm). 
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Figure 5. Inflation-extension behaviour of a 65 year old female donor (F65). The panels are arranged 

in the same way as in Figure 2. The graphs show two differences when compared with M38 in Figure 

2. First, P–zZ curve for zZini = 1 does not exhibit initial shortening. It begins with axial extension. 

Second, the inflection point does not appear on P– curve for zZini = 1. However, curves for higher 

axial prestretch do show the inflection. Note that the existence of an inflection point makes P– curve 

S-shaped and results in higher circumferential distensibility  = (16kPa) – (10kPa) (in contrast 

to J-shaped curve without an inflection). 

 

Figure 6. Inflation-extension response of a 61 year old male donor (M61a) – detail. The results of 

the simulation based on thin-walled approximation.  The   blue solid curve was computed with expected 

value zZini = 1.074; red dashed curve was computed with zZ,ULini = 1.153; and black dotted curve was 

computed with zZ,LLini = 1. Shaded rectangle emphasises the region of physiological pressures. Vertical 

lines aid to identify stretch variation iI =  iI(16kPa) –  iI(10kPa) (iI =  and zZ). 

 

Figure 7. Diastolic-systolic stretch variations. The upper panels show variation of circumferential and 

axial stretch at ri and lower panel shows specific values of diastolic (PDIA) and systolic (PSYS) pressure 

applied in the computations. Due to nonlinear large strain stiffening, zZ decreases with increased axial 

prestretch, which is in contrast to circumferential behaviour ( attained higher values for highly axially 

prestretched aortas). 

 

Figure 8. Prestretching axial force. Predictions of Fred computed with the thin-walled model are 

depicted: blue solid circles were obtained with expected values of zZini; red open squares were obtained 

with the upper limit; and black open circles were obtained when the lower limit of the initial axial stretch 

was used. The blue solid line is the linear regression model of the dependence of Fred (obtained for 

expected values of the prestretch) on age: Fred = 2.115 – 0.023·Age for Age ∈ [38;77] years. Outside of 

this domain, one should consider the regression model as an extrapolation which is indicated by the 

dotted line.  The results are compared with experiments adopted from Horny et al. (2013). Note that due 

to the assumption Fred computed with zZ,LLini for age > 61 years is 0. The regression model (4) predicts 

zZ,LLini < 1 for age > 61 years; however, this is a  consequence of the used methodology expectation ± 

uncertainty. Since very little is known about initially pre-compressed arteries zZ,LLini (Age > 61 years) = 

1 was prescribed in our simulation. 

 

Figure 9. Variation of axial stress zz(ri) in the course of the pressurisation. The curves are based on 

the thick-walled model with incorporated residual strain. Circumferential stretch on horizontal axis starts 

from values smaller than 1 due to simultaneous effect of the initial axial stretch and residual strain. 

Predictions obtained with the expected value of zZini are depicted with blue solid curves; red dashed 

curves were obtained with zZ,ULini; and zZ,LLini  was used to create black dotted curves. Solid circles on 

the curves highlight the positions of diastolic (the left circle) and systolic (right circle) pressure. 
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Figure 10. Relative change of the axial stress induced by diastolic–systolic pressure increment. The 

upper panel shows the results computed with the thick-walled model (residual strain incorporated) at 

the inner radius (small symbols) and at the outer radius (large symbols). The lower panel shows results 

obtained by thin-walled approximation. The symbols are used in the same way as in Figure 7 and 8. The 

figure shows that higher initial axial prestretch is accompanied with smaller changes of the axial stress. 

Correlation coefficients and regression lines correspond to expected initial prestretch. 

 

Figure 11. Components of referential elasticity tensor C for expected axial prestretch. Upper panels 

show the stiffness in circumferential direction (C) and lower panels in axial direction (CZZZZ). The 

symbols indicate the method and position: red solid boxes – at ri with thick-walled model; black solid 

circles – at rm with thin-walled model; and blue solid diamonds – at ro with thick-walled model. The 

regression line indicates significant correlation between age and C at rm for PSYS (R = 0.515 p–value 

= 0.04). Note that logarithmic scale is used on vertical axes. 

 

Figure 12 Stiffness ratio. The figure summarises results obtained for stiffness ratio at inner, middle and 

outer radius of the aortas. Three important things can be derived from the figure: (1) weakly prestretched 

aortas give higher stiffness ration; (2) the stiffness ratio varies significantly through the thickness of the 

wall; and (3) aortas may exhibit different stiffness ratios in different ageing periods. 

 

Figure 13. Relative increment of the stiffness ratio. Highly prestretched aortas gave a higher relative 

increment in the stiffness ratio during pressure cycle. 

 

Figure 14. Fung-Demiray inflation-extension response. A – initial prestretch and dimensionless 

force. B – mutual dependence of initial prestretches (zZini – 
ini). C and D – dimensionless pressure 

vs. stretch. E – traces of inflation-extension responses in the phase space of the deformation (solid 

curves) and contour curves for dimensionless pressure P = k (dashed curves). An interpretation is 

provided in footnote 13. F – stretch difference  – 
ini achieved by loading a tube with pressure P. 

 

Figure 15. Neo-Hookean and Fung-Demiray incompressible solid in uniaxial extension. The figure 

demonstrates that only moderate nonlinearity is inherent to the neo-Hooke model in contrast to the Fung-

Demiray model which stiffens progressively ( = 1). 

 

Figure 16. Neo-Hookean inflation-extension response. A – initial prestretches and dimensionless 

force. B – mutual dependence of initial prestretches (zZini – 
ini). C and D – dimensionless pressure 

vs. stretch. E – traces of inflation-extension responses in the phase space of the deformation (solid 

curves) and contour curves for dimensionless pressure P = k (dashed curves). F – stretch difference  

– 
ini achieved by loading a tube with pressure P. Dotted curves indicate a loss of deformation 

stability. 
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Figure 17. Neo-Hookean and linearized inflation-extension response at small strains but large 

displacements. A – prestrains and dimensionless force. B – mutual dependence of initial prestrains.  

C and D – dimensionless pressure vs. infinitesimal strain. E – traces of inflation-extension responses. 

Solid circles and continuous curves correspond to second order linear theory. Dotted curves and empty 

circles correspond to nonlinear theory applied to neo-Hookean material but results are displayed over 

infinitesimal strain coordinates according to kk = √(1 + 2EKK) – 1. The same axial prestretch was applied 

to both problems which ordinarily leads to different prestretching forces. 

 

Figure 18. Circumferential distensibility of the Neo-Hookean and linearized model in inflation-

extension response at small strains but large displacements. A – overall dependences. B – detail. 

 

Figure 19. Inflation-extension responses in the first order linear elasticity. A – circumferential 

responses. B – longitudinal responses. 

 

Figure 20. Differential increment dW. Infinitesimal contributions of the order higher than the first 

are neglected. 

 

Figure 21. Internal element of deformed thick-walled circular tube. 

 

Figure 22. Axial equilibrium. 
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Table 1. Age, gender, geometry and constitutive parameters of involved donors; adopted from Labrosse 

et al. (2013). 

 

Table 2. Initial axial prestretches for donors involved in the simulation estimated with regression model 

(3) and its prediction intervals (4). The table is ordered in the same way as Table 1. Estimated parameters 

in (3) a = 2.4016 [1/years]; b = -0.1957 [-]; and in (4) t/2(363)·Se = 0.0707; Mean(lnxi) = 3.8414; and 
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Shrnutí 

 

Elastické tepny jsou v lidském těle značně axiálně předepnuty. Předpětí minimalizuje podélné 

deformace během srdečního cyklu (přenosu pulsní vlny). Starobní změny v cévní mechanice 

vedou mimo jiné k tomu, že podélné předpětí s věkem výrazně klesá. Ačkoliv je toto známý 

poznatek, pouze malá vědecká pozornost byla doposud věnována důsledkům tohoto poklesu na 

mechanickou odezvu cév.  

Tato práce přináší výsledky analytických simulací inflačně-extenzního chování lidské břišní 

aorty modelované jako uzavřené nelineární, anizotropní, předepjaté silnostěnné i tenkostěnné 

nádoby. Konstitutivní parametry a geometrie sedmnácti aort jsou převzaty z literatury  

a doplněny o statistiku poklesu předpětí v průběhu lidského života. Statistiku poklesu předpětí, 

založenou na 365 pitevních měřeních, s kolegy publikoval autor habilitační práce. 

Inflačně extenzní odezva každé aorty byla vypočtena třikrát a to pro (1) očekávané chování 

aorty (jako vstupní parametr byly očekáváné střední hodnoty předpovídané regresním modelem 

závislosti předpětí na věku), (2) simulace inflačně extenzního chování byla provedena s horní 

a (3) dolní mezí 95%-intervalu spolehlivosti predikce regresního modelu věkové závislosti 

axiálního předpětí. Tento postup umožnil vyhodnotit meze trendů starobních závislostí 

s ohledem na variabilitu pozorování a skutečnost, že dochází ke kombinaci literárních dat. 

Výsledky simulací ukázaly, že ačkoliv elastické předpětí může být s věkem zcela ztraceno,  

i malé zbytkové hodnoty významně ovlivňují mechanickou odezvu aorty, a to i přesto, že aorty 

současně s tím významně tuhnou. Konkrétněji: aorty axiálně předepjaté na horní mezi 

očekávání vykazují významně vyšší obvodovou průtažnost oproti svým slabě předepjatým 

protějškům, což pozitivně přispívá k pružníkovému efektu. Tato fyziologická funkce axiálního 

předpětí doposud v literatuře nebyla popsána. Též byl potvrzen významný vliv axiálního 

předpětí na proměnlivost axiálního napětí během srdečního cyklu. V simulacích byla také 

verifikována hypotéza o přibližné konstantnosti poměrů obvodových a axiálních složek tenzoru 

pružnosti během srdečního cyklu, která byla navržena v nedávné literatuře. 

Ve své druhé části se habilitační práce věnuje vysvětlení pozitivního efektu podélného předpětí 

na obvodovou průtažnost nelineárně-elastických trubic obecně. Je ukázáno, že sama podstata 

efektu spočívá v nutnosti rozlišovat mezi referenční a zdeformovanou konfigurací, tj.  

ve velkých posuvech. 

 

 

Klíčová slova: břišní aorta, stárnutí, konstitutivní modelování, průtažnost, předpětí, tuhost.  
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 Summary 

 

Elastic arteries are significantly prestretched in an axial direction. This property minimises axial 

deformations during pressure cycle. Ageing-induced changes in arterial biomechanics, among 

others, are manifested via a marked decrease of the prestretch. Although this fact is well known, 

little attention has been paid to the effect of decreased prestretch on mechanical response. This 

study presents the results of an analytical simulation of the inflation-extension behaviour of the 

human abdominal aorta treated as nonlinear, anisotropic, prestrained thin-walled as well as 

thick-walled tube with closed ends. The constitutive parameters and geometries for 17 aortas 

adopted from the literature were supplemented with initial axial prestretches obtained from the 

statistics of 365 autopsy measurements. For each aorta, the inflation-extension response was 

calculated three-times: with expected value of the initial prestretch and with the upper and lower 

confidence limit of the initial prestretch derived from the statistics. This approach enabled age-

related trends to be evaluated bearing in mind the uncertainty in the prestretch. Despite 

significantly decreased longitudinal prestretch with age, the biomechanical response of human 

abdominal aorta changes substantially depending on the initial axial stretch used.  In particular, 

substituting the upper limit of initial prestretch gave mechanical responses which can be 

characterised by (1) low variation in axial stretch, and (2) high circumferential distensibility 

during pressurisation, in contrast to the responses obtained for their weakly prestretched 

counterparts. The simulation also suggested the significant effect of the axial prestretch on the 

variation of axial stress in the pressure cycle. Finally, the obtained results are in accordance 

with the hypothesis that circumferential-to-axial stiffness ratio is the quantity relatively constant 

within this cycle. 

The second part of the thesis is devoted to an explanation of the positive effect of the prestretch 

on the circumferential distensibility of nonlinear-elastic tubes. It is shown that a key point is to 

distinguish between the reference and deformed configuration that is a problem formulation 

including large displacements is indispensable to be able to observe the distensibility of tubes 

enhanced by the axial prestretch.   

 

 

Keywords: abdominal aorta; ageing; constitutive modelling; distensibility; prestretch; 

stiffness.  
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Typesetting convention 

 

All scalar quantities (and of course components of vectors and tensors) are typed in italic font, 

e.g. r, R, XK, SIK, CIJKL… 

In the symbolic notation, all vectors are in bold italic font, e.g. x, X, E1…  

In the symbolic notation, all tensors (rank ≥ 2) are in bold normal font, e.g. F, S, C… There 

is one exception from this rule, it is Cauchy stress tensor  , which is typed in italic bold as 

usual. 

 

In what follows, symbols of a theory are typed in Palatino Linotype or Futura Bk BT, 

contrastingly to meta-language which is in Times New Roman. 

 

Vector and tensor quantities are typed in uppercase letters when they are expressed in the 

material description, and in lowercase letters when they are expressed in the spatial description.  

 

Unless explicitly stated, preceding rules hold everywhere in the study.   
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List of symbols 

 

 

  [-]  either significance level (statistics), or opening angle (residual  

strain in thick-walled tube) 

a  [year-1]  parameter of regression model (prestretch–age relationship) 

  [-]  material parameter in Fung-Demiray model 

b  [-]  parameter of regression model (prestretch–age relationship) 

bkl  [-]  components of the left Cauchy-Green strain tensor 

b    left Cauchy-Green strain tensor 

B    a body 

B(x)    current (spatial) configuration of a body understood as a vector  

space 

B(X)    reference (spatial) configuration of a body understood as a vector  

space 

c0  [kPa]  material parameter in strain energy density function 

c1, c2  [-]  material parameter in strain energy density function 

CIK  [-]  components of the right Cauchy-Green strain tensor 

C    right Cauchy-Green strain tensor 

CIJKL  [-]  components of the material elasticity tensor 

C    material elasticity tensor 

ik, IK  [-]  Kronecker’s delta 

dB(x)    tangent space at x  

dB(X)    tangent space at X

dx    infinitesimal of a position vector x, element in tangent space at x 

dX    infinitesimal of a position vector X, element in tangent space at X 

iI  [-]  distensibility; iI = iI(P2) – iI(P1) for iI  =  and zZ and  

P1 < P2; in the context of arterial physiology P1 = PDIA < P2 = PSYS  

is used, in general considerations usually P1 = 0 and P2 = P 

eik  [-]  components of the Euler-Almansi strain tensor  

EIK  [-]  components of the Green-Lagrange strain tensor  

e    Euler-Almansi strain tensor  

E    Green-Lagrange strain tensor 

F   [-]  normalized prestretching axial force Fred/(Rm
2 
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Fred  [mN]  prestretching axial force  

FiK  [-]  components of the deformation gradient  

F    deformation gradient 

ik  [-]  components of infinitesimal strain tensor 

    infinitesimal strain tensor 

h  [mm]  thickness of the deformed tube  

H  [mm]  thickness of a tube in the reference configuration 

    (index) circumferential direction in the deformed state 

    (index) circumferential direction in the reference state 

i, I    spatial and material unit tensor, respectively 

J  [-]  volume ratio 

rR,,zZ [-]  radial, circumferential, and axial stretch, respectively 

zZini  [-]  axial prestretch 

zZini  [-]  axial prestretch 

zZ,EXPini [-]  expected value of the axial prestretch 

zZ,LLini  [-]  lower bound of the prediction interval of the axial prestretch  

regression model 

zZ,ULini  [-]  upper bound of the prediction interval of the axial prestretch  

regression model 

  [kPa]  material parameter corresponding to shear modulus  

m  [-]  degree of freedom (statistics) 

p  [kPa]  undetermined multiplier accounting for hydrostatic contribution  

to a stress tensor arising from incompressibility constraint 

P, Pk   [kPa]  internal pressure 

P   [-]  normalized pressure P/ 

PSYS, PDIA   [kPa]  systolic, diastolic pressure 

PiK  [kPa]  components of the nominal stress tensor 

P    nominal stress tensor 

,i,o [mm]  radius in opened-up configuration of the tube (variable, inner,  

outer) 

r    (index) radial direction in the deformed state 

r, ri, ro  [mm]  radius in the pressurized configuration of the tube (variable, inner,  

outer) 

rm  [mm]  middle radius of the pressurized thin-walled tube 
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R    (index) radial direction in the reference state 

R  [-]  coefficient of linear correlation (Pearson) 

R, Ri, Ro [mm]  radius of the closed but not pressurized tube (variable, inner,  

outer) 

Rm  [mm]  middle radius of the thin-walled tube in the reference state 

ik  [kPa]  components of the Cauchy stress tensor 

    Cauchy (true) stress tensor  

SIK  [kPa]  components of the second Piola-Kirchhoff stress tensor 

S    second Piola-Kirchhoff stress tensor 

v  [mm3]  current volume 

V  [mm3]  referential volume 

W  [kPa]  strain energy density function (per unit reference volume) 

Ŵ  [kPa]  strain energy density function (after rR = 1/(∙zZ) substitution) 

    a motion considered as a mapping from the reference to current  

configuration 

xi  [mm]  components of the spatial position vector 

x    position vector in the deformed configuration 

XK  [mm]  components of the material position vector 

X    position vector in the reference configuration 

z  [mm; -] axial coordinate or (as index) axial direction in the deformed  

configuration 

Z  [mm; -] axial coordinate or (as index) axial direction in the reference  

configuration 

 

 

 

 

 

 

 

 

 

Introduction 
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Author’s interest in axial prestretch has been initiated at the end of 2009 in a discussion with 

his colleague Tomáš Adámek. Tomáš is a forensic pathologist affiliated with the Third Faculty 

of Medicine of Charles University in Prague and Fakultní nemocnice Na Královských 

Vinohradech and he has autopsied almost ten thousands of cadavers in his career. Since 1980s 

an excision of the aorta and a measurement of aortic circumference has been a routine part of 

the necropsy procedure at the forensic medicine department he has been employed at. Very 

large statistics of the measurements gave a confident method to estimate age of a cadaver at the 

time of death based on aortic circumferences (Štefan and Josífko 1984).1 Tomáš observed that 

aortas, when excised, differ not only in the diameter but also in their retraction after the excision. 

The retraction of an artery is a consequence of a removed loading which holds the artery in its 

in situ length. The ratio of the in situ to ex situ length is referred to as (axial) prestretch.  The 

first question we posed was whether the prestretch does correlate with age.  

 

 

State of the Art. A detailed study of the axial prestretch in abdominal aorta resulted in several 

scientific papers reporting age-related changes in longitudinal prestretch and its correlation with 

anatomical quantities like heart weight, thickness of left ventricle, circumference of the aorta 

(Horný et al., 2011; 2012a). It was shown that an inverse relationship (regression model of the 

dependence of age on the prestretch) is a suitable instrument to obtain the estimate of age with 

reliability comparable to other forensic methods based on e.g. osteological and odontological 

observation (Horný et al., 2012a, 2012b). But in contrast to them, the prestretch is determined 

just in the autopsy room and at the time of autopsy, and with minimal costs. One only has to 

have a rule and marker. A discovery of a fact that the ratio of aortic diameter to axial prestretch 

depends linearly on age motivated the combined arteriosclerotic index to be defined – it roughly 

gives predictions of age ±12.7 years at confidence level 95% in male population (Horný et al., 

2012b).2 Another interesting conclusion of the previous research is that axial prestretch in aorta 

is not significantly affected by atherosclerosis (Horný et al., 2014) which may be considered 

somewhat surprising at the first look.3 Final, more methodological, conclusion was that post-

mortal changes (in the range from 0 to approximately 120 hours) do not significantly affect the 

determined axial prestretch (Horný et al., 2014). 

                                                      
1 It is a reality in the forensic practice that from time to time cadavers of unknown identity are examined. 
2 It has to be noted that usual population variance of anatomical quantities is really high in comparison with 

variances which engineers know from their practice.    
3 Remind that atherosclerosis is a focal disease present on inner layer of an artery wall where it appears as a 

formation of lipid riche and calcified plaques prone to a rupture. A boundedness of atherosclerotic plaque explains 

the conclusion. On the other hand there is arteriosclerosis which manifests as a calcification and subsequent 

disruption of elastin membranes inside the artery wall and it is likely that arteriosclerosis is a mechanistic cause of 

the decreasing prestretch during ageing. However, quantitative correlation between elastin disruptions and 

decreased prestretch remains to be described.    
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In Horný et al. (2013), axial prestress was investigated. Uniaxial tensile tests with tubular 

samples of human aortas suggested that age-related decrease is not only the case of the 

prestretch but axial prestress also declines in ageing. This is not a self-evident result derivable 

from mechanical laws due to well-known stiffening of human arteries in age (arteriosclerosis). 

Human aorta generally stiffens with age, diameter and thickness increase, but the prestretch and 

prestress decrease. The results in Horný et al. (2013) showed that age-related stiffening does 

not take place in a neighbourhood of the prestretch determined in autopsies.4 Moreover, it was 

found that prestretching force also decreases with age. Altogether led to the hypothesis that the 

decrease of the axial prestretch is induced by a damage of internal structure of aorta. This 

damage is likely to be a consequence of arteriosclerosis but clear experimental evidence is still 

lacking (Horný et al., 2013). 

In the time spent with the axial prestretch (2010–2014) the author of the thesis found that 

there are many gaps in our knowledge of the prestretch. It is actually surprising when one 

becomes conscious of the fact that an existence of the prestretch had already been reported by 

Fuchs (1900) as Bergel (1961) mentioned. There are papers of Bergel (1961), and Dobrin and 

Doyle (1970) who worked with animal models to show that arterial physiology is strongly 

affected by the prestretch. They however did not investigate how it changes in ageing. The 

evidence that ageing significantly affects the prestretch was provided by Learoy and Taylor 

(1966; with human arteries) but their sample was too small to obtain quantitative relationship 

between age and prestretch. Lagewouters et al. (1984) reported measurement of 20 abdominal 

and 45 thoracic aortas in autopsies but their successors focused rather on impact of ageing on 

material properties (constitutive equation) than on the prestretch which, in comparison with 

material properties, should be interpreted as a boundary condition (Wuyts et al., 1995; Zulliger 

and Stergiopulos 2007). 

Our knowledge of the axial prestretch was improved when Han and Fung (1995) published 

their study where dependence of the prestretch on anatomical location in aortic tree was 

quantified (canine, porcine models; the prestretch increases with increasing distance from the 

heart). Human data of the determined prestretch is frequently dispersed in papers which aim at 

other objectives (e.g. constitutive models obtained in inflation-extension test post-processing; 

see e.g. Schulze-Bauer et al., 2003; Humphrey et al., 2009; Sommer et al., 2010, 2012). The 

systematic study of the prestretch has been lacking in the literature. 

Besides recent studies published by the author and his colleagues, one must not miss out 

the results obtained by Jessica Wagenseil and her co-workers who have put a role of elastin in 

                                                      
4 The word neighbourhood is here used in the sense of the Calculus. It expresses an existence of a subset in the 

space of deformations which covers points close to the deformation attained when an artery is stretched to in situ 

length. It should be remarked that artery stretched in situ in autopsy room, that is post mortem, is in 3D strain state 

but (neglecting residual stresses) in uniaxial stress state which is significantly different from in vivo conditions 

where the artery is loaded by internal pressure and hence in 3D stress state. 
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the axial prestretch into a clear light.5 They use genetically modified animal models to elucidate 

a role of extracellular matrix insufficiency in development of diseases like hypertension, 

supravalvular aortic stenosis and others. It has been found that mice unable to synthesise normal 

elastin have elastic arteries which do not retract upon excision (or shorten significantly lesser 

in comparison with wild-type mice depending on genotype). Instead of the retraction, arteries 

become tortuous and curved (Wagenseil et al., 2005, 2009; Cheng and Wagenseil 2012; Carta 

et al., 2009). The finding that elastin is responsible for bearing the prestretch of artery wall is 

in accordance with previously mentioned results of Han and Fung (1995). The magnitude of 

the prestretch increases with the distance from the heart because the amount of elastin 

membranes inside the wall decreases and, as is assumed, a load per membrane increases.   

The axial prestretch, from mathematical point of view, expresses initial boundary condition                                        

in initial-boundary value problem describing an inflation-extension behaviour of an artery (in 

case that inertial forces are considered we should say pressure pulse wave propagation). There 

is significant difference between hard tissue (bones) and soft tissue (e.g. arteries) biomechanics 

from engineering point of view. In bone biomechanics, patient-specific models progressed to a 

state when computational biomechanics can, by their predictions, directly assist surgeons in a 

development of individual implants and replacements. This is not the case in arterial 

biomechanics although first attempts have occurred. High population variability in constitutive 

equations for soft tissues, which moreover are nonlinear and have to be formulated at finite 

strains, is one of the most important reasons.  

It motivates many scientists worldwide to investigate material properties of the arteries. 

Additional difficulty is that the mechanical response of soft tissues in vivo is different from the 

response ex vivo and in a lab (which resembles a term in vitro although mechanical engineers 

do not use test tubes). Nowadays it is clear that arterial biomechanics, if it aims to be not only 

a basic, say, physiological science but also a key applied discipline in hands of engineers 

developing instruments and procedures with individual strengths for individual demands, needs 

a reliable and confident method to obtain constitutive models in vivo. 

In the new millennium there is an increasing interest in procedures capable to estimate 

constitutive equations of arteries in living beings and the author considers it to be a strong 

motivation for his work (Schulze-Bauer and Holzapfel 2003; Stålhand and Klarbring 2005;  

Stålhand 2009; Masson et al., 2008, 2011; Åstrand et al., 2011; Wittek et al., 2013; Karatolios 

et al., 2013; MacTaggart et al., 2014; Kamenskiy et al., 2014). However at present, he does not 

focus on these techniques as such, but would like to deliver to colleagues aimed to in vivo 

constitutive model determination what they cannot measure – the axial prestretch and its role 

                                                      
5 Elastin is a component of extracellular matrix, biopolymer and protein, responsible for elastic properties of 

tissues. It can be found for instance in arterial walls, lungs, and skin. A body is normally able to synthesise it only 

in pre-natal and early post-natal period. It is believed that restricted capability to synthesise elastin in advanced 

age is one of the most important causes of hypertension because damaged elastin is in arterial remodelling and 

during adaptation replaced by collagen which is, in comparison with elastin, very stiff.   
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in arterial mechanical response.6 It is clear that experimental measurement of the prestretch is 

impossible in the living beings because it necessitates the excision of arterial segment from a 

body.       

 

 

Arrangement of the thesis, objectives and results. The study is divided into two main chapters 

and three appendices. 

 

The first chapter, Axial prestretch and biomechanics of abdominal aorta, is a slightly 

extended version of the paper published by Lukáš Horný, Marek Netušil and Tereza Voňavková 

in Biomechanics and Modeling in Mechanobiology in 2014.7 The chapter describes how axial 

prestretch affects mechanical response of human abdominal aorta in the inflation-extension test 

modelled by thick-walled and thin-wall incompressible anisotropic hyperelastic tube. It is 

shown that arterial physiology benefits from the prestretch by increased circumferential 

distensibility, decreased variation of the axial stress and strain in the pressure cycle and it is 

also hypothesised that the ratio of the circumferential and axial component of the elasticity 

tensor is a suitable candidate to be used as a constraint in in vivo constitutive model 

determination because of its approximate constancy. The results however suggested that the 

minimal pressure-induced variation of the axial stress in the artery wall may be lost in ageing 

which could be a source of undesirable remodelling of the artery and could be a trigger of a 

development of pathologies like aneurysm formation. 

 

Enhanced circumferential distensibility of the pressurized tube by applying axial prestretch had 

seemed to the author that brings somewhat contra-intuitive results and motivated him to add 

another chapter: Analysis of effect of axial prestretch in different computational models. 

The second chapter, in contrast to the first which focuses on the biomechanics, investigates the 

effect of the prestretch from general point of view of solid mechanics of deformable bodies. In 

this section, an effect of isotropy, effect of nonlinear constitutive model (material nonlinearity), 

effect of finite strains (geometrical nonlinearity), and large displacements with infinitesimal 

strain formulation, are discussed. It was found that it is crucial to distinguish between the 

reference and deformed configuration – nonlinearity arising from difference between a nominal 

and true stress tensor. In other words, second order linear elasticity has shown tubes which are 

                                                      
6 From mechanical point of view we can say that in vivo constitutive model determination does not only consist in 

an estimation of the model and its parameters from known sequence of deformed configurations as is usual for 

engineers in a lab, but also in the determination of an unknown reference configuration of a body.  
7 Full bibliographical record:  

Horný L, Netušil M, Voňavková T (2014) Axial prestretch and circumferential distensibility in biomechanics of 

abdominal aorta. Biomech Model Mechanobiol 13(4):783-99. DOI: 10.1007/s10237-013-0534-8. 

Biomechanics and Modeling in Mechanobiology has received impact factor 3.251 from the Journal of Citation 

Reports 2013.  
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more distensible when axially prestretched. But of course, full nonlinear formulation led to 

strengthening of the effect. This results have not been published yet. 

 

Appendix A is entitled Equilibrium equations for incompressible thick-walled tube and  

in-wall stress distribution, and is purely supporting and does not deliver new results. It consists 

in the derivation of the used equations and is placed here for the convenience of readers who 

otherwise would have to spend time searching through scientific literature. Appendix A can 

also be helpful for students because the derivation, particularly of the axial equilibrium 

equation, contains steps (e.g. rearrangement of an integration by part) which, when omitted 

during a lecture, can make final formulas somewhat mysterious because it is not clear at first 

look how they were obtained.    

 

Appendix B and C consist of two scientific papers published by the author and his colleagues 

and document that results obtained in the research managed by the author have international 

publicity in the scientific community. 

 

Appendix B –  Horný L, Netušil M, Voňavková T (2014) Axial prestretch and 

circumferential distensibility in biomechanics of abdominal aorta. Biomech Model 

Mechanobiol 13(4):783-99; 

 

and Appendix C – Horný L, Adámek T, Kulvajtová M (2014) Analysis of axial prestretch 

in the abdominal aorta with reference to post mortem interval and degree of 

atherosclerosis. J Mechan Behav Biomed Mater 33:93-98. 
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I. Axial prestretch and biomechanics  

of abdominal aorta 
 

 

 

Slightly extended version of Horný L, Netušil M, Voňavková T (2014) Axial prestretch and 

circumferential distensibility in biomechanics of abdominal aorta. Biomech Model 

Mechanobiol 13(4):783-99. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



24 

 

I.1. Motivation 

 

There is extensive literature dealing with the circumferential behaviour of elastic arteries, e.g. 

aorta, carotids, iliacs (Dobrin 1978; Humphrey 2002; Shadwick 1999; Kalita and Schaefer 

2008). This literature includes results of both ex vivo and in vivo approaches showing the 

unique Windkessel function of these arteries.    The manner of how elastic arteries transmit 

pressure pulse wave has been linked to mortality (McEniery et al. 2007; Greeenwald 2007). 

Arteriosclerotic changes, which are responsible for age-related loss of elasticity (a key factor 

for pulse wave transmission), have subsequently been suggested as a potential target for 

cardiovascular therapy (O’Rourke and Hashimoto 2007). It was well established that 

circumferential distensibility declines with age. In contrast to the circumferential mechanical 

response, the axial behaviour of arteries in their natural (tubular) geometry has been studied 

less extensively, especially for human data which can only be found in a limited number of 

reports (Horny et al. 2013).     

Elastic arteries in situ are significantly prestretched in an axial direction (Dobrin and 

Doyle 1970; Han and Fung 1995; Learoyd and Taylor 1967). They retract upon excision and 

the difference between the in situ and ex situ length rapidly decreases in middle age and only 

small changes follow after the age of 60  (Horny et al. 2011, 2012a,b). For instance, a 

regression model adopted in this study from Horny et al. (2014) respectively gives axial 

prestretch 1.33, 1.23, 1.08, and 1.05 at age 20, 30, 60 and 70,  which implies a decrease of 

approx. 30% and 9.5% per decade with reference to 20 years of age  (the supposed maximum 

prestretch due to the end of the growth period).    

Axial prestress, induced by the prestretch, has an important physiological function. In an 

idealised case, it enables the artery to carry the pulse pressure with minimal variation in its 

length (Schulze-Bauer et al. 2003; Sommer et al. 2010; Van Loon et al. 1977). It is, however, 

unknown how ageing-induced changes in prestress and stiffness are inter-related together. In 

other words, how the stress state of an artery is affected by a simultaneous decrease in the 

prestretch and an increase in the stiffness (at strains corresponding to in vivo loading). The 

interrelation is significantly complicated by the nonlinearity and anisotropy of arterial 

constitutive behaviour (Holzapfel et al. 2000; Holzapfel and Ogden 2010a). 

This study attempts to contribute to this topic with an analytical simulation of the inflation 

and extension behaviour of human abdominal aorta treated as a homogenous, nonlinear and 

anisotropic continuum. The constitutive model and its parameters are adopted from Labrosse 

et al. (2013) who have recently published the results of 17 inflation–extension tests with 

human abdominal aortas. Data describing the axial prestretch of aortas are adopted from 

Horny et al. (2014). They systematically conducted autopsy measurements of the prestretch 

and their sample has reached a total of 365 observations which is suitable to be used as a 

representative of a population.  
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I.2. Methods 

 

I.2.1 Brief continuum mechanics introduction 

 

Kinematics. Let X and x respectively denote position vectors of a material particle in the 

reference and deformed configuration of a body B. Let  is a homeomorphism from B(X) to 

B(x),  : B(X) → B(x).8 In other words x = (X). It is also possible to write an inverse 

mapping X = -1(x). When  is used in a formulation of equations of continuum mechanics, 

the approach is referred to as the material description. In case of -1 is used, it is the spatial 

description. 

The deformation gradient F, basic measure of a deformation, is defined as F = dx/dX. F is 

a two-point second order tensor from which other deformation measures are derived.9 The 

basic measures used in the material description are right Cauchy-Green strain tensor C, and 

Green-Lagrange strain tensor E. They are defined as C = FTF, and E = ½(C – I). Here I 

denotes second order unit material tensor. Examples of strain measures in the spatial 

description are left Cauchy-Green strain tensor b, and Euler-Almansi tensor e;  

b = FFT, and e = ½(i – b-1).10  

 

Internal forces. Areal intensity of internal forces in a material is measured by stress tensors. 

Similarly to the deformation, we can define mixed (two-point), material and spatial stress 

tensors. The most frequently used measures are nominal stress tensor P (in case of uniaxial 

                                                      
8 Homeomorphism  is a mapping between two sets which is mutually unique (bijective), and mutually 

continuous. As a consequence, continuous inverse -1 does exist. B(X) and B(x) respectively denote a vector 

space defined above the reference and deformed configuration of the body B. B(X) and B(x) are also understood 

as metric spaces with Euclidean metric. Choosing some orthonormal bases, the position vectors can be written 

using their components as: X = X1E1 + X2E2 + X3E3 = (X1,X2,X3), and x = x1e1 + x2e2 + x3e3 = (x1,x2,x3). In what 

follows, vectors and tensors components will always be expressed with reference to some orthonormal basis. 

Thus covariant and contravariant components will not be distinguished, since they mutually equal. Similarly, all 

tensors are considered in their physical components.    

9 Two-point tensor means that it creates a (linear) map between two different spaces. In our specific case F 

creates the map between dB(X) and dB(x) where operator “d” denotes tangent space to B at a given point (X or 

x); F : dB(X) → dB(x). The word tangent means that instead of position vectors their differentials are elements of 

the space. In the component notation, F is written as FiK where the first index refers to the deformed 

configuration and the second to the reference configuration. Thus components of F are obtained as FiK = ∂xi/∂Xk, 

which has clear geometrical interpretation – deformation gradient measures rate of change of the current 

coordinate xi(X1,X2,X3) with respect to an increment of the reference coordinate XK (where i and K = 1, 2, 3). 

10 In the component notation, the above mentioned tensors are written as CIK (CIK = FjIFjK), EIK  

(2EIK = FjIFjK – IK), bik (bik = FjLFkL), eik (2eik = ik – FjLFkL). Here  is understood as Kronecker’s delta.  
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stress state defined as current force per reference area), true or Cauchy stress tensor  (in 

uniaxial stress state defined as current force per current area), and second Piola-Kirchhoff 

stress tensor S (in uniaxial state of stress defined as a force transformed by F-1 to the reference 

configuration per reference area).  

 

Clearly P is expressed in mixed description,  in spatial and S in material description.11 It 

should be noted that a choice of the description (material, spatial, mixed) is immaterial from 

physical point of view. Continuum equations still express the same physical reality (usually 

balance of mass, momentum or energy). But in specific case, some of the descriptions may 

lead to easier solution from mathematical viewpoint than others. 

 

Constitutive equations. A material is referred to be hyperelastic (or Green elastic) when and 

only when the elastic potential W exists and components of the stress tensor are derived from 

W via a differentiation with respect to the strain tensor: P =  ∂W/∂F;  = J-1(∂W/∂F)FT; or e.g. 

S = ∂W/∂E. J denotes so-called volume ration defined as J = v/V = det(F) = √(det(C)). W is 

also frequently named strain energy density function (density per unit reference volume).   

 

I.2.2 Constitutive model and parameters 

 

Although the biomechanics of large arteries has been extensively studied worldwide, 

scientific papers reporting the constitutive parameters obtained from pressurisation tests with 

human abdominal aorta are rare. Labrosse and co-workers have recently published data 

suitable for a purpose of computational simulation (Labrosse et al. 2013). They conducted 

inflation tests (with simultaneous free axial extension), determined constitutive parameters 

and discussed the results with reference to transmural stress distribution (residual 

strain/stress). Within our study, we adopted the constitutive model, material parameters and 

reference geometries (thickness, radius, opening angle) presented by them (Labrosse et al. 

2013). 

The constitutive model is based on the Fung–type exponential strain energy density 

function W (1) which in the literature is referred to as Guccione’s model (Guccione et al. 

                                                      
11 In the component notation, stress tensors are written as PiK, ik, and SIK. Following transformation rules hold:  

P = JF-T = FS, and PiK = JijFKj-1 = FiJSJK. Here J denotes volume ratio v/V. More details can be found in any 

standard textbook of continuum mechanics (e.g. in Holzapfel G.A. Nonlinear Solid Mechanics: A Continuum 

approach for engineering published in 2000 by J. Wiley and Sons; or in Bonet J. and Wood R.D. Nonlinear 

Continuum Mechanics for Finite Element Analysis published by Cambridge University Press in 1997; the readers 

who prefer Czech may found helpful courseware text written by the author Horný L. Patobiomechanika 

srdečněcévního systému I. díl published in 2014 available online via http://users.fs.cvut.cz/~ 

hornyluk/files/Patobiomechanika-srdecnecevniho-systemu-I.pdf).     

http://users.fs.cvut.cz/~hornyluk/files/Patobiomechanika-srdecnecevniho-systemu-I.pdf
http://users.fs.cvut.cz/~hornyluk/files/Patobiomechanika-srdecnecevniho-systemu-I.pdf
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1991). ERR, E and EZZ respectively are the radial, circumferential and axial components of 

the Green-Lagrange strain tensor in the cylindrical coordinate system and c0, c1, c2 are the 

material parameters.  
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     (1)    

The artery wall was considered to be incompressible. Stress–strain relationship is then 

obtained in the form of (2). Here p is hydrostatic stress resulting from incompressibility 

constraint, i denotes second order unit tensor (spatial description), and  is the Cauchy stress 

tensor.12  

    

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Material parameters, age (38–77 years) and gender are specified in Table 1. 

 

 

I.2.3 Axial prestretch zZini 

 

Axial prestretch of the large arteries cannot be directly measured in the living due to the 

destructive nature of such an experiment (a segment of an artery has to be excised from a 

body; see Figure 1). Since Labrosse et al. (2013) did not report specific values of the 

prestretch, population data was  adopted from Horny et al. (2014). Horny et al. (2014) 

measured the retraction of segments of the human abdominal aorta in 365 regular autopsies. 

The data sample of 365 measurements is large enough to capture trends and variability in the 

prestretch occurring in the population. The data has been fitted to a regression equation (3) 

describing dependence on age (a, b denotes regression parameters and x denotes age [years]).  

     
ini b

zZ
ax        (3) 

In the following simulations, initial axial prestretch zZ
ini will be prescribed to the value 

obtained from (3) after the substitution of specific age (Table 1). Since no measurement is 

free from uncertainty and population data is used, the simulations will also employ the upper 

and lower limit of the prediction interval of the prestretch. Specifically, a 95%-confidence 

interval for a prediction given by the regression model. This approach will enable us to 

                                                      
12 When the material is incompressible, its volume is preserved during a deformation. It implies J = 1. 

Components of a deformation tensor describing a change of the volume are zero. In such a case, however, 

hydrostatic part of the stress tensor cannot contribute to W because work conjugate deformation is zero. In such 

a situation the Lagrange method of undetermined multiplier (here denoted p) is adopted. Specific value of p is 

subsequently obtained in a formulation of a boundary-value problem from force boundary condition.    
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evaluate the expected behaviour of abdominal aorta (expected behaviour corresponds to 

estimates based on eq. 3) and its limits implicated by variance in the initial prestretch. They 

will be denoted UL (upper limit) and LL (lower limit) and are based on the classical linear 

regression model and its logarithmic transformation (4). Here y denotes initial prestretch, x 

denotes age, xi denotes i-th observed age, Se is residual standard deviation and t is a quantile 

of Student-t distribution for m degrees of freedom at significance . The significance level 

0.05 is used within all the study. We note that assumptions of classical linear model have been 

proven in Horny et al. (2012b).  
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Figure 1. Human abdominal aorta. A – in situ infrarenal aorta at the time of autopsy measurement 

of the prestretch. B – ex situ infrarenal aorta at the time of autopsy measurement of the prestretch. 

Archive of the author. 

 

 

I.2.4 Computational model for inflation-extension response 

 

Herein we will focus on the quasi-static problem because it is the most frequently used in 

constitutive model determination. The artery wall will be considered as a one-layered, 

incompressible, nonlinear, anisotropic, and closed tube which is initially prestrained to its in 
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situ length and is free at its outer deformed radius ro and distended by internal pressure P at 

inner radius ri. With regard to the thickness of the artery wall, both thin-walled and thick-

walled approaches were employed. This is done for two basic reasons. First, the thin-walled 

model, which operates with mean wall stresses acting at middle radius rm, may be regarded as 

more suitable when results of the simulation are compared with in vivo data obtained by 

ultrasound methods because there may be a problem in identifying the outer radius of the 

wall, in contrast to media-adventitia interface (this interface could be used as an estimate of 

rm). On the other hand, the thin-walled model (in contrast to thick-walled) cannot capture 

residual strain/stress which may significantly change the true stress/strain state of the material.    

        

 

Thin-walled model. In the thin-walled approximation, the equilibrium equations are written in 

the form of (5) with kinematic equations (6). 

                 
2 2 2

m red m
rr zz
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r P F r PP

h r h h
  


        (5) 
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

  


      (6) 

In (5) rr,, andzz respectively denote mean radial, circumferential and axial Cauchy 

stress at middle radius rm = (ri + ro)/2, and h is the thickness in the deformed state. Middle 

reference radius is denoted Rm  (Rm = Ri + H/2), reference inner radius Ri, and H denotes 

reference thickness (see Table 1 for specific values). From (6) the deformation gradient can be 

written as F = diag[rR,,zZ  

Fred in (5c) is external axial force necessary to obtain the in situ length corresponding to 

zZini measured during autopsy. In ex vivo experiments, it is frequently generated with a 

hanging mass connected to a specimen (vertical configuration of the inflation–extension test). 

The denotation Fred was chosen with respect to nomenclature used in Holzapfel et al. (2000), 

Holzapfel and Ogden (2010a), and Ogden and Saccomandi (2007). This force is developed 

during the growth period and the literature suggests that elastin fibres are responsible for 

bearing this load (Carta et al. 2009; Humphrey et al. 2009).  

The key problem is that we in fact do not know how large in vivo Fred is. We only have 

evidence that arteries retract upon excision. Statistics of zZini are thus obtained, since 

measured during autopsy, at P = 0.  This motivated us to employ Fred as a constant during the 

pressurisation. Throughout the pressurisation, the mechanical response of the artery has to 

satisfy equilibrium equations (5) and simultaneously mechanical state of the material has to 

conform to the constitutive equations (2). Combining (2) and (5) and interchanging variables 

in W to the deformation gradient, the system (7) is obtained. 
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 (7) 

Please, remind that in the chosen approach, zZini is the constant used to compute Fred and may 

not necessarily correspond to zZ which can change during pressurisation (according to the 

system 7). This approach respects the fact the in vivo axial stretch has been proven to be 

slightly different from the prestretch measured in autopsy (Humphrey et al. 2009).  

The system (7) describes the inflation–extension of the initially prestrained artery and was 

solved in the following steps: 

 

 

1. Specific donor is chosen from Table 1 → Ri, H, c0, c1, c2, and age.   

2. From (3) expected zZini is estimated. 

3. Derivatives at left-hand side in (7) are conducted. Subsequently p is eliminated from 

(7b) and (7c) using (7a). In the remaining system, (7b) and (7c), rR is substituted with 

1/(·zZ) because for incompressible material detF = 1 holds. 

4. Prestretching force Fred corresponding to zZini is computed from (7b) and (7c) at P = 

0 (both equations (7b) and (7c) are necessary because one also has to determine ini 

corresponding to prestretched but unpressurised tube).  

5. The system (7b) and (7c) is now numerically solved for unknown andzZ (with 

Fred substituted from step 4) at P = 1, 2, .., 20 kPa.  

6. When andzZ are determined, rr, , and zz can be calculated substituting the 

results into (5).  

7. Instead of (3) the equation (4) is used to compute zZ,ULini (zZ,LLini) and steps 3. – 6. 

are repeated to obtain results for upper limit (lower limit) of initially prestretched 

arteries.  
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Figure 2. Opened ring of abdominal aorta. A – Real aortic ring after the radial cut. B – Assumed 

kinematics (opened stress-free configuration and closed but not pressurised). The photo is from 

author’s archive. 

 

Thick-walled model. Arteries are residually stressed in their unloaded configuration (Rachev 

and Greenwald 2003; Valenta et al. 2002). The basic approach incorporating this fact into the 

computational model is to consider the opened up configuration as the reference one. When 

the unloaded ring of an artery is cut radially, it springs to an opened configuration which is (in 

the first approximation) considered to be stress-free and the geometry is modelled as a 

circular sector with inner radius i, outer radius o and sector angle 2. The so-called opening 

angle (inscribed angle in the sector), frequently used to characterise residual strain, is then 

given as  – . Figure 2 depicts the situation. 

 

Equilibrium equations, with substituted constitutive model, describing the response of the 

closed thick-walled tube to internal pressure and prestretching force can be written in the form 

of (8). They are adopted from Labrosse et al. (2013). A detailed derivation of (8) is only 

rarely found in the literature. One example is the paper of Matsumoto and Hayashi (1996). 

Since the derivation could be considered somewhat lengthy, it is moved to the Appendix A.13    
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    (8) 

Here Ŵ  is the strain energy density (1) with variables changed to the components of F and 

rR substituted by rR = 1/(∙zZ); W = W(rR,,zZ) = Ŵ(1/(∙zZ),,zZ).  

Circumferential stretch  is considered to be a function of the deformed radius r (ri ≤ r ≤  ro) 

                                                      
13 Detailed derivation is also available in Czech version online in the Biomechanics II courseware created by the 

author via the link http://users.fs.cvut.cz/~hornyluk/files/Biomechanika-II.pdf (see p. 31 – 38).  

http://users.fs.cvut.cz/~hornyluk/files/Biomechanika-II.pdf
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and is expressed with respect to the radius in opened configuration (i ≤  ≤  o),  = 

r/().14 Axial stretch zZ is considered to be uniform along the length and   thickness of the 

tube (zZ = constant). The equations (8) presume that boundary conditions rr(ro) = 0 and 

rr(ri) = –P are applied. The system (8) was used to simulate the inflation-extension response 

of aortas in the following way: 

 

 

1. Specific donor is chosen from Table 1 → Ri, H, c0, c1, c2, opening angle and age.   

2. From (3) expected zZini is estimated. 

3. Integrands in (8) are expressed as functions of r and zZ. ro = ro(ri) is used in upper 

bounds of integrals (from incompressibility condition).  

4. Prestretching force Fred corresponding to zZini is computed from the system (8) at P 

= 0 (both equations (8a) and (8b) are necessary because one also has to determine riini 

corresponding to residually stressed and axially prestretched but unpressurised tube).  

5. The system (8) is now numerically solved for unknown riandzZ (with Fred 

substituted from step 4) at P = 1, 2, .., 20 kPa.  

6. When ri andzZ are found, rrr, r, and zzr can be calculated from equations 

(9) considering that  = r/().  
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      (9)  

A detailed derivation of (9) is available in Appendix A. It is important to emphasize 

that in (9a) the right-hand expression is a function of the lower bound r.  

6. Instead of (3), the equation (4) is used to compute zZ,ULini (zZ,LLini) and steps 4. – 5. 

are repeated to obtain results for upper limit (lower limit) of initially stretched arteries.  

 

 

Using the procedures described above, (P) and zZ(P) in the thin-walled, and (r,P) and 

zZ(P) in the thick-walled approach were determined for all involved donors numerically in 

Maple 16. The results were used to compute variations in the stretches during the pressure 

cycle iI = iI(PSYS) – iI(PDIA) for iI  =  and zZ. In what follows circumferential stretch 

                                                      
14 Notice that the expression for  still represents a ratio between deformed length, circumference (r), and 

reference length (). Physical sense is still the same, and when residual strain is not considered, the ratio 

changes to r/R as in the thin-walled tube; equation (6b). 
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variation  will also be referred to as distensibility.15 The results were also used to create  

P– and P–zZ dependences, and to quantify changes of the axial stress in the course of the 

pressurisation. Changes of the axial stress were quantified as relative increments between 

diastole and systole [zz(PSYS) – zz(PDIA)]/zz(PDIA).  

In what follows, the results of the thick-walled model and thin-walled model will not be 

distinguished by special symbols for quantities in hand but they always will be distinguished 

by the radius at which they were obtained.  This indicates that the results computed at ri and ro 

are always given by the thick-walled model with incorporated residual strain and the results 

computed with the thin-walled model are always related to rm. 

 

I.2.5 Stiffness (Elasticity tensor) 

 

Chen et al. (2008) have suggested incorporating the assumption of the constant ratio between 

circumferential and longitudinal elastic modulus of the artery wall during the pressure cycle to 

overcome the impossibility of measuring axial stress in the constitutive parameter 

identification procedure conducted with living subjects. To evaluate this hypothesis, 

components of the elasticity tensor C (tensor of elastic module) in the material description 

have been computed.16  

C is defined as the derivative (10) of the second Piola–Kirchhoff stress tensor S with 

respect to the Green–Lagrange strain tensor E, Holzapfel (2000) ch. 6.6. 

     





S

E
C       (10)  

The Second Piola–Kirchhoff stress tensor S measures the stress state of a body using material 

description. One can say that S is defined with respect to the material (undeformed) 

configuration. This is in contrast to the Cauchy stress tensor  which measures the stress state 

of a body in the deformed configuration (spatial description). Both stress tensors can be 

mutually transformed using (11) because the deformation gradient F creates a map from an  

undeformed to a deformed configuration. The equation (11) involves the inverse of F since 

transformation proceeds in the opposite direction – from deformed to undeformed 

configuration.    

1S F F TJ         (11) 

                                                      
15 Bearing in minds our main objective, the effect of axial prestretch on biomechanics of abdominal aorta, it has 

to be noted that iI = iI (PSYS, PDIA,zZ
ini) =iI(PSYS,zZ

ini) – iI(PDIA,zZ
ini) in fact. 

16 Note that Palatino Linotype is used as a font for Latin symbols of quantities in this study. To distinguish 

between right Cauchy-Green strain (second order) tensor C and the tensor of elasticity (fourth order), Futura Bk 

Bt is used for the elasticity tensor C.    
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J in (11) denotes the ratio between volume of a body in the deformed and undeformed 

configuration and, in our specific case, for the incompressible material J = 1. Since in our 

study only diagonal components of second order tensors are involved, the equation (11) 

reduces to SKK = kK 
-2kk. 

 

Thin-walled model. C and CZZZZ were computed from (10) with the substituted material 

counterpart of (2) which can be written in the form of (12). 

 
1

2S E I
E

W
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
  


     (12) 

Specific expression for p is obtained from the radial component of the equation (12). 

Considering (11), SRR = rR 
-2rr holds and p can be written as p = (2ERR + 1)∙∂W/∂ERR – rr. In 

the case of the thin-walled model, –P/2 is substituted into the radial Cauchy stress rr.   

 

Thick-walled model. In the thick-walled model, the situation is somewhat more complicated. 

We will use equations (9b) and (9c) with substituted (9a). They will be transformed into the 

components of S. This results in (13) and (14). 
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Using the product rule for differentiation, equations (13) and (14) give (15) and (16), 

respectively. 
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To compute derivatives of the integrals in (15) and (16), the chain rule in the form  

∂(-)/∂EKK = [∂(-)/∂r]∙[∂r/∂EKK] (K =  and Z) is adopted. Since the differentiation is 
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conducted with respect to r and r simultaneously is a variable integration bound (the integrals 

are understood as the functions of the lower bound), the procedure leads to equations (17) and 

(18). Note that d(∫rrof(x)dx)/dr = -f(r). 
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What remains to be clarified are derivatives ∂r/∂E and ∂r/∂EZZ. The expression  

r = r(E,EZZ) can be obtained considering a volume preservation during the deformation:  

l(ro
2 – r2) = L(o

2 – 2). This relation equals the volume of elongated (to length l) and 

pressurized tube limited by outer deformed radius ro and variable radius r to the volume of the 

stress-free (opened up) cylindrical sector (of the length L) limited by outer radius o and 

variable radius . Considering zZ = l/L, one obtains (19) substituting  from above mentioned 

volume preservation into  = r/(). 

    

 2 2 2

o zZ o

r

r r







  






 

    (19) 

After some algebra, the expression (20), which relates r to  and zZ, is obtained from (19). 

    
 
 

2 2 2

21

o o zZ

zZ

r
r





    

  









     (20) 

One can arrive to the final expression r = r(E,EZZ) substituting stretches with Green–

Lagrange strain components,  = (2E + 1)½  and zZ = (2EZZ + 1)½. Finally, the stiffness 

ratio C/CZZZZ and its relative increment between diastole and systole (normalised with 

respect to diastole) can be computed. 
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I.2.6 Blood pressure in ageing 

 

It is well known that the  character of pressure pulses in human arteries changes with age 

(Greenwald 2007; O’Rourke and Hashimoto 2007). With regard to this fact, we adopted 

numerical values of the diastolic and systolic pressure from recent epidemiological study 

conducted by Wilkins et al. (2010). They evaluated results of Canadian Health Measures 

Survey 2007 – 2009. Specific values used in our study are listed in Table 2. They were 

obtained as linear interpolation (with respect to variable age) of the data found in Figure 1 in 

Wilkins et al. (2010). The data in the original source is gender specific and represents the 

average in the population. That is, the averaged value is obtained considering healthy, 

successfully treated, unsuccessfully treated and untreated hypertensive/hypotensive 

population in the given ageing period.  

 

 

 

I.2.7 Correlation 

 

The linear correlation coefficient R was computed for all treated quantities to obtain a basic 

estimate of their dependence on age. It is supplemented with the test of the hypothesis R = 0 

(against alternative R ≠ 0) based on the statistics T = Rn – 2)/(1 – R2)]½ which was 

evaluated by p–value (here n is the number of observations). Results were considered to be 

statistically significant at the level 0.05 within this study.    
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I.3. Results 

 

In the present simulation, the objective is to show how the mechanical response of human 

abdominal aorta changes because of both changed constitutive parameters and decreased 

longitudinal prestretch. Details of involved donors are listed in Table 1 (geometry and 

material parameters) and in Table 2 (estimated prestretch and diastolic and systolic pressure). 

 

I.3.1 Initial axial prestretch 

 

Data describing initial axial prestretch was collected during autopsies as described in Horny et 

al. (2014). The regression equation (3) was fitted to the resulting sample with parameters  

a = 2.4016 [1/year]; b = -0.1957 [-]. Regression curve and data are depicted in Figure 3. 

Limits for interval of 95%-confidence of a prediction (an interval into which a future 

observation will fall with a probability equal to 0.95) are also depicted. Within the text, these 

limits are denoted zZ,ULini (upper) and zZ,LLini (lower).  Linear correlation coefficient for  

ln(zZini)–ln(Age)  R = -0.903 (p–value < 0.001) confirmed a strong correlation between age 

and axial prestretch. Specific values for zZini, zZ,ULini, and zZ,LLini  used in the simulations are 

listed in Table 2. 

The prediction interval for zZini based on (4) gives the lower limit smaller than 1 for age > 

61 (Figure 3). This is the consequence of the used methodology (expectation ± uncertainty 

given as a function of a variance). Nevertheless, Horny et al. (2014)  did not  report any 

abdominal aorta with zZini < 1 (i.e. precompressed artery). Considering this fact in what 

follows, we have decided to substitute the exact results of the equation (4) with zZ,LLini = 1 for 

donors with age higher than 61.   

 

I.3.2 Inflation-extension response 

 

Prescribed referential geometry, initial prestretch and constitutive parameters (Table 1 and 2) 

enabled the systems (7) and (8) to be solved with respect to  and zZ for defined internal 

pressure P. Two representatives of P– and P–zZ are shown in Figure 4 (M38) and Figure 

5 (F65). For the sake of comparison, the results of the thick-walled model with incorporated 

residual strain as well as the results of the thin-walled model are depicted. Changes in the 

inflation characteristic induced by the prestretch are demonstrated for zZini = 1.0, 1.1, 1.2, 1.3, 

1.4 with P = 0–20 kPa.  
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The higher the axial prestretch, the lower the initial circumferential stretch is. It is clearly 

evident that axial deformation at physiological pressures (10 – 16 kPa) depends on initial 

prestretch; a property of the so-called inversion point is exhibited. The inversion point is the 

value of axial prestretch in the P–zZ diagram which, in an idealised case, divides the diagram 

into  inflation–extension and  inflation–shortening behaviour (Ogden and Saccomandi 2007; 

Schulze-Bauer et al. 2003). Considering P–, an increased axial prestretch induces a left-

side shift as expected. However, it also makes an inflexion point on P– more discernible 

and decreases the steepness of the curve at physiological pressures. 

 

The effect of the initial axial prestretch modelled by (3) and (4) is shown in detail in 

Figure 6 for M61 (computed with thin-walled model). The upper panel shows the P–zZ curve 

and lower panel P–.  Expected behaviour (zZini corresponding just to the regression 

equation (3)) is depicted with a blue solid curve laying in between curves computed with 

zZ,LLini (black dots) and zZ,ULini (red dashes) which are based on (4). It is clearly noticeable 

that aorta M61 exhibits higher variation of the circumferential stretch in pressure cycle  

P ∈ [10kPa;16kPa] for higher axial prestretch zZ,ULini than for smaller zZ,LLini.  
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Figure 3. Dependence of initial axial prestretch (found in autopsy) on age. Regression model for 

expected value zZini – thick red curve; upper limit zZ,ULini and lower limit zZ,LLini of 95%-prediction 

interval – green dashed curves; observations – blue points. Estimated parameters for regression 

equation (3) are a = 2.4016 [1/year]; b = -0.1957 [-].The data was adopted from Horny et al. (2013a). 

Since the lower limit of the prediction interval approaches 1 at the age of 61 years (no axial prestretch) 

and governed by (4) follows with values smaller than 1 (i.e. axial precompresion), it was decided to 

prescribe zZ,LLini = l for age > 61 years. This was motivated by two facts: (1) Horny et al. (2013a) did 

not report any precompressed artery in their sample, (2) it is not clear whether the constitutive 

equations used in this study are suitable to describe precompressed arteries. 
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Figure 4. Inflation-extension behaviour of a 38 year old male donor (M38). The upper panel 

shows P–zZ and lower panel P–. Predictions for thick-walled (residual strain incorporated) model 

for  are computed at ri (red) and ro (blue) and results based on the thin-walled model are computed 

at middle radius rm (green). However, zZ is constant at all radii hence upper panel, P–zZ, includes 

only two colours. Each triplet (P–) or doublet (P–zZ) of curves corresponds to specific initial axial 

stretch zZini = 1 (continuous curve), 1.1 (long dashed), 1.2 (dashed), 1.3 (dotted), and 1.4 (diamonds). 

The easiest way to understand the panels is to consider that in P–zZ axial prestretch increases from the 

left to the right, in contrast to P– where axial prestretch increases from the right to the left.   This 

figure manifests two basic points: (a) the axial behaviour of the tube for P ∈ [10kPa,16kPa] changes 

from axial extension (low initial axial prestretch) to axial shortening (high initial axial prestretch); and 

(b) the higher initial axial stretch gives P– curves with elevated position of the inflection point 

(elevated on P–axis). Notice that while P–zZ curves show only small differences between 

computational models (thick/thin), P– curves show that at high pressures and high axial 

prestretches ro) and rm) mutually converge more rapidly than ri) and rm). 
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Figure 5. Inflation-extension behaviour of a 65 year old female donor (F65). The panels are 

arranged in the same way as in Figure 2. The graphs show two differences when compared with M38 

in Figure 2. First, P–zZ curve for zZini = 1 does not exhibit initial shortening. It begins with axial 

extension. Second, the inflection point does not appear on P– curve for zZini = 1. However, curves 

for higher axial prestretch do show the inflection. Note that the existence of an inflection point makes 

P– curve S-shaped and results in higher circumferential distensibility  

 = (16kPa) – (10kPa) (in contrast to J-shaped curve without an inflection). 
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Table 1. Age, gender, geometry and constitutive parameters of involved donors; adopted from Labrosse et al. (2013). 

 

ID† F49 F50 F63 F65 M38 M42 M57 M60 M61a M61b M66 M67a M67b M70a M70b M71 M77 

Opening 

angle [°] 
252 323 96 248 117 125 322 156 270 335 253 118 174 208 201 118 135 

Ri 

[mm] 
5.9 6.7 5.4 6.2 5.3 6.5 7.5 6.3 7.7 7.3 7.2 8 7.9 7.1 7.4 10 7 

H 

[mm] 
1.51 1.14 0.96 1.21 1.22 1.56 1.28 1.69 1.22 1.62 1.78 1.58 1.26 1.23 1.64 1.72 1.5 

c0 

[kPa] 
8.4 8.4 23 1.6 14.7 41.8 0.8 7.6 2.4 2.3 9.4 3.5 2.2 14 1.8 17 1.2 

c1 

[-] 
5.09 15.21 4.07 9.26 3.04 1.54 6.74 2.96 37.53 6.82 7.81 24.47 56.69 16.09 18.62 13 41.08 

c2 

[-] 
8.18 9.67 7.2 11.77 7.38 1.44 12.44 10.23 34.01 19.16 12.5 27.9 41.66 7.38 35.99 11.85 49.51 

 

† ID indicates sex (female/male) and age [years] of donors. 
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Table 2. Initial axial prestretches for donors involved in the simulation estimated with regression model (3) and its prediction intervals (4). The table is 

ordered in the same way as Table 1. Estimated parameters in (3) a = 2.4016 [1/years]; b = -0.1957 [-]; and in (4) t/2(363)·Se = 0.0707; Mean(lnxi) = 3.8414; 

and Σ(lnxi - Mean(lnxi))2 = 0.0184. 

 

ID† F49 F50 F63 F65 M38 M42 M57 M60 M61a M61b M66 M67a M67b M70a M70b M71 M77 

zZini 

[-] 
1.121 1.117 1.067 1.061 1.179 1.156 1.089 1.078 1.074 1.074 1.055 1.055 1.055 1.046 1.046 1.043 1.026 

zZ,ULini  

[-] 
1.204 1.199 1.146 1.139 1.265 1.240 1.168 1.157 1.153 1.153 1.132 1.132 1.132 1.123 1.123 1.119 1.102 

zZ,LLini  

[-] 
1.045 1.041 0.995* 0.988* 1.098 1.077 1.014 1.004 1 1 0.983* 0.983* 0.983* 0.974* 0.974* 0.971* 0.956* 

zZ(PSYS)#  

[-] 
1.141 1.158 1.107 1.159 1.149 1.358 1.170 1.088 1.067 1.067 1.079 1.060 1.063 1.154 1.037 1.082 1.040 

zZ(PDIA)#  

[-] 
1.127 1.146 1.087 1.142 1.145 1.307 1.154 1.072 1.066 1.057 1.067 1.055 1.059 1.129 1.032 1.068 1.035 

PDIA§ 

[kPa] 
9.7 9.7 9.8 9.8 10.1 10.3 10.4 10.3 10.3 10.3 10.1 10 10 9.9 9.9 9.8 9.5 

PSYS§ 

[kPa]
15.1 15.2 16.8 17 15.3 15.4 16.1 16.2 16.2 16.2 16.4 16.5 16.5 16.6 16.6 16.6 16.8 

 

† ID indicates sex (female/male) and age [years] of donors. *zZ,LLini  < 1 suggests that arteries may be axially precompressed instead of prestretched. However, 

Horny et al. (2013b) did not report precompressed arteries in their data sample. Considering also that this values (zZ,LLini < 1) occur due to the statistical 

methodology (± deviation from expected value), zZ,LLini = 1 was prescribed rather than the initial precompression. #zZ at PSYS and PDIA computed for expected 

value of zZini in the thin-walled model. §Gender specific mean values for Canadian population based on Wilkins et al. (2010).
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I.3.3 Circumferential and longitudinal stretch variation  

 

Figure 6 demonstrates how stretch variation iI (iI =  and zZ) is defined. Vertical lines in 

the figure intersect the horizontal axis at end-points of the segments corresponding to  

iI = iI(PSYS) – iI(PDIA)). The stretch variations iI predicted by the thick-walled model 

(residual strains incorporated) at ri using expected value of the prestretch zZini are depicted in 

Figure 7 (blue solid circles in the left upper panel). A marked decrease in  is even 

significantly correlated with age (R = -0.572, p–value = 0.02). Longitudinal systolic-diastolic 

stretch variation also decreases with age, but statistical significance was not attained (Figure 

7, right upper panel). However, the most important fact is that the results of the simulation 

show that one should expect a non-zero difference in axial stretch between systolic and 

diastolic pressure. The range of zZ is approx. 0.005 – 0.025 for expected values of zZini.  This  

can be interpreted as 0.5% – 2.5% of some reference length.  

To evaluate how this result could be affected by uncertainty of the axial prestretch, zZ,LLini 

and zZ,ULini were used to compute iI (iI =  and zZ). Results based on the thick-walled tube 

model (residual strain incorporated) for both axial and circumferential direction are also 

presented in Figure 7. Here red open squares correspond to the upper limit (higher prestretch) 

and black open circles to the lower limit. Regressions lines were omitted to keep the figure 

clear although the results of the correlation analysis were similar to those obtained for the 

expected value of the prestretch. Specifically, none of the initial axial prestretch (zZ,LLini and 

zZ,ULini) gave significant correlation between age and zZ, and all  were significantly 

negatively correlated with age.  

Much more interesting than the numerical characterisation of the correlation with age is 

the position of the points.  In particular, we would like to point out the difference in positions 

for circumferential and axial behaviour. Axial response, as can be expected, shows higher 

stretch variation when lower prestretch limit is used (black open circles). This is in contrast to 

circumferential response, where higher is attained when the higher initial axial stretch is 

used (red open squares). This suggests, to the best of author’s knowledge, up to now a not 

yet published hypothesis that the axial prestretch not only minimises longitudinal 

motion of the artery upon pressure cycle, but also endows the artery with higher 

circumferential distensibility (in comparison with less prestretched artery characterised 

with the same material parameters). It is also worth noting that some of the highly 

prestretched aortas show diastolo-systolic shortening (zZ negative) in contrast to the weakly 

prestretched. 
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Figure 6. Inflation-extension response of a 61 year old male donor (M61a) – detail. The results of 

the simulation based on thin-walled approximation.  The   blue solid curve was computed with 

expected value zZini = 1.074; red dashed curve was computed with zZ,ULini = 1.153; and black dotted 

curve was computed with zZ,LLini = 1. Shaded rectangle emphasises the region of physiological 

pressures. Vertical lines aid to identify stretch variation  

iI =  iI(16kPa) –  iI(10kPa) (iI =  and zZ). 
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Figure 7. Diastolic-systolic stretch variations. The upper panels show variation of circumferential 

and axial stretch at ri and lower panel shows specific values of diastolic (PDIA) and systolic (PSYS) 

pressure applied in the computations. Due to nonlinear large strain stiffening, zZ decreases with 

increased axial prestretch, which is in contrast to circumferential behaviour ( attained higher values 

for highly axially prestretched aortas). 

 

I.3.4 Fred 

 

The computed reduced axial force Fred, which generates the initial axial prestretch, is depicted 

in Figure 8. It is compared with values obtained for the human abdominal aorta in ex vivo 

elongation tests (at P = 0) in Horny et al. (2013). The figure shows the results of the 

simulations with expected values as well as lower and upper limit of zZini computed with the 

thin-walled model. Expected values of the initial axial stretch demonstrates that prestretching 

force is significantly correlated with age (R = -0.514, p–value = 0.04). Note that the lower 

limit of zZini was prescribed to be 1 for donors older than 61.  In such a case Fred = 0.     
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Figure 8. Prestretching axial force. Predictions of Fred computed with the thin-walled model are 

depicted: blue solid circles were obtained with expected values of zZini; red open squares were 

obtained with the upper limit; and black open circles were obtained when the lower limit of the initial 

axial stretch was used. The blue solid line is the linear regression model of the dependence of Fred 

(obtained for expected values of the prestretch) on age: Fred = 2.115 – 0.023·Age for Age ∈ [38;77] 

years. Outside of this domain, one should consider the regression model as an extrapolation which is 

indicated by the dotted line.  The results are compared with experiments adopted from Horny et al. 

(2013). Note that due to the assumption Fred computed with zZ,LLini for age > 61 years is 0. The 

regression model (4) predicts zZ,LLini < 1 for age > 61 years; however, this is a  consequence of the 

used methodology expectation ± uncertainty. Since very little is known about initially pre-compressed 

arteries zZ,LLini (Age > 61 years) = 1 was prescribed in our simulation. 

 

 

I.3.5 Axial stress  

 

Almost constant axial stress during diastolic–systolic pressure variation has at times been 

mentioned in the literature. The predictions of (9c) for zz were used to evaluate this 

hypothesis in the present data sample. Four representative examples (M38, M57, F50, and 

M60) of the axial stress considering expected value (solid blue curves), upper (dashed red 
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curves), and lower limit (black dotted curves) of the initial axial stretch are in Figure 9 drawn 

over circumferential stretch corresponding to P = 0..20 kPa (cf. with Fig. 2 in Dobrin and 

Doyle 1970). Axial stress was computed employing a thick-walled model (residual strain 

incorporated) at the inner radius ri. Systole and diastole are highlighted with green solid 

circles on the curves. It is obvious that although axial stress indeed increases slowly from the 

left to the right (as described in Dobrin and Doyle 1970),  the diastole and systole are found 

on the steep part of the curves (diastolic point is always the left-hand one). This is 

demonstrated with M38, F57, and M60. However, F50 shows that it may not be always true. 

 

 

 

Figure 9. Variation of axial stress zz(ri) in the course of the pressurisation. The curves are based 

on the thick-walled model with incorporated residual strain. Circumferential stretch on horizontal axis 

starts from values smaller than 1 due to simultaneous effect of the initial axial stretch and residual 

strain. Predictions obtained with the expected value of zZini are depicted with blue solid curves; red 

dashed curves were obtained with zZ,ULini; and zZ,LLini  was used to create black dotted curves. Solid 

circles on the curves highlight the positions of diastolic (the left circle) and systolic (right circle) 

pressure. 
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To quantify diastolic-systolic increment in zz numerically, Figure 10 depicts the stress 

increment normalised with respect to the diastole for all involved donors. The upper panel 

shows increments obtained with the thick-walled model with incorporated residual strain for 

zz(ri) and zz(ro), and lower panel was obtained in the thin-walled approximation (mean axial 

stress at rm). The symbols are used in the same way as in the previous figures (to distinguish 

inner and outer radius, small and large symbols are used, respectively). It is clear from the 

figure that the lowest changes of the axial stress are obtained using the upper limit of the 

initial axial stretch. The same is confirmed in the thin-walled model. The lower panel 

shows that average change of zz is in the range 0.2 – 0.5 for highly prestretched aortas 

whereas weakly prestretched aortas show average change of approx. 0.7. 

Significant correlation between variation of axial stress and age was obtained at rm and ro 

and the lower the initial prestretch, the higher correlation coefficient was obtained (the highest 

one, R = 0.790 p–value < 0.001, was at ro).  

 

I.3.6 Stiffness ratio C/ CZZZZ 

 

The ratio between components of elasticity tensor was computed for all involved individuals. 

The results are summarised in Figures 11, 12 and 13. To show an order of the magnitude of 

the components of elasticity tensor, numeric values are compared in Figure 9 for inner, outer, 

and middle radius of the aortas initially prestrained to the expected axial prestretch and 

pressurised to PDIA and PSYS. Significant correlation between age and the components of C 

were only found in case of C computed at rm for PSYS at all prestretches (R ≈ 0.52 p–

value ≈ 0.04). All other cases were not significant.  

The stiffness ratio C/CZZZZ is depicted in Figure 12. All effects are herein summarised 

– the effect of finite thickness of the wall; effect of the pressure; and the effect of initial 

prestretch. Two facts are demonstrated by Figure 12. First, the stiffness ratio depends strongly 

on radial position within the thickness of the artery wall. In average C/CZZZZ < 1 is at the 

inner radius (top panels in Figure 12), however C/CZZZZ > 1 holds at outer radius (bottom 

panels). Second, with regard to the effect of the prestretch, thin-walled model for rm and 

thick-walled model at ro show that higher prestretch is accompanied with the lower stiffness 

ratio (and reciprocally lower prestretch with the higher stiffness ratio). However, there are 

some cases at the inner radius which deviate from this rule. Correlation analysis revealed 

significant dependence of the stiffness ratio on age only in case of thin-walled model. It was 

found R = 0.514 with p–value = 0.04 for PSYS and PDIA at expected initial axial stretch.  
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Figure 10. Relative change of the axial stress induced by diastolic–systolic pressure increment. 

The upper panel shows the results computed with the thick-walled model (residual strain incorporated) 

at the inner radius (small symbols) and at the outer radius (large symbols). The lower panel shows 

results obtained by thin-walled approximation. The symbols are used in the same way as in Figure 7 

and 8. The figure shows that higher initial axial prestretch is accompanied with smaller changes of the 

axial stress. Correlation coefficients and regression lines correspond to expected initial prestretch. 
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Figure 11. Components of referential elasticity tensor C for expected axial prestretch. Upper 

panels show the stiffness in circumferential direction (C) and lower panels in axial direction 

(CZZZZ). The symbols indicate the method and position: red solid boxes – at ri with thick-walled 

model; black solid circles – at rm with thin-walled model; and blue solid diamonds – at ro with thick-

walled model. The regression line indicates significant correlation between age and C at rm for 

PSYS (R = 0.515 p–value = 0.04). Note that logarithmic scale is used on vertical axes. 

 

 

Relative increments of the stiffness ratio induced by diastolic–systolic variation of internal 

pressure are depicted in Figure 13. The increments are normalised with respect to the ratio at 

diastolic pressure. In contrast to the stiffness ratio as such, highly prestretched aortas showed 

higher relative increments of the stiffness ratio from diastole to systole than weakly prestretch 

aortas. Significant negative correlation with age was found in the case of relative increments 

computed with the thick-walled model at inner radius (R = -0.600 p–value = 0.02 for expected 

prestretch, and R = -0.539 p–value = 0.03 for upper axial prestretch).   
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Figure 12 Stiffness ratio. The figure summarises results obtained for stiffness ratio at inner, middle 

and outer radius of the aortas. Three important things can be derived from the figure: (1) weakly 

prestretched aortas give higher stiffness ration; (2) the stiffness ratio varies significantly through the 

thickness of the wall; and (3) aortas may exhibit different stiffness ratios in different ageing periods. 
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Figure 13. Relative increment of the stiffness ratio. Highly prestretched aortas gave a higher 

relative increment in the stiffness ratio during pressure cycle. 
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I.4. Discussion 

 

This study focused on the effect of age-related decrease in the initial longitudinal prestretch of 

human abdominal aorta on its distensibility, axial stress, and circumferential-to-axial stiffness 

ratio. Changes induced by the variation of the pressure (systole – diastole) were also 

evaluated. Since author’s bibliographic search did not find a complete description of human 

abdominal aorta anywhere (i.e. specimens with documented geometry, experimentally 

determined constitutive parameters and axial prestretch in one study), the characteristics of 

arteries were adopted from two different papers. Geometry and constitutive description were 

taken from Labrosse et al. (2013) who conducted experimental ex vivo inflation (with free 

axial extension) of the human abdominal aorta. Statistics of the axial prestretch in the same 

anatomical location were reported by Horny et al. (2014) who performed autopsy 

measurement on the sample of 365 human cadavers. Since this approach induces some 

uncertainty in the true value of the prestretch, all computations were performed with expected 

prestretch (i.e. prestretch exactly corresponding to the regression equation (3)), and also with 

upper and lower limit of 95%-confidence interval of a prediction (so-called prediction 

interval; equation (4)).  

 Present study modelled the inflation-extension response by considering the aorta to be a 

prestrained, anisotropic and nonlinear homogenous tube with closed ends by the methods of 

elastostatics. Two analytical approaches were used. First was the thin-walled model which 

operates with mean wall stresses acting at middle radius of the tube and its results were 

considered to be basic estimates of the mechanical response. However, this model cannot 

capture the effect of residual strain on the stress state of an artery. To this end, the thick-

walled model with incorporated residual strain was also used in the situations when 

transmural distribution of quantities was of interest.   

 

I.4.1 Stretch variation of prestretched artery 

 

The results suggest that, although axial prestretch significantly decreases due to ageing 

(Figure 3), it can still crucially affect mechanical response. This fact is clearly observable in 

systolic-diastolic variation of the circumferential stretch . Circumferential stretch 

variation was found to decline with age (Figure 7), but the  study demonstrated that 

highly prestretched arteries (zZ,ULini) can be more distended in the circumferential 

direction by the same internal pressure in comparison with their less prestretched 

(zZ,LLini) counterparts. This property was revealed in the thick-walled (at ri and ro) and also in 

the thin-walled (at rm) model. The results were qualitatively similar, hence, the variation only 

at the inner radius is presented (Figure 7). 
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To the best of author’s knowledge, preceding studies have not pointed out this fact 

which might certainly warrant re-examination in the future (experiments are necessary 

to validate this finding).  Results suggest that axial prestretch could play a more 

important role than merely a way how to endow abdominal aorta with a property of 

almost constant axial length during the pressure cycle (Dobrin 1978; Dobrin et al. 1990; 

van Loon et al. 1977). It should be noted there are studies reporting results from which a 

similar conclusion could be obtained, although they are focused on different anatomical 

locations. However, their authors did not investigate this property in detail; cf. Figure 5 in 

Sommer et al. (2010) and Figure 4 in Sommer and Holzapfel (2012) for human carotid artery, 

and also Figure 4 in Schulze-Bauer et al. (2003) for human iliac artery.  

Possible explanation of this interesting fact is that the axial prestretch may align collagen 

fibres (main load-bearing component of artery wall responsible for arterial anisotropy; 

Holzapfel et al. 2000) to axial direction and the wall subsequently shows higher stretch 

variation in the circumferential direction. This hypothesis is in accordance with the stiffness 

ratio in Figure 12. Here open black circles (weak prestretch prescribed to aortas) most 

frequently lie above red open squares (high prestretched prescribed). That is to say that the 

increase in the prestretch leads to the decrease of the circumferential-to-axial stiffness ratio.  

Considering “constancy” of the length, Figures 7 suggests that this is “only” an 

approximation. The simulation indicates axial stretch variation may be expected in the range  

zZ = -0.01 – 0.04, depending on the specific initial axial prestretch. The right panel in Figure 

7 shows we should expect higher change in axial stretch during pressure cycle when lower 

initial axial prestretch is applied (black open circles are the most distant from horizontal axis). 

On the contrary, the upper limit of initial axial stretch led to zZ located closely to the 

horizontal axis. In some cases, the model predicts a negative value which is the shortening of 

the artery when pressurised from diastole to systole. However, these results come from 

simulation, not experiment.  

We should avoid over-interpretation of negative/positive zZ in specific cases; 

nevertheless, higher initial prestretch led to zZ = -0.01 – 0.02, in contrast to lower prestretch 

which gave zZ = 0.01 – 0.04. Thus, using higher zZini is in accordance with the property of 

the relatively constant length of the aorta mentioned in the literature (Dobrin 1978; Dobrin et 

al. 1990; van Loon et al. 1977). Nevertheless, in the case that age-related changes leading to 

the loss of the prestretch progress rapidly (i.e. specific zZini is close to the lower limit of the 

prediction interval), the simulation suggests we should expect that the property of almost 

constant length may be lost. Moreover, considering zZ as engineering strain,  changes of 

about 2 – 4% could fall into the range measurable by modern imaging (e.g. ultrasound) 

methods (Ahlgren et al. 2012; Cinthio et al. 2006; Karatolis et al. 2013; Larsson et al. 

2011). Therefore, since the lower prestretch corresponds to higher axial distension in 

pressure cycle (intra-pressure cycle deformation), it seems to open a new diagnostic 
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possibility based on longitudinal strain measurement governed by the hypothesis that 

high (for instance higher than 2%) intra-cycle axial stretch variation may suggest 

suboptimal axial prestretch. The word “optimal” is used not only with respect to the 

implication “minimal change in axial stretch during pressure cycle gives higher 

circumferential distensibility, which supports a windkessel function”, but also with respect to 

the hypothesis that no change in axial length implies no energetic demand for axial 

displacements (Schulze-Bauer et al. 2003) and consequently no dissipation of this energy due 

to viscoelasticity of the artery wall.      

 

I.4.2 Axial stress and prestretching force 

 

The simulation confirms previous conclusion made by the author and his colleagues (Horny et 

al. 2013) that prestretching axial force (force induced by zZini) decreases with age (statistical 

significance attained). Specific values are slightly higher than in Horny et al. (2013), see 

Figure 9. The upper limit of the initial axial prestretch in some cases did indeed lead to high 

force (Fred > 3 N). 

The simulation also confirmed that the zz– relationship is initiated with very slow 

stress increment; c.f. Figure 9 with Figure 2 in Dobrin and Doyle (1970). However, the 

positions of diastolic and systolic pressure (indicated with green solid circles on the curves in 

Figure 9) do not correspond with Dobrin and Doyle’s conclusion that axial stress should be 

almost constant during the pressure cycle. It is more clearly evident in Figure 10 where 

normalised diastolic-systolic increments of axial stress are depicted. Depending on the 

specific prestretch, the simulation suggests we should expect a variation of mean axial stress 

(lower panel) in the order of tens of percentage. The fundamental role of sufficient axial 

prestretch is again clear.  

The substitution of upper-limit values into the calculation led to the smallest increments. 

This suggests that insufficiently prestretched arteries, because they feel a larger change in 

axial stress during pressure cycle, may not operate in physiologically optimal conditions and 

could be vulnerable to a mechano-biological reaction attempting to restore homeostasis 

because changes in the axial stress/strain state have been identified as quantities initiating a 

remodelling (Humphrey et al. 2009; Jackson et al. 2002; Lawrence and Gooch 2009). The 

discrepancy with the observation made by Dobrin and Doyle (1970) may be attributed to the 

fact that they conducted their experiments with relatively young and healthy laboratory dogs.  
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An age-related decrease in the prestretch leads to the decrease in the prestretching force 

and consecutively it leads to decreased initial axial stress. This can be concluded from Figure 

9 when zz(ri) corresponding to P = 0 (starting points of the curves) is considered. When axial 

prestretch is applied, curves do not begin at  = 1 (decrease in the radius accompanies 

initial axial extension). Interestingly, some of curves initiate with negative values of axial 

stress at ri. This is the effect of the residual strain which, for high opening angles, qualitatively 

change transmural stress distribution (see Figure 7 in Labrosse et al. 2013). In fact, when 

residual stress is released in a radial cut of an artery and the arterial ring springs to the open 

sector, a small axial deformation occurs. The prestretch induced by Fred is superimposed on 

this small axial deformation.  

Figure 9 thus documents that the small values of Fred, which accompanies small zZini, with 

a simultaneous occurrence of high opening angle (see Table 1 for specific values) can result in 

negative axial stress at ri in non-pressurised but axially prestretched artery (for the effect of 

residual strain on closed, non-prestretched and non-pressurised artery see e.g. Figure 2 in the 

review Rachev and Greenwald 2003; or in Chuong and Fung 1986). This fact, to the best of 

our knowledge, has also not been previously mentioned in the literature. Nevertheless, we 

should point out that this configuration (axial prestretch superimposed on residually stressed 

artery with no luminal pressure) is never attained in vivo.    

 

I.4.3 Stiffness ratio 

 

Figures 11, 12 and 13 depict results obtained for components of the elasticity tensor, their 

circumferential-to-axial ratio, and relative diastolo-systolic increment in the stiffness. In 

contrast to axial stress, the ratio seems to satisfy more closely the condition of constancy 

during pressurisation (Figure 13). This suggests that the stiffness ratio could be more suitable 

for purposes of in vivo parameters estimation where some assumption has to be made to 

overcome the impossibility to directly measure axial force and stress (Chen et al. 2008). 

Figure 12 (middle panels), however, shows that this ratio may not be constant during ageing. 

Moreover, the results of thick-walled model show that C/CZZZZ depends on radial 

position within the thickness of artery wall (e.g. the stiffness ratio at PSYS and expected zZini 

was found to be 0.701 ± 0.182 at ri, 1.60 ± 0.657 at rm, and 3.96 ± 3.70 at ro; mean ± SD).  

The results of thick-walled model (residual strain incorporated) suggest that the aortic 

wall in cardiac cycle is stiffer in axial direction at its inner radius; however, at outer radius it 

is stiffer in circumferential direction. This is the consequence of non-homogenous strain 

distribution over the thickness of the artery. 
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I.4.4 Axial prestretch 

 

Axial prestretch as such and its age-related changes was not the main subject of our study 

because it has previously been presented elsewhere (Horny et al. 2011, 2012a,b, 2014). 

Nevertheless, we would like to explicitly emphasise three things. First, our study used the 

same regression model of zZini–age in the case of both genders because it was previously 

found that significant differences in the prestretch of abdominal aorta between males and 

females do not exist (Horny et al. 2012b). In that same paper, the authors proved assumptions 

of the classical linear regression model which is important for construction of the prediction 

intervals. Finally, according to Horny et al. (2014), we do not expect that the post mortem 

interval and atherosclerotic changes in abdominal aorta can significantly deviate used 

estimates of zZini from their true values (in fact unknown) at time of the death.      

 

I.4.5 Effect blood pressure uncertainty 

 

In the simulation, mean (but age and gender specific) diastolic and systolic pressures adopted 

from Wilkins et al. (2010) were applied. Used pressures however are only estimates of the 

true pressures sustained by donors in their life. To eliminate the possible effect of varying 

quality of medical care in different countries, blood pressures were adopted from very recent 

survey conducted in the same country (Canada) as the tissue donors came from. For the sake 

of clarity, we decided to do not complicate it with another quantity considered with 

uncertainty (blood pressure). This is motivated by two following facts. First, in future it would 

be better to verify our results in experiments and our article should function as initial 

motivation. Second, one can, although only roughly, estimate how the results will change with 

changed PDIA and PSYS. Consider that changes in PDIA and PSYS can be understood as a 

movement in the vertical direction of the shaded rectangle in Figure 6 (one can also draw such 

a rectangle into Figure 4 and 5). The figure is created for the range of 0 – 20 kPa. It is clear 

that the positive effect of the prestretch on the stretch variation in the circumferential direction 

is restricted by a monotony of dP/d. This is most clearly seen in  Figure 4 (lower panel) 

when the highest prestretch (red diamonds) is considered. When PDIA decreases less than 

approx. 5 kPa, the positive effect of the prestretch is lost due to the increasing slope of the 

curve  (reciprocally an increase of PSYS to ≈ 20 kPa has the same effect).  This suggests that to 

reach maxim circumferential stretch variation, it would be optimal for an artery to operate 

close to the inflection point on P–. This position, however, depends on specific numerical 

values of the constitutive parameters.  
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I.4.6 Limits of the simulation 

 

Presented study has limitations coming from (a) the chosen method, and (b) from the data 

used. Firstly, it should be pointed out that the elastostatics approach was used.  This means 

that the presented simulations correspond to the so-called inflation-extension experiment (the 

most frequent way of the experimental constitutive model determination for cylindrical 

segments of arteries), but true in vivo arterial mechanics consists in pressure pulse wave 

propagation as a result of dynamical fluid-structure interaction. The chosen approach, 

however, mimics the methods used in in vivo parameters estimation procedures presented in 

recent literature (Åstrand et al. 2011; Masson et al. 2008, 2011; Schulze-Bauer and Holzapfel 

2003; Stålhand 2009; Stålhand and Klarbring 2005, Wittek et al. 2013). 

It should also be mentioned that recent papers have proven that residual strains in the 

artery differ with respect to its layered structure. This fact is not captured in the simulation 

because it is based on the assumption of a homogenous wall (adopted from Labrosse et al. 

2013). Layered structure, theoretically, may induce discontinuities and non-smoothness in 

transmural stress and strain distribution; see e.g. Figure 19 in Holzapfel et al. (2000); Figure 5 

in Holzapfel and Ogden (2010b). It might affect results obtained with a thick-model.   
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II. Analysis of effect of axial prestretch  

in different computational models 
 

 

Presented in the version accepted as Horný L., Netušil M. (2015) How does axial 

prestretching change the mechanical response of nonlinearly elastic incompressible thin-

walled tubes, DOI: 10.1016/j.ijmecsci.2015.08.014, for publication in  

International Journal of Mechanical Sciences.   

 

 

Caution: As follows from above mentioned, figures and equations numbering do not continue 

in the numbers used in the chapter I. It starts again from 1, because the chapter corresponds 

with new journal article. 
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Preface to the chapter II (not included in the Int J Mech Sci article) 

 

In Chapter I, it has been found that elastic arteries, and here it may be more appropriate to use 

a term arterial physiology, benefit from the axial prestretch because it makes them more 

distensible in the circumferential direction. This is the main massage delivered by the study 

and the author considers it to be very interesting especially due to its contra intuitiveness. 

Once again, tubes made from a material, which is nonlinear and rapidly stiffens at large 

strains, exhibit higher circumferential deformability when axially prestrained. Now, in 

Chapter II, physical causes of this fact will be discussed. 

Two different analytical models have so far been used in the study. It is the thick-walled 

computational model, which is able to account for residual strains, and thin-walled model 

which operates with averaged stresses acting on middle surface of the tube. As was seen in 

I.3.2 and I.3.1 (Figures 4, 5, and 7 document it), both used models, although they 

quantitatively differ, give the same qualitative result – axial prestrain enhances 

circumferential distensibility. Thus an existence of investigated property does not depend 

substantially on distributions of in-wall stresses through a thickness of a tube. In what 

follows, for the sake of simplicity, only the thin-walled model will be used. The most 

important equations creating computational model of the thin-walled tube are repeated herein; 

(5) equilibrium equations; (6) geometrical equations; and (7) constitutive model substituted 

into (5). The material is still considered to be incompressible. 

                 
2 2 2

m red m
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h r h h
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  
   



  
       

  
 (7) 

Following considerations are presented in a top-bottom approach. It means that concepts 

will be step by step simplified to discover a level where the effect of the prestretch on 

circumferential distensibility will vanish.10 Particularly, as first, anisotropic large-strain 

stiffening constitutive model (1) is reduced to isotropic one (classical Fung-Demiray model); 

as second, large strain stiffening model is reduced to the simplest rational nonlinear material 

(neo-Hooke); as third, the material response is linearized but reference and deformed 

configurations are still being recognized (second order linear elasticity); and finally as fourth, 

total linearization is used (linear material with forces acting in the reference configuration).    

 

                                                      
10 Top-bottom approach is preferred because formerly introduced concepts may be used as a starting point 

instead of lengthy introduction of the linear elasticity of infinitesimal strains.  
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II.1 INTRODUCTION 

 

An analytical model of a thin-walled tube based on the Laplace law is frequently used in 

physics and in the engineering sciences to obtain an elementary picture of a mechanical state. 

In biomechanics, nonlinearly elastic incompressible tubes are used to model arteries, veins, 

the oesophagus and other tubular organs (Fung 1990, 1997; Humphrey 2002; Taber 2004). 

The solutions that are obtained are usually considered to be first-order approximations, 

because the imposed assumptions of the model (the thickness-to-radius ratio, the residual 

stress and strain, the geometrical non-uniformity etc.; Holzapfel et al., 2000; Holzapfel and 

Ogden 2010; Horný et al., 2014b) are imperfectly satisfied.  The simplicity of the thin-walled 

tube model might induce the impression that our knowledge of its mechanical response is 

exhaustive. In this study, however, we will show an example of a phenomenon that has been 

overlooked until now: the enhanced circumferential distensibility of a pressurized tube due to 

initial axial prestretching.  

Human arteries in situ are significantly prestretched in the axial direction (this was 

probably first reported in the context of biomechanics by Fuchs in 1900, as mentioned by 

Bergel (1961)). This prestretching is observed during an autopsy as a retraction of the excised 

arterial segment (Horný et al, 2011, 2012, 2013, 2014a), and the prestretch zZ
ini is defined as 

the ratio of the in situ-to-ex situ length of the segment. Ex vivo inflation-extension 

experiments have shown that axial prestretching is advantageous from the mechanical point of 

view, because it reduces the extent of the axial stress and strain that is experienced by arteries 

during the heart cycle (Dobrin and Doyle, 1970). In the optimal case of a young and healthy 

individual, there is a certain prestretch value at which the artery can be pressurized without a 

significant change to its length, so it can transmit a pressure pulse wave with negligible axial 

deformation (Van Loon et al., 1977; Schulze-Bauer et al., 2003; Sommer et al., 2010). 

However, recent studies by Horný et al. (2011, 2012, 2013, 2014b) have shown that 

ageing of the cardiovascular system is, besides general stiffening of elastic arteries, also 

manifested by a reduction of axial prestretch. Nevertheless, a detailed analysis of the 

constitutive behaviour of 17 human aortas suggested that aged aortas, although weakly 

prestretched, still can benefit from the remaining prestretch (Horný et al., 2014b). The 

decreasing of the prestretch is individual process similarly to (perhaps better to say as a 

consequence of) the progress of human ageing. A statistical variability reported in Horny et 

al. (2014b) implies that, for example, a 60-year-old man has the expected axial prestretch 

zZ
ini = 1.08 with a 95% confidence interval for a prediction zZ

ini ∈ [1.00;1.16]. An analytical 

simulation of the inflation-extension response showed that, depending on the initial prestretch, 

the abdominal aorta of a 60-year-old man sustains the following changes in axial stretch 

zZ(PSYSTOLE) – zZ(PDIASTOLE) = 0.016, 0.003, and 0.025 for   zZ
ini = 1.08, 1.16, and 1.00, 

respectively (Horný et al., 2014b). The corresponding normalized changes in the axial Cauchy 
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stress (zz(PSYSTOLE) – zz(PDIASTOLE))/zz(PSYSTOLE) were 0.604 for expected prestretch zZ
ini = 

1.08, 0.426 for the upper confidence limit of the prestretchzZ
ini = 1.16 , and 0.769 for the 

lower limit zZ
ini = 1.00. This clearly demonstrates that, although axial prestretch declines (the 

expected prestretch of the abdominal aorta for a 20-year-old man is 1.34, with a 95% 

confidence interval for the prediction [1.24;1.43]), remaining prestretch still retains its 

biomechanical role: to minimize the axial stretch and stress variation. 

Horný et al. (2014b) have moreover shown that axial prestretching also has a significant 

effect on the circumferential stretch variation (PSYSTOLE) – (PDIASTOLE) exhibited during 

pressurization.  

Unlike the axial stretch and stress variations, which are minimized by prestretching, 

circumferential stretch variations were found to be increased by prestretching. For the same 

example as before of a 60-year-old man, the circumferential stretch variation (PSYSTOLE) – 

(PDIASTOLE), which we will refer to here as distensibility, was computed to be  0.059 for 

zZ
ini = 1.08; 0.067 for zZ

ini = 1.16; and 0.056 for zZ
ini = 1.00. The study conducted by 

Horný et al. (2014b) revealed this phenomenon for all 17 investigated aortas. Higher axial 

prestretching induced inflation responses exhibiting higher circumferential distensibility of 

the tubes. This implies that the arterial physiology benefits in two ways from prestretching. 

The first way is from minimization of the axial stress and strain variation during the heart 

cycle, and the second way is from maximization of the circumferential distensibility during 

the cycle. Since arteries are conduits for the flowing blood, the higher distensibility of 

prestretched arteries means that they can accommodate a greater volume of blood at the same 

pressure than their non-prestretched counterparts. This leads us to regard the effect of axial 

prestretching as positive. To the best of our knowledge, this is the first time that such a 

conclusion on the effect on circumferential distensibility described in Horný et al. (2014b) has 

been presented in the literature.  

In the authors’ opinion, the positive effect of axial prestretching on circumferential 

distensibility is rather contra-intuitive at first sight, because we might expect a nonlinearly 

elastic tube to reach a stiffer state when pretension is applied. In their study, Horný et al. 

(2014b) hypothesized that anisotropy may be responsible for this phenomenon, because the 

elastic artery wall is reinforced by helically aligned collagen fibres (Holzapfel et al., 2000; 

Gasser et al. 2006; Horný et al., 2009, 2010) and Horný et al. (2014b) did indeed use an 

anisotropic constitutive model. However, they did not compare their results with the 

mechanical response of isotropic tubes, and anisotropy as a cause of the phenomenon 

remained only a hypothesis.  

An objective of our paper is to show what physical mechanism is responsible for the 

enhancement the circumferential distensibility of an inflated tube. A bottom-up approach will 

be used to demonstrate what happens. The model of an incompressible nonlinearly elastic 
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thin-walled tube will be simplified step-by-step from a material with exponential elastic 

potential at large strains to a linearly elastic material at small strains, and the cause of the 

enhanced circumferential distensibility will be made clear. We can state in advance that a 

problem formulated with large displacements but small strains for a linear material (second 

order linear elasticity) exhibits enhanced circumferential distensibility, and in the elementary 

linear elasticity of small displacements the model shows no positive effect of axial prestretch.  

         

II.2 METHODS 

 

Two different analytical models were used in Horný et al. (2014b). These were the thick-

walled computational model, which is capable of accounting for residual strains, and the thin-

walled model, which operates with averaged stresses acting on mid-surface of the tube. As is 

documented in that paper, the two models, although they differ numerically, give the same 

qualitative result – axial prestrain enhances circumferential distensibility. Since the effect of 

prestretching is captured by both models, in what follows, for the sake of simplicity and for 

clear and easy interpretation of the results, only the thin-walled model will be of our interest.  

Consider a long thin-walled cylindrical tube with closed ends that, in the reference 

configuration, has middle radius R, thickness H, and length L. Assume that, during 

pressurization, the motion of the material particle located originally at (R, , Z), which is 

sufficiently distant from ends, is described by the equations summarized in (1).  

,     ,     ,     
rR zZ

r R h z Z

   


           (1) 

Here r denotes the deformed middle radius and h denotes thickness. Equations (1) express 

the fact that the tube inflates and extends (or shortens) uniformly, and that it does not twist. 

The stretches  

kK (k = r, , z; K = R, , Z) are the components of the deformation gradient F, F = 

diag[rR,,zZ]. The right Cauchy-Green strain tensor C and Green-Lagrange strain tensor E 

can be computed as C = FTF and E = ½(C – I), where I is a second-order unit tensor. The 

material of the tube is considered to be incompressible, so the volume ratio J, J = det(F), 

gives equation (2) expressing J = 1. 


  


 1

zZ rR
           (2) 

The equilibrium equations of a thin-walled tube with closed ends initially prestretched by 

axial force  

Fred and loaded by internal pressure P can be written in the form (3). Here rr, , and zz 

denote the radial, circumferential and axial component, respectively, of the Cauchy stress 

tensor .  
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,     ,     
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            (3) 

The material of the tube is considered to be hyperelastic, described by the strain energy 

density function (elastic potential) W defined per unit reference volume. In this case, the 

constitutive equation relating components of the stress and strain tensor can be written in the 

form of (4). Here p denotes a Lagrangean multiplier reflecting the hydrostatic stress 

contribution (not captured in W, due to incompressibility) which has to be determined from 

the force boundary condition.   
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    (5) 

Equations governing the inflation and extension of the thin-walled tube are obtained after 

substituting (5) into (3). The system is given explicitly in (6). 
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   (6) 

For the material behaviour, Horný et al. (2014b) modelled the artery as an anisotropic 

material described by the Fung-type elastic potential WGMW (7), which was introduced in 

Guccione et al. (1991). Here c0 is a stress-like material parameter. c1 and c2 are dimensionless 

parameters which govern the anisotropy of the material. EKK (K = R, , Z) are components of 

the Green-Lagrange strain tensor expressed in the cylindrical coordinate system. 

    
  

 

2 2 2
1 20 1

2

ZZ RRc E c E E

GMW

c
W e         (7) 

In what follows, four different cases will be investigated. They are: (I) an isotropic 

nonlinearly elastic thin-walled tube described by the strain energy density function exhibiting 

large strain stiffening studied at finite strains; (II) a neo-Hookean tube at finite strains; (III) a 

linearized neo-Hookean tube studied at small strains but large displacements (second order 

linear elasticity); and (IV) a linearized neo-Hookean tube studied at small strains and small 

displacements (first order linear elasticity).  

 

 

II.3 ISOTROPIC LARGE STRAIN STIFFENING MODEL 

 

Since Horný et al. (2014b) documented the positive effect of axial prestretching in an 

anisotropic material, we will now show whether it is preserved when the problem is reduced 

to isotropy. The potential (7) belongs to the class of so-called Fung-type models (Humphrey 

2002). This is a family of elastic potentials based on the exponential function, which has been 
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proved to be very successful in describing the mechanical behaviour of soft tissues (arteries, 

veins, myocardium, skin, tendons, and ligaments), which generally exhibit large strain 

stiffening attributed to gradual load-bearing engagement of collagen fibres (Holzapfel et al., 

2000; Holzapfel and Ogden, 2010). The first representative of this family was introduced by 

Y.C. Fung; Fung (1967), and Fung et al. (1979). The simplest isotropic representative of this 

family is the Fung-Demiray model WFD (8), which was proposed in Demiray (1972). 

  




 1 3

1
2

I

FD
W e          (8)   

Here  is a stress-like parameter which at infinitesimal strains corresponds to the shear 

modulus.  is a dimensionless parameter modulating the rate of strain stiffening. I1 is the first 

principal invariant of C and is expressed in (9). In the cylindrical coordinate system and under 

the kinematics adopted for an inflated-extended thin-walled tube in (1), equations (6) with 

substituted (8) and (9) have the form of (10-12).  
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The Lagrangean multiplier p, which accounts for the hydrostatic stress contribution, is 

determined from (10). This is substituted into (11) and (12). The incompressibility condition 

(2) and geometric equations (1) are subsequently used to obtain the final form of the 

governing equations (13-14). 
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Before we proceed to solve (13-14), the equations will be converted to dimensionless 

form by (a) dividing by , (b) introducing the aspect ratio  = H/R, and (c) introducing the 

dimensionless pressure P = P/ and the dimensionless force F = Fred/(R2). The system that 

is obtained is given in (15) and (16). 
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It is clear that P and F can easily be resolved from (15-16) as P = P(,zZ) and  

F = F(,zZ). However, when circumferential distensibility is treated, we are much more 

interested in  = (P,F) andzZ =zZ(P,F). Since (15-16) is nonlinear in  andzZ, 

we will continue with a numerical solution. This was conducted in Maple 18, using the fsolve 

command, choosing axial prestretchingzZini ∈ {0.1(i – 1) + 1}i = 1
n = 11, computing F and 

ini at P = 0, and finally solving (15-16) at a given F and    ∈ {0.001(i – 1) + ini}i = 1
n 

= 1500 for unknown P and zZ.  In the representative example,  = 1 was prescribed. 

 

II.4 NEO-HOOKEAN MODEL AT FINITE STRAINS 

 

Strain energy density models (7) and (8) are exponential functions of deformation, and they 

exhibit rapid large strain stiffening (Kanner and Horgan, 2007; Horgan and Saccomandi, 

2003; Horgan, 2015; Ogden and Saccomandi, 2007; Horný et al., 2014c). Depending on 

specific values of the material parameters, the materials described by these potentials are 

characterized by progressively increasing stress-strain relationships, which is typical for soft 

biological tissues. As the second case, rapid strain stiffening will be suppressed, and the 

procedure will be repeated with the simplest invariant-based nonlinear material model (17). 

This is the so-called neo-Hooke strain energy density function which, under moderate strains, 

creates a link between the phenomenological theory and the statistical theory of 

macromolecular materials (Holzapfel, 2000). 
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Here  is a stress-like material parameter which at infinitesimal strains corresponds to the 

shear modulus. The mutual relationship between WnH and WFD is given by (18).  

    



 






  1 3

10
1 3

2 2

I
lim e I         (18) 

The constitutive equations obtained by substituting (17) into (5) are listed in (19). It can 

be observed that the material nonlinearity (strain stiffening) is lacking here, because kK
2 (k = 

r, , z; K = R, , Z) represents geometrical nonlinearity.  
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 
     


     2 2 2              

rr rR zz zZ
p p p      (19) 

(19) is substituted into the equilibrium equations (3) in (20-22). (20) determines p.  

   2

2rR

P
p           (20) 





 2 rP
p

h
           (21) 




  2

2 2
red

zz

F rP
p

rh h
         (22) 

Substituting p and applying geometrical equations (1), the system (23-24) governing the 

inflation-extension response of the thin-walled tube is obtained. 

 



   
 

 



 
    

 

2 2

2 2

1

2 zZ

zZ

P PR

H
        (23) 





    
 





 
     

 

2 2

2 2

1

2 2 2
red

zZ zZ zZ

zZ

FP PR

RH H
      (24) 

Finally, the aspect ratio  = H/R, dimensionless pressure P = P/, and dimensionless force  

F = Fred/(R2)/ are again introduced in (25-26).    

 

 



  
 

 



  2 2

2 2

1

2 zZ

zZ

P P
        (25) 

  





   
  





   2 2

2 2

1

2 2 2zZ zZ zZ

zZ

P F P
       (26) 

We observe that equations (25-26) differ from (15-16) only by the absence of the 

exponential term, which is in accordance with (18). Since (25-26) are again nonlinear with 

respect to  and zZ, the same approach as in the case of the exponential model will be 

employed to obtain the extension-inflation behaviour of a neo-Hookean cylindrical tube. 
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II.5 SECOND ORDER LINEAR ELASTICITY (SMALL STRAINS BUT LARGE DISPLACEMENTS) 

 

In this section, nonlinear effects will be attenuated by a transition from finite strain theory to 

linearized elasticity at infinitesimal strains. First, let us reconsider the constitutive equations 

implied by the neo-Hooke material model (19). Note that the left sides of (23-24) express  

and zz after p is substituted from the radial equilibrium. Similarly, / and zz/ are given 

by the left sides in (25-26). They are repeated in (27-28). It is clear that incompressibility at 

finite strains is manifested in the constitutive equations by “– 1/(2zZ
2) – P/2.” 









  




  2

2 2

1

2
zZ

P
         (27) 








  


  2

2 2

1

2
zz

zZ

zZ

P
         (28) 

We will now start from (19), which will be linearized. As the first step, the stretches kK in 

(19) are interchanged by components of the Green-Lagrange strain tensor EKK = ½(kK
2 – 1), 

(29).     

     2 1 ,     2 1 ,     2 1
rr RR zz ZZ

E p E p E p


     


           (29) 

At this point, a description by the infinitesimal (engineering) strain tensor  is introduced 

into (29). Since E and  are approximately equal in the range of infinitesimal theory, we 

simply interchange EKK and kk, obtaining (30) from (29).  

      
                2 1        2 1        2 1
rr rr zz zz

p p p    (30) 

It is clear from (30a) that (31) holds. 

    2 1
2rr

P
p           (31) 

We also need to express geometric equations (1) by means of . This is done in system 

(32). 

     
       1            1            1
rr zz

h H r R z Z      (32) 

The incompressibility condition for infinitesimal strains can be written in the form  

rr +  + zz = 0. Hence, the radial component of the engineering strain tensor can be 

substituted by (33).  


    
rr zz

          (33) 
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Substituting (31) into (30b) and (30c), applying (32) and substituting all into the 

equilibrium equations, system (34-35) is obtained. 

 

   
 

 


 




    

 


     

 

1
2 1 1 2 2

2 1zz

zz

RPP

H
     (34) 

   
  

 
 





  


    

    


      

    

11
2 1 1 2 2

2 21 1 2 1
red

zz zz

zz zz

RPFP

RH H
(35) 

Equations (34-35) govern the inflation-extension response of a thin-walled incompressible 

linearly elastic tube in so-called second order linear elasticity theory. This means that 

although the components of the small strain tensor are present in the equations, we still 

distinguish between the deformed configuration and the reference configuration. Thus 

equations (34-35) express the equality between the Cauchy stresses computed from the 

constitutive equations (left sides) and the Cauchy stresses computed from the geometry and 

the loads (right sides). The situation is similar to the way in which the buckling of a 

compressed column is treated. To obtain the critical force from a discussion of the boundary 

conditions, one has to substitute the expression for the bending moment into the equation for 

the deflection of the beam (Euler-Bernoulli) from the internal reaction forces determined in 

the deformed configuration. In other words, small strains with large displacements are 

considered here.  

Applying the same normalization procedure as in the previous cases, system (34-35) is 

transformed into dimensionless form (36-37). 

   





 

  


  

 

1
2 2

2 1zz

zz

P P
        (36) 

 
  

  


 


 

     


   

   

11
2 2

2 2 1 21 1zz

zzzz

P F P
    (37) 

The final equations (36-37) remain nonlinear, because rational expressions occur here. 

The nonlinearity, however, comes solely from the large displacements (the rational 

expressions are on the right sides of the equations). The results will again be obtained 

numerically.  

It is interesting to see how the equations are expressed by means of the components the 

Green-Lagrange strain tensor and finite strain theory. The finite strain counterparts of (36-37) 

are obtained from (25-26) by transforming kK into EKK. They are given in (38) and (39). 

  
  


 



     
 

1
2 1 2 1 2 1

22 1 2 1 ZZ

ZZ

P P
E E E

E E
    (38) 
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  
   

 




       
 

1
2 1 2 1 2 1 2 1

2 2 22 1 2 1ZZ ZZ ZZ

ZZ

P F P
E E E E

E E
 (39) 

The left sides of (38-39) give equations for / and zz/ when p has been eliminated. 

In (40-42), these equations are rewritten into the form of constitutive equations. Note that 

incompressibility necessitates loads to enter into the equations. Hence equations (40-42) are 

not general but they are valid only for the pressurization of a thin-walled tube. 

   
2rr

P
           (40) 

 
  


 





   
 

2 1
22 1 2 1

ZZ

P
E

E E
      (41) 

  
  


 



   
 

2 1
22 1 2 1zz ZZ

ZZ

P
E

E E
      (42) 

It is clear that “/(2E+   1)/(2EZZ + 1) – ½P” arises from incompressibility. We can 

compare (40-42) with (43-45). (43-45) are again constitutive equations obtained from the left 

sides of (34-35), which are valid for the specific case of a linearly elastic incompressible thin-

walled tube with rr determined from the external load. It is clear that a correct description 

using finite strains generates nonlinearity in (41-42) via the incompressibility condition, 

which is lacking in the description based on the infinitesimal strain tensor (44-45); 

“/(2E+ 1)/(2EZZ + 1)”  vs. “(1 – 2 – 2zz)”.   

  
2rr

P
           (43) 

     
          2 1 1 2 2

2zz

P
       (44) 

   
          2 1 1 2 2

2zz zz zz

P
       (45) 
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II.6 FIRST ORDER LINEAR ELASTICITY (SMALL STRAINS AND DISPLACEMENTS) 

 

Total linearization involves (a) introducing the small strain tensor, (b) linearizing the 

constitutive equations, and (c) taking into consideration small displacements, which justifies 

substituting the nominal stress tensor (the current force per reference cross-section) into the 

equilibrium equations. The constitutive equations are the same as in the previous section, 

given by (30). Equation (31) is again used to determine the contribution of the hydrostatic 

stress p. Thus the equilibrium equations are given by (34-35), but the right sides are modified 

according to the assumption of small displacements. The resulting equations are (46-47).  

 
    2 2

2zz

P RP

H
         (46) 

 
  


   2 2

2 2 2
red

zz

FP RP

RH H
        (47) 

The dimensionless counterparts of (46-47) are equations (48-49).  

   


 


  2 2  

2zz

P P
         (48) 

 2 2
2 2 2zz

P F P
  


 

 
            (49) 

The first order linear elasticity gives the linear system of the equations of the problem (48-

49), and at this moment the explicit dependence of  and zz on pressure and force is finally 

found (50). 

    



 
 

 

  
 

3 21 1
                  

12 12zz

P F P F
     (50) 

Since axial prestrain zzini is applied before the pressurization, i.e. at P = 0, (50b) gives 

(51). Computed F is constant in the subsequent pressurization. Substituting from (51) into 

(50a), the explicit dependence of the circumferential strain  on the initial axial prestrain 

zzini is obtained (52). 







6
ini

zz

F
           (51) 

1 3 1

12 2
ini

zz
P

 


 




           (52) 

Equation (52) implies that the axial prestrain will cause nothing more than a shift of the 

line that represents the –P dependence. However, the slope of the lines is constant during 
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pressurization; from (52), the slope is ( + 3)/(12). In contrast to previous cases, the first 

order linear elasticity immediately shows that in this theory axial prestretching does not affect 

the character of the pressurization of a thin-walled incompressible tube. It only changes initial 

conditions of the pressurization.  

 

II.7 NUMERICAL SIMULATIONS, AND A DISCUSSION OF THE RESULTS 

 

The analytical computational models used in deriving the equations governing the inflation-

extension of a closed incompressible thin-walled tube revealed that for (I), the exponential 

elastic potential (nonlinear model with rapid strain stiffening) – equations (15-16), for (II), a 

neo-Hookean material at finite strains (nonlinear model with moderate material nonlinearity) 

– equations (25-26), and for (III), a linearized neo-Hookean material considered at small 

strains but large displacements – equations (36-37), the problem does not lead to systems of 

equations from which the explicit analytical dependence of the circumferential stretch on the 

initial axial prestretching can be found. In these cases, numerical simulations were conducted 

to demonstrate the mechanical behaviour predicted by the models. They were performed in 

Maple 18, using the fsolve command according to the following scheme: 

 

(I) and (II) 

(a) zZini ∈ {1 + 0.1(i – 1)}i = 1
n = 11 

(b) the prestretching axial force F and the initial circumferential stretch ini were computed 

for P = 0 and the chosen prestretch zZini  

(c) P and zZ are computed for F determined in (b) and  ∈ {ini + 0.001(i – 1)}i = 1
m 

where m = 1200; 

 

(III) 

(a) zzini ∈ {0.02(i – 1)}i = 1
n = 11 

(b) the prestretching axial force F and the initial circumferential strain ini were computed 

for P = 0 and chosen prestretch zzini  

(c) P and zz are computed for F determined in (b) and  ∈ {ini + 0.001(i – 1)}i = 1
m 

where m = 1200. 

 

A thickness-to-radius ratio of  = 0.1 was applied in all the simulations. Parameter, 

modulating the rate of stiffening in (8), was prescribed to be  = 1. 
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RESULTS FOR THE ISOTROPIC LARGE STRAIN STIFFENING MODEL 

 

Figure 14 depicts the results of the simulation of the inflation-extension behaviour of an 

incompressible thin-walled tube with isotropic exponential elastic potential (8). Panels A and 

B show the initial conditions of the inflation, i.e. the dependence of the prestretching force F 

and the initial circumferential compression ini on the applied axial prestretch. The colours 

used to distinguish the individual prestretches are same in all figures and are chosen from 

HTML colour specification (in ascending order, they are: Black, Maroon, Red, DarkOrange, 

Gold, Yellow, GreenYellow, Cyan, DodgerBlue, Fuchsia, and DeepPink). 

The inflation-extension responses predicted by the system of equations (15-16) are 

depicted in C and D of Figure 14. It is clear that the circumferential distensibility, understood 

as (P2) – (P1) for some fixed zZini (where P1 < P2), depends strongly on the chosen 

axial prestretch zZini. Consider e.g. the deep pink (zZini = 2) and black (zZini = 1) curves in 

panel C. It is clear that if P2 = 1 and P1 = 0.5, a greater stretch difference (P2) – 

(P1) is obtained for greater prestretch.  

This property is better documented in panels E and F. In E, the contours of the constant 

pressure P = k, where k ∈ {0.1(i – 1)}i=1
n=11, are added to the graph showing the inflation-

extension responses as traces in the –zZ plane. Choosing again zZini = 1 and 2 (black and 

deep pink solid curves), and for example P2 = 0.2 and P1 = 0.1 (red and maroon dashed 

curves), one can see that higher circumferential distensibility (P2) – (P1) is obtained 

for  zZini = 1 (black solid). This demonstrates that the circumferential distensibility of the 

tube, (P2) – (P1) (where P1 < P2), is not monotonic with respect to the applied zZini 

in the model based on (8).  

Panel F displays this for pressures P2 = P and P1 = 0. In other words, panel F shows the 

difference between the circumferential stretch achieved at some pressure P and the initial 

circumferential stretch that is ordinarily attained at P = 0. It can be concluded that weakly 

prestretched tubes show mechanical responses with high circumferential distensibility at low 

pressures (consider e.g. the maroon ~ zZini = 1.1, red ~ zZini = 1.2, and dark orange ~ zZini = 

1.3 curves) in contrast to highly prestretched tubes. However, at higher pressures, the curves 

corresponding to higher prestretches exceed the curves obtained for less prestretched tubes 

(consider e.g. the curves in dodger blue ~ zZini = 1.8, fuchsia ~ zZini = 1.9, and deep pink ~ 

zZini = 2).  
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Figure 1. Fung-Demiray inflation-extension response. A – initial prestretch and dimensionless force.  

B – mutual dependence of initial prestretches (zZini – ini). C and D – dimensionless pressure vs. 

stretch. E – traces of the inflation-extension responses in the phase space of the deformation (solid 

curves) and contour curves for dimensionless pressure P = k (dashed curves). F – stretch difference 

 – 
ini achieved by loading a tube with pressure P. 
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This implies that  – ini is not monotonous in its first derivatives with respect to P 

for a given zZini. A consequence of this is the existence of inflection points where tangents to 

 – ini will have extremal slopes (see Figure 14 F). Such a property, theoretically, allows 

tubes to be programmed to operate in an optimal working range (to optimize either the 

pressure difference for a given distensibilityor the distensibility at some chosen pressure 

difference). We will not go into further details here. We have already found what we had been 

looking for: the positive effect of the axial prestretch is not restricted to anisotropy, as had 

been hypothesized in Horný et al. (2014b). 

 

RESULTS FOR A NEO-HOOKEAN TUBE AT FINITE STRAINS 

 

Figure 2 depicts the mechanical responses obtained for an incompressible neo-Hookean thin-

walled tube at finite strains. The responses are governed by equations (25-26), and numerical 

simulation is again the only way to make a theoretical investigation of the effect of the 

prestretch. Figure 2 is fashioned in a similar way as Figure 1. Panels A and B show the initial 

conditions for inflation, C and D show the dimensionless pressure and the achieved stretches, 

and E and F again document the circumferential distensibility as such. 

In comparison with Figure 1, there is one substantial difference, which is indicated by the 

dotted parts of the curves. The dotted curves correspond to a loss of deformation stability. 

This phenomenon is well known to anyone who has ever inflated a party balloon (Chater and 

Hutchinson 1984; Gent 2005; Kanner and Horgan 2007; Gonçalves et al., 2008; Rodriguez 

and Merodio, 2011; Mao et al., 2014; Horný et al., 2015). The inflation instability is exhibited 

as a non-monotonic dependence of the inflation pressure on the circumferential stretch. At the 

point where stability is lost, increments in circumferential stretch are accompanied by 

decrements in applied pressure. This is exactly what happens with a party balloon - after some 

initial loading its response becomes unstable.   

Since the onset of loss of stability is accompanied by buckling, which in the case of a 

cylindrical tube may appear as a bulge propagated in the axial direction, or as bending 

(resembling the deflection of a beam), or a bulge propagated in the radial direction, the 

assumptions contained in the geometrical equations (1) are violated in the subsequent 

inflation. In the absence of serious post-buckling analysis, results related to the post-buckling 

behaviour therefore have to be considered uncertain. However, this is beyond the scope of our 

present study. We will limit ourselves to the stable elastic response, which is indicated by the 

solid parts of the curves. 
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Figure 2. Neo-Hookean inflation-extension response. A – initial prestretches and dimensionless force. 

B – mutual dependence of the initial prestretches (zZini – ini). C and D – dimensionless pressure vs. 

stretch. E – traces of the inflation-extension responses in the phase space of the deformation (solid 

curves) and contour curves for dimensionless pressure P = k (dashed curves). F – stretch difference 

 – 
ini achieved by loading a tube with pressure P. Dotted curves indicate a loss of deformation 

stability. 
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Panel C in Figure 2 shows that the applied axial prestretch (a) decreases the maximum 

pressure achievable in the deformation, and (b) also makes the tube more distensible in the 

circumferential direction. This is clear, when one considers the slopes of the tangents made to 

the pressure–stretch curves at any fixed pressure (Panel C). In other words, the pressure–

circumferential stretch dependences in panel C form concave curves (under elastically stable 

deformations).   

The same conclusion is obtained for panels E and F. Especially F, which, similarly to 

Figure 1, shows the difference between the circumferential stretch achieved by some pressure 

P and the initial circumferential stretch obtained at P = 0, clearly demonstrates that the 

higher the axial prestretch, the higher the circumferential distensibility at a given pressure.  

Unlike for the strain-stiffening model (8), there is no violation of monotony. Considering 

equation (18), we see that both models have topredict the same mechanical behaviour whe  

 → 0. Thisis also clear when the governing equations (15-16) and (25-26) are compared. 

Now we see that the existence of the non-monotonic effect of the axial prestretch (increased 

vs. decreased circumferential distensibility) in the Fung-Demiray model (8) is a consequence 

of the presence of material parameter .  contributes to the system by one additional degree 

of freedom, and allows a switch between the positive effect (enhancing the distensibility) and 

the negative effect (suppressing the distensibility) of prestretching that is exhibited by a tube 

while it is being inflated.  

 

SECOND ORDER LINEAR ELASTICITY 

 

Figure 3 shows the results obtained for a linearized neo-Hookean material with the 

deformation described using the engineering strain tensor (36-37). It is depicted with solid 

curves and filled circles. The panels are again arranged in the same way as in Figures 1 and 2. 

However, for the sake of easy comparison, the results predicted using the finite strain neo-

Hooke model are also displayed here; equations (38-39). They are indicated by dotted curves 

and empty circles. For the finite strain model, the results depicted in the figure were 

transformed from the original Green-Lagrange deformations to engineering strains according 

to the equation kk = √(1 + 2EKK) – 1, where k = , z, and K = , Z. Thus the two models are 

displayed in the same quantities, which helps when comparing them, because the nonlinear 

effects are immediately clear when the results are displayed over coordinate axes scaled in 

infinitesimal strains. 

The same axial prestrain sequences were applied in the linearized model (III) and in the in 

the finite strain model (II); {zzinij}j=1
11 = {0.02(j – 1)}j=1

11. On the basis of the conclusion 

obtained using the totally linearized model (IV, equations 50-52), we know that in this case 
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the system of governing equations gives linear pressure–deformation relationships. Hence, if 

the solid curves in Figure 3 deflect from (imaginary) straight lines, this is the effect of large 

displacements sustained by linear material. When the dotted curves are deflected from the 

solid curves, this is the effect of the incompressibility formulated in the finite strain 

description; compare equations (36-37) and (38-39).  

The nonlinearity of the P–  relationship is clear from Figure 3 (panel C), and occurs in 

both models. In contrast with panel C, where both finite strain neo-Hooke and also linearized 

neo-Hooke with infinitesimal strains but large displacements show clear nonlinearity, P–zz  

relationships for the linearized model with the small strains but large displacements (solid 

curves) presented in panel D exhibit only limited deviations from straightness. Moreover, 

nonlinearity occurs where there are strains say 0.1 < zz. In this region, the results obtained 

with  used in the description have to be considered as estimates of reality, rather than as 

facts. However, the finite strain model displayed over the axis scaled in zz clearly deflects 

from straightness. 

It is hard to draw conclusions about the circumferential distensibility on the basis of panel 

C of Figure 3. The effect of the prestretch is less clearly visible than in Figures 1 and 2. The 

stretch variation | – ini| is therefore depicted separately in Figure 4. In panel A, we 

observe that the curves are convex. This indicates that distensibility increases with increasing 

pressure. The effect of the prestretch is positive; that is the greater the prestretch, the greater 

the distensibility. This is found by comparing the mutual positions of the curves (panel B). 

However, in the range of linear elasticity, this effect is almost negligible. 

 

3.4 FIRST ORDER LINEAR ELASTICITY 

 

Total linearization (small strains and displacements) is the only case where conclusions can be 

drawn immediately on the basis of the equations (50-52). There is no effect of the axial 

prestrain on the mechanical response of an incompressible linearly elastic thin-walled tube 

apart from the shift of the linear P–  relationship. There is no enhancement or suppression 

of circumferential distensibility, as is documented in Figure 5.  

However, from a different point of view, insensitivity of the circumferential distensibility 

in the first order linear elasticity to the axial prestrain elucidates a source of the phenomenon 

under discussion here. The difference between first order and second order linear elasticity 

consists in the form of the right side in the equilibrium equations (48-49) vs. (36-37); i.e. in 

the nominal stress tensor (current force per reference cross-section, 48-49) vs. the Cauchy 

stress tensor (current force per deformed cross-section, 36-37). In other words, the reason for 

the enhanced distensibility in the second order linear theory lies in the large displacements. 

However, the comparison in Figure 3 shows that a finite strain formulation of the 
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incompressibility moves the effect of the prestretch from a rather abstract mathematical 

phenomenon to a fact measurable by engineering methods.          

 

Figure 3. The neo-Hookean and linearized inflation-extension response at small strains but large 

displacements. A – prestrains and dimensionless force. B – mutual dependence of initial prestrains.  

C and D – dimensionless pressure vs. infinitesimal strain. E – traces of inflation-extension responses. 

The solid circles and continuous curves correspond to second order linear theory. The dotted curves 

and empty circles correspond to nonlinear theory applied to a neo-Hookean material, but the results 

are displayed over infinitesimal strain coordinates according to kk = √(1 + 2EKK) – 1.  
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Figure 4. Circumferential distensibility of the Neo-Hookean model and the linearized model in the 

inflation-extension response at small strains but large displacements. A – overall dependences. B – 

detail. 

 

 

 

 

Figure 5. Inflation-extension responses in the first order linear elasticity. A – circumferential 

responses. B – longitudinal responses. 
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II.8 CONCLUSION TO THE CHAPTER II 

  

The study published by Horný et al. (2014b) showed that nonlinear incompressible 

anisotropic thin-walled tubes exhibit higher circumferential distensibility when they are 

axially prestretched than non-prestretched tubes with the same constitutive properties and 

geometry. From a physiological point of view, this effect is positive because aortas, which 

were investigated in Horný et al. (2014b), serve as conduits for flowing blood. Thus the 

greater the distension that they are capable of achieving at some pressure, the larger is the 

volume of the blood that they can accommodate. Horný et al. (2014b) hypothesized that this 

effect, which had not been described previously in the literature, could be a consequence of 

arterial anisotropy.   

In the present study, we have tried to show the true physical cause of the increased 

distensibility of axially prestretched tubes. The approach that has been adopted is based on a 

mutual comparison of four computational models. To be more specific, our study has 

investigated the mechanical response of a thin-walled incompressible tube (I) with a material 

based on the exponential strain energy density function, (II) with a neo-Hooke material, (III) 

with a linearly elastic material sustaining small strains but large displacements, and (IV) a 

tube with a totally linearized material. All the material models were isotropic.  

The simulations showed that the positive effect of axial prestretching is not a property 

exclusively related to anisotropy, because the results obtained in (I) showed that axially 

prestretched tubes can distend more than non-prestretched tubes. The Fung-Demiray 

constitutive model used in case (I) is a direct isotropic restriction of the model used by Horný 

et al. (2014b).   

It has been proved that nonlinear effects are crucial for the positive role of axial 

prestretching in pressurization. Nonlinear constitutive models depending on more than one 

parameter (exemplified here by the Fung-Demiray model in I) can exhibit both enhancement 

and suppression of the circumferential distensibility of the tube, due to prestretching. This 

implies that the effect of prestretching in two or more parametrical nonlinear constitutive 

models can be positive (higher circumferential distensibility) or negative (lower distensibility 

relative to the response of a non-prestretched tube), and the specific result depends on the 

constitutive model and the pressure that is applied. By contrast, the one-parameter nonlinear 

model (II, neo-Hooke) showed only increased distensibility when axial prestretching had been 

applied.  

A reduction of the computational model to second order linear elasticity (III, small strains 

but large displacements) led to mechanical responses that exhibited only a slight effect of 

prestretching in comparison with previous nonlinear models. However, from the purely 

mathematical point of view, the positive effect of prestretching on circumferential 
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distensibility is still present. In case (III), highly prestretched tubes showed higher 

distensibility than weakly prestretched tubes.  

Finally, total linearization (IV) proved that the significant effect is present only to the 

point at which the deformed configuration and the reference configuration are considered to 

be different. In other words, first order linear elasticity (IV), which does not distinguish 

between the two configurations when the stresses are computed from the loads applied to a 

structure, showed no other effect of prestretching apart from a change in the initial conditions 

of the pressurization. Neither enhancement nor suppression of the circumferential 

distensibility was found. 

To the best of our knowledge, this is the first study that has made a systematic evaluation  

of the effect of prestretching on the mechanical response of pressurized nonlinear tubes. 

However, this does not mean that there have been no previous papers documenting our 

results. As is shown in Horný et al. (2014b), there have been studies documenting 

experimentally that arteries pressurized ex vivo exhibit higher circumferential distensibility 

when they are axially prestretched (cf. Figure 4 in Schulze-Bauer et al., 2003; Figure 5 in 

Sommer et al., 2010; Figure 4 in Sommer and Holzapfel 2012; Figure 6 in Avril et al., 2013). 

However, a detailed discussion of this phenomenon was not an objective of these papers. 

Details of the physiological and mechanobiological role of prestretching can be found in 

Humphrey et al. (2009) and Cardamone et al. (2009).      

Finally it should be noted explicitly that first order linear theory is a limit of all nonlinear 

theories. Hence, irrespective of the formalism (nonlinear theory, a linear material for finite 

strains, a linear material under large displacements but small strains), if the displacements and 

strains are sufficiently small, the results obtained with first order linear elasticity will also 

hold for other formalisms. In other words, one when chooses some small positive epsilon as 

the error between linear and nonlinear predictions, there will always be some delta bordering 

a subset in the space of deformations where the errors between linear and nonlinear theory 

will be smaller than the chosen epsilon. In engineering practice, epsilon depends on the 

sensitivity and the confidence of our experimental methods. 
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Conclusion 
   

Biomechanics. The above presented calculations have shown that, although ageing led to 

significantly decreased longitudinal prestretch, the biomechanical response of the human 

abdominal aorta was changed significantly depending on used initial axial stretch within the 

computation. Particularly, substituting the upper limit of the confidence of prediction for the 

axial prestretch gave mechanical responses which can be characterised by (a) lower variation 

in axial length, and (b) higher circumferential distensibility, in contrast to the responses 

obtained for arteries with low initial axial prestretch.  

The simulation also showed a significant effect of the axial prestretch on the variation of 

mean axial stress during the pressure cycle. Again, highly prestretched aortas showed low 

variation of axial stress and contrary weakly prestretched arteries exhibited high intra-cycle 

stress variation. This result should attract more scientific attention in future because axial 

stress exceeding physiological values may be a trigger of adaptation processes which could 

result in abnormal thickening, or an aneurysm or tortuosity formation.  

Finally, the obtained biomechanical results are in accordance with the hypothesis that the 

circumferential-to-axial stiffness ratio is the quantity relatively constant within this cycle. 

This can be used in in vivo constitutive model determination procedures which needs some 

physical constraints replacing axial equilibrium equation because true values of Fred are 

unavailable in vivo.     

 

General solid mechanics of deformable bodies.  The positive effect of the prestretch found in 

arteries led the author to attempt to explain it or, better to say, to find a source of this 

phenomenon.  In the second section of the thesis, an effect of anisotropy, effect of nonlinear 

constitutive model (material nonlinearity), effect of finite strains (geometrical nonlinearity), 

and large displacements with infinitesimal strain formulation, were discussed in top–bottom 

approach.  

Since isotropic models were used in the second section, we can conclude that the positive 

effect of the axial prestretch is not a property exclusively related to anisotropy which is 

exhibited by arteries. It has been proved that nonlinear effects are crucial for positive role of 

the axial prestretch in a pressurization of an incompressible tube. Nonlinear constitutive 

models depending on more than one parameter (herein exemplified by Fung-Demiray model) 

can exhibit both enhancing as well as suppressing of the circumferential distensibility of the 

tube by the prestretch. Contrastingly one-parameter neo-Hookean model showed only 

increased distensibility when axial prestretch had been applied. 

A reduction of the computational model to the second order linear elasticity (small strains 

but large displacements) led to mechanical responses which exhibited only slight effect of the 

prestretch in comparison with previous nonlinear models. But from purely mathematical point 
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of view, the positive effect of the prestretch on the circumferential distensibility is still 

present. And finally, the total linearization proved that the positive effect is present only to a 

point where deformed and reference configuration is considered to be different. In other 

words, first order linear elasticity, which does not distinguish between both of the 

configurations when stresses are computed from loads applied to a structure, showed no other 

effect of the prestretch than a change of initial conditions of the pressurization. This result 

was obtained despite the fact that incompressibility was still considered. 

Finally it should be mentioned explicitly that first order linear theory is a limit of all 

nonlinear theories.11 Hence, independently of a formalism, (nonlinear theory, linear material 

at finite strains, linear material under large displacements but small strains) if displacements 

and strains are sufficiently small, the results obtained with first order linear elasticity will hold 

also for other formalisms. In other words, one when chooses some small positive epsilon as an 

error between linear and nonlinear predictions, there will always be some delta bordering a 

subset in the space of deformations where errors between linear and nonlinear theory will be 

smaller than the chosen epsilon. In an engineering practice, the epsilon depends on a 

sensitivity and confidence of our experimental methods.    

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                      
11 Otherwise one could not consider the nonlinear theory as a meaningful concept. 
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Appendix A  

Equilibrium equations for incompressible hyperelastic thick-

walled tube and in-wall stresses distribution 

 

Detailed derivation of equilibrium equations (8) used in the analytical simulation will be 

provided here. It is done for more convenience of readers and also due to the fact that the 

derivation as such is rarely presented in the literature with all its steps. As the first step, let us 

repeat them here. Radial equilibrium is expressed in (8a), and (8b) shows the equilibrium of 

axial force in the closed thick-walled tube. 

ˆo

i

r

r

W dr
P

r











       (8a) 

2
ˆ ˆo

i

r

red zZ

r zZ

W W
F rdr





  
 



  
     
      (8b) 

The reader immediately recognizes that in fact, the equations (8a) and (8b) are not true 

equilibrium equations, rather they express a solution of the boundary-value problem (it is 

clear from the appearance of the loadings P and Fred). This terminological distinction here will 

not be made similarly to many other papers. But the author feels it to be worth noting.    

 

Assumptions. The material of the tube is considered to be hyperelastic described by the 

strain energy density function W. The material is incompressible. Shear stresses and strains 

are neglected. Axial strain does not depend on axial coordinate.  

 

Constitutive equation with Ŵ. The first step is the derivation of a new form of the 

constitutive equation where Ŵ appears instead of W. Remind that the material is 

incompressible and that there are no shear strains. It implies that strain measures have the 

form expressed in (21). 
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F E
rR rR

zZ zZ

   (21) 

The incompressibility constraint implies det(F) = rRzZ = 1 from which rR = 1/(zZ) is 

clear. Ŵ is the strain energy W with substituted rR = 1/(zZ), i.e.  

Ŵ = Ŵ(1/(zZ),,zZ).     
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Consider now a unite cube subjected to normal Cauchy stresses rr,, and zz. Assume 

the cube deforms to a cuboid (no shear stresses and strains) whose edges have lengths rR, 

, and zZ. Infinitesimal increment in the strain energy W caused by rR → rR + drR,  

→  + d, and zZ → zZ + dzZ is expressed in (22). 

 

Figure 20. Differential increment dW. Infinitesimal contributions of the order higher than the first 

are neglected. 

 

   
           

  
  

zZ rr rR rR zZ rR zz zZ
dW d d d   (22) 

Now differentiate the incompressibility condition rRzZ = 1 (23). 

  
        

  
   0

zZ rR rR zZ rR zZ
d d d    (23) 

Using (23), dW can be written as (24) wherezZdrR is eliminated.   

     
         

 
   

rR zZ rr rR zz rr zZ
dW d d   (24) 

Considering Ŵ which is a function of two independent variables, the increment in the strain 

energy can also be written as (2). 
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W W
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Since both W and Ŵ express the same energy state of a material, we can write (26) which 

makes equal components of (25) and (24). 
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W W
d d d d   (26) 

From it (27) immediately follows. 
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rR zZ rr rR zz rr

zZ

W W
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The final form of the new constitutive equations (28) is obtained after the substitution form 

incompressibility constraint.  

 



     
 
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

 
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ˆ ˆ
rr zz rr zZ

zZ

W W
   (28) 

We now see that (28) are equations used to compute a stress distribution through thickness of 

the wall in (9b) and (9c). 

 

Radial equilibrium (8a). After preceding preliminary computation, we can approach to (8a) 

as such. The first step consists in the derivation of true radial equilibrium equation. It is done 

by the well-known approach which is usually explained in the second course of the theory of 

elasticity and strength of materials in engineering schools around entire the world.12 Consider 

internal element of a tube as depicted in Figure 21. 

 

 

Figure 21. Internal element of deformed thick-walled circular tube. 

 

 

 

 

 

 
                                                      
12 The second course of the theory of elasticity and strength of materials is here meant in the sense of the famous 

Timoshenko’s books: Timoshenko S. (1930) Strength of Materials, Part I, Elementary Theory and Problems. D. 

Van Nostrand Company, Princeton; and Timoshenko S. (1930) Strength of Materials, Part II, Advanced Theory 

and Problems. D. Van Nostrand Company, Princeton. 
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Components contributing to the radial net force are summed in (29). 

    


     

 
     

 
2 0

2rr rr rr

d
d r dr d dz rd dz sin drdz   (29) 

After some algebra, considering infinitesimal approximation sin(dx) ≈ dx, and neglecting 

higher order term, one approaches to ordinary differential equation (30), which will be 

subsequently used in the form (31) expressing differential increment of the radial stress as a 

function of r. 


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  0rr rr
d

dr r
     (30) 
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 




 rr
rr

d dr
r

     (31) 

Now (31) is integrated from ri to ro and simultaneously boundary conditions, rr(ri) = –P and 

rr(ro) = 0, are applied. 
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On the other hand, we also can write (33). 
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    (33) 

Substituting from the new form of constitutive equation (28a) into (33) and comparing it with 

(32), the final form is obtained, (8a).  


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







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1ˆo

i

r

r

W
P dr

r
     (8a) 

Note that a key assumption was the constant axial stretch along entire length of the tube, 

otherwise the problem will result in a formulation with two independent variables (r and z). 

Note also that final expression has to be transformed from  to r by (r) = r/() before 

an integration.13  

                                                      
13 Here  denotes referential variable radius defined in the opened-up (stress-free) configuration as was 

established in Section 2.3. When stress-free configuration coincides with unpressurized cylinder (no residual 

strain), then  = R and  = , and  = r/R follows from it.   
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Prior approaching the axial equilibrium, the equation (9a), which is closely related with the 

preceding, will be derived. Consider again (31). But now as a function of lower bound r. 

Integrals (34) and (35) have to equal. It implies that (9a) must have the form of (36). 
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






 


1ˆor

rr

r

W
r dx

x
     (36) 

 

Axial equilibrium (8b). The situation is depicted in Figure 22. Prestretching force Fred, which 

is constant during loading, has to be in equilibrium with the force generated by pressure P 

acting on sufficiently distant end of a tube and resulting stress zz. It implies that we can write 

(37). 

 

Figure 22. Axial equilibrium. 

 

     
2 2

o

i

r

red i zz

r

F r P rdr     (37) 

This (37) is our beginning, and (8b), which is form more convenience repeated, is desired 

result. 
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 As the first step, substitute from (28b) (constitutive equation with Ŵ) to (37). 
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Integral term in (38) is separated to two integrals. Subsequently “2” standing in front of the 

first integral is used to write “2r” which is finally substituted by a differentiation d(r2)/dr. 
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(39) 

Now consider that the term arising from internal pressure acting on ends can be written as 

(40); boundary conditions rr(ri) = –P and rr(ro) = 0 are applied. 
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Substituting (40) in to the last step of (39) gives (41). 
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Now, an integration by parts can be applied to the first and second term in (41c). It is written 

as (42). 
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(42) can be rearranged to (43) which is then substituted into (41) giving (44). 
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Now substitute the term drr/dr in (44) from radial equilibrium equation (30). 
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The final step consists in replacing the bracket term in the first integral in (45c) by the 

expression from the new constitutive equation (28a). We are approaching to (46c) which 

equals to desired expression (8b). 
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Appendices B and C are not included in the www version of the thesis. 
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