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Abstract 

 

Elastic arteries are significantly prestretched in an axial direction. This property minimises axial 

deformations during pressure cycle. Ageing-induced changes in arterial biomechanics, among others, 

are manifested via a marked decrease of the prestretch. Although this fact is well known, little  

attention has been paid to the effect of decreased prestretch on mechanical response. Our study 

presents the results of an analytical simulation of the inflation-extension behaviour of the human 

abdominal aorta treated as nonlinear, anisotropic, prestrained thin-walled as well as thick-walled tube 

with closed ends. The  constitutive parameters and geometries for 17 aortas adopted from the literature 

were supplemented with initial axial prestretches obtained from the statistics of 365 autopsy 

measurements. For each aorta, the inflation-extension response was calculated three-times: with 

expected value of the initial prestretch and with the upper and lower confidence limit of the initial 

prestretch derived from the statistics. This approach enabled age-related trends to be evaluated bearing 

in mind the  uncertainty in the prestretch. Despite significantly decreased longitudinal prestretch with 

age, the biomechanical response of human abdominal aorta changes substantially depending on the  

initial axial stretch used.  In particular, substituting the upper limit of initial prestretch gave 

mechanical responses which can be characterised by  (1) low variation in axial stretch, and (2) high 

circumferential distensibility during pressurisation, in contrast to the responses obtained for their 

weakly prestretched counterparts. The simulation also suggested the significant effect of the axial 

prestretch on the variation of axial stress in the pressure cycle. Finally, the obtained results are in 

accordance with the hypothesis that circumferential-to-axial stiffness ratio is the quantity relatively 

constant within this cycle. 
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1. Introduction 
 
 
There is extensive literature dealing with the circumferential behaviour of elastic arteries, e.g. aorta, 

carotids, iliacs (Dobrin 1978; Humphrey 2002; Shadwick 1999; Kalita and Schaefer 2008). This 

literature includes results of both ex vivo and in vivo approaches showing the unique Windkessel 

function of these arteries.    The manner of how elastic arteries transmit pressure pulse wave has been 

linked to mortality (McEniery et al. 2007; Greeenwald 2007). Arteriosclerotic changes, which are 

responsible for age-related loss of elasticity (a key factor for pulse wave transmission), have 

subsequently been suggested as a potential target for cardiovascular therapy (O’Rourke and 

Hashimoto 2007). It was well established that circumferential distensibility declines with age. In 

contrast to the circumferential mechanical response, the axial behaviour of arteries in their natural 

(tubular) geometry has been studied less extensively, especially for human data which can only be 

found in a limited number of reports (Horny et al. 2013b).     

Elastic arteries in situ are significantly prestretched in an axial direction (Dobrin and Doyle 1970; 

Han and Fung 1995; Learoyd and Taylor 1967). They retract upon excision and the difference between 

the in situ and ex situ length rapidly decreases in middle age and only small changes follow after the 

age of 60  (Horny et al. 2011, 2012a,b). For instance, a regression model adopted in this study from 

Horny et al. (2013a) respectively gives axial prestretch 1.33, 1.23, 1.08, and 1.05 at age 20, 30, 60 and 

70,  which implies a decrease of approx. 30% and 9.5% per decade with reference to 20 years of age  

(the supposed maximum prestretch due to the end of the growth period).    

Axial prestress, induced by the prestretch, has an important physiological function. In an idealised 

case, it enables the artery to carry the pulse pressure with minimal variation in its length (Schulze-

Bauer et al. 2003; Sommer et al. 2010; Van Loon et al. 1977). It is, however, unknown how ageing-

induced changes in prestress and stiffness are inter-related together. In other words, how the stress 

state of an artery is affected by a simultaneous decrease in the prestretch and an increase in the 

stiffness (at strains corresponding to in vivo loading). This interrelation is significantly complicated by 

the nonlinearity and anisotropy of arterial constitutive behaviour (Holzapfel et al. 2000; Holzapfel and 

Ogden 2010a). 

Our study attempts to contribute to this topic with an analytical simulation of the inflation and 

extension behaviour of human abdominal aorta treated as a homogenous, nonlinear and anisotropic 

continuum. The constitutive model and its parameters are adopted from Labrosse et al. (2013) who 

have recently published the results of 17 inflation–extension tests with human abdominal aortas. Data 

describing the axial prestretch of aortas are adopted from Horny et al. (2013a). They systematically 

conducted autopsy measurements of the prestretch and their sample has reached a total of 365 

observations which is suitable to be used as a representative of a population.  
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2. Methods 
 

2.1 Constitutive model and parameters 
 
Although the biomechanics of large arteries has been extensively studied worldwide, scientific papers 

reporting the constitutive parameters obtained from pressurisation tests with human abdominal aorta 

are rare. Labrosse and co-workers have recently published data suitable for a purpose of computational 

simulation (Labrosse et al. 2013). They conducted inflation tests (with simultaneous free axial 

extension), determined constitutive parameters and discussed the results with reference to transmural 

stress distribution (residual strain/stress). Within our study, we adopted the constitutive model, 

material parameters and reference geometries (thickness, radius, opening angle) presented by them 

(Labrosse et al. 2013). 

The constitutive model is based on the Fung–type exponential strain energy density function W 

(1) which in the literature is referred to as Guccione’s model (Guccione et al. 1991). ERR, EΘΘ and EZZ 

respectively are the radial, circumferential and axial components of the Green-Lagrange strain tensor 

in the cylindrical coordinate system and c0, c1, c2 are the material parameters.  

    
( )2 2 2

1 20 1
2

ZZ RRc E c E Ec
W e ΘΘ + + 

= − 
 

     (1)    

The artery wall was considered to be incompressible. Stress–strain relationship is then obtained in the 

form of (2). Here F denotes the deformation gradient, E denotes the Green-Lagrange strain tensor 

defined as E = ½(FTF – I), p is hydrostatic stress resulting from incompressibility constraint, I denotes 

second order unit tensor, and σ is the Cauchy stress tensor.  

    F F I
E

TW
p

∂
= −

∂
σ        (2) 

Material parameters, age (38–77 years) and gender are specified in Table 1. 

 

 

2.2 Axial prestretch λzZini 
 

Axial prestretch of the large arteries cannot be directly measured in the living due to the destructive 

nature of such an experiment (a segment of an artery has to be excised from a body). Since Labrosse et 

al. (2013) did  not report specific values of the prestretch, we adopted population data from Horny et 

al. (2013a). Horny et al. (2013a) measured the retraction of segments of the human abdominal aorta in 

365 regular autopsies. The data sample of 365 measurements is large enough to capture trends and 

variability in the prestretch occurring in the population. The data has been fitted to a regression 

equation (3) describing dependence on age (a, b denotes regression parameters and x denotes age 

[years]).  

     ini b

zZ
axλ =       (3) 

In the following simulations, initial axial prestretch λzZ
ini will be prescribed to the value obtained 

from (3) after the substitution of specific age (Table 1). Since no measurement is free from uncertainty 

and population data is used, the simulations will also employ the upper and lower limit of the 
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prediction interval of the prestretch. Specifically, a 95%-confidence interval for a prediction given by 

the regression model. This approach will enable us to evaluate the expected behaviour of abdominal 

aorta (expected behaviour corresponds to estimates based on eq. 3) and its limits implicated by 

variance in the initial prestretch. They will be denoted UL (upper limit) and LL (lower limit) and are 

based on the classical linear regression model and its logarithmic transformation (4). Here y denotes 

initial prestretch, x denotes age, xi denotes i-th observed age, Se is residual standard deviation and t is a 

quantile of Student-t distribution for m degrees of freedom at significance α. The significance level 

0.05 is used within all the study. We note that assumptions of classical linear model have been proven 

in Horny et al. (2012b).  

 ( )
( )( )

( )( )

2

2
2

1

1
1

ln ln
ln ln ln

ln ln

i

e n

i i
i

x Mean x
y a b x t m S

n
x Mean x

α

=

−
= + ± + +

−∑
   (4)         

    

 

2.3 Computational model for inflation-extension response 
 
 

Herein we will focus  on the quasi-static problem because it is the most frequently used in constitutive 

model determination. The artery wall will be considered as a one-layered, incompressible, nonlinear, 

anisotropic, and closed tube which is initially prestrained to its in situ length and is free at its outer 

deformed radius ro and distended by internal pressure P at inner radius ri. With regard to the thickness 

of the artery wall, we employed both thin-walled and thick-walled approaches. This is done for two 

basic reasons. First, the thin-walled model, which operates with mean wall stresses acting at middle 

radius rm, may be regarded as more suitable when results of the simulation are compared with in vivo 

data obtained by ultrasound methods because there may be a problem in identifying the outer radius of 

the wall, in contrast to media-adventitia interface (this interface could be used as an estimate of rm). 

On the other hand, the thin-walled model (in contrast to thick-walled) cannot capture residual 

strain/stress which may significantly change the true stress/strain state of the material.    

         

 

Thin-walled model. In the thin-walled approximation, the equilibrium equations are written in the 

form of (5) with kinematic equations (6). 

                 
2 2 2

m red m
rr zz

m

r P F r PP

h r h hθθ
σ σ σ

π
= − = = +    (5) 

                      
rR m m zZ

h H r R z Z
θ

λ λ λ
Θ

= = =    (6) 

In (5) σrr, σθθ, and σzz respectively denote mean radial, circumferential and axial Cauchy stress at 

middle radius rm = (ri + ro)/2, and h is the thickness in the deformed state. Middle reference radius is 

denoted Rm  (Rm = Ri + H/2), reference inner radius Ri, and H denotes reference thickness (see Table 1 

for specific values). From (6) the deformation gradient can be written as F = diag[λrR,λθΘ,λzZ].  
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Fred in (5c) is external axial force necessary to obtain the in situ length corresponding to λzZini 

measured during autopsy. In ex vivo experiments, it is frequently generated with a hanging mass 

connected to a specimen (vertical configuration of the inflation–extension test). The denotation Fred 

was chosen with respect to nomenclature used in Holzapfel et al. (2000), Holzapfel and Ogden 

(2010a), and Ogden and Saccomandi (2007). This force is developed during the growth period and the 

literature suggests that elastin fibres are responsible for bearing this load (Carta et al. 2009; Humphrey 

et al. 2009). The key problem is that we in fact do not know how large in vivo Fred is. We only have 

evidence that arteries retract upon excision. Statistics of λzZini are thus obtained, since measured during 

autopsy, at P = 0.  This motivated us to employ Fred as a constant during the pressurisation. Throughout 

the pressurisation, the mechanical response of the artery has to satisfy equilibrium equations (5) and 

simultaneously  mechanical state of the material has to conform to the  constitutive equations (2). 

Combining (2) and (5) and interchanging variables in W to the deformation gradient, the system (7) is 

obtained. 

                 
2 2 2

m red m
rR zZ

rR zZ m

r P F r PW P W W
p p p

h r h hθ

θ

λ λ λ
λ λ λ πΘ

Θ

∂ ∂ ∂
− = − − = − = +

∂ ∂ ∂
 (7) 

 

We would like to note explicitly that in the chosen approach λzZini is the constant used to compute Fred, 

but does not necessarily correspond to λzZ which can change during  pressurisation (according to the 

system 7). This approach respects the fact the in vivo axial stretch has been proven to be slightly 

different from the prestretch measured in autopsy (Humphrey et al. 2009).  

 

The system (7) describes the inflation–extension of the initially prestrained artery and was solved 

in the following steps: 

 

1. Specific donor is chosen from Table 1 → Ri, H, c0, c1, c2, and age.   

2. From (3) expected λzZini is estimated. 

3. Derivatives at left-hand side in (7) are conducted. Subsequently p is eliminated from (7b) 

and (7c) using (7a). In the remaining system, (7b) and (7c), λrR is substituted with 1/(λθΘ ·λzZ) 

because for incompressible material detF = 1 holds. 

4. Prestretching force Fred corresponding to λzZini is computed from (7b) and (7c) at P = 0 (both 

equations (7b) and (7c) are necessary because one also has to determine λθΘ
ini corresponding to 

prestretched but unpressurised tube).  

5. The system (7b) and (7c) is now numerically solved for unknown λθΘ and λzZ (with Fred 

substituted from step 4) at P = 1, 2, .., 20 kPa.  

6. When λθΘ and λzZ are determined, σrr, σθθ, and σzz can be calculated substituting the results 

into (5).  

7. Instead of (3) the equation (4) is used to compute λzZ,ULini (λzZ,LLini) and steps 3. – 6. are 

repeated to obtain results for upper limit (lower limit) of initially prestretched arteries.  
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Thick-walled model. Elastic arteries are residually stressed in their unloaded configuration (Rachev 

and Greenwald 2003). The basic approach incorporating this fact into the computational model is to 

consider the opened up configuration as the reference one. When the unloaded ring of an artery is cut 

radially, it springs to an opened configuration which is (in the first approximation) considered to be 

stress-free and the geometry is modelled as a circular sector with inner radius ρi, outer radius ρo and 

sector angle 2ψ. The so-called opening angle (inscribed angle in the sector), frequently used to 

characterise residual strain, is then given as π – ψ.  

Equilibrium equations, with substituted constitutive model, describing the response of the closed 

thick-walled tube to internal pressure and prestretching force can be written in the form of (8). They 

are adopted from Labrosse et al. (2013). A detailed derivation can be found in Matsumoto and Hayashi 

(1996).    

ˆo

i

r

r

W dr
P

rθ

θ

λ
λΘ

Θ

∂
=

∂∫   2
ˆ ˆo

i

r

red zZ

r zZ

W W
F rdr

θ

θ

π λ λ
λ λΘ

Θ

 ∂ ∂
= −  ∂ ∂ 
∫    (8) 

Here Ŵ  is the strain energy density (1) with variables changed to the components of F and λrR 

substituted by λrR = 1/(λθΘ·λzZ). Circumferential stretch λθΘ is considered to be a function of the 

deformed radius r (ri ≤ r ≤  ro) and is expressed with respect to the radius in opened configuration ρ 

(ρi ≤ ρ ≤  ρo), λθΘ = πr/(ψρ). Axial stretch λzZ is considered to be uniform along the length and   

thickness of the tube (λzZ = constant). The equations (8) presume that boundary conditions σrr(ro) = 0 

and σrr(ri) = –P are applied. The system (8) was used to simulate the inflation-extension response of 

aortas in the following way: 

 

1. Specific donor is chosen from Table 1 → Ri, H, c0, c1, c2, opening angle and age.   

2. From (3) expected λzZini is estimated. 

3. Integrands in (8) are expressed as functions of r and λzZ. ro = ro(ri) is used in upper bounds 

of integrals (from incompressibility condition).  

4. Prestretching force Fred corresponding to λzZini is computed from the system (8) at P = 0 

(both equations (8a) and (8b) are necessary because one also has to determine riini 

corresponding to residually stressed and axially prestretched but unpressurised tube).  

5. The system (8) is now numerically solved for unknown ri and λzZ (with Fred substituted from 

step 4) at P = 1, 2, .., 20 kPa.  

6. When ri and λzZ are found, σrr(r), σθθ(r), and σzz(r) can be calculated from equations (9) 

considering that λθΘ = πr/(ψρ).  

ˆor

rr

r

W dx

xθ

θ

σ λ
λΘ

Θ

∂
= −

∂∫     
ˆ

rr

W
θθ θ

θ

σ λ σ
λΘ

Θ

∂
= +

∂
    

ˆ
zz zZ rr

zZ

W
σ λ σ

λ

∂
= +

∂
      (9)  

A detailed derivation of (9) can be found in Matsumoto and Hayashi (1996). It is important to 

emphasize that in (9a) the right-hand expression is a function of the lower bound r.  

6. Instead of (3), the equation (4) is used to compute λzZ,ULini (λzZ,LLini) and steps 4. – 5. are 

repeated to obtain results for upper limit (lower limit) of initially stretched arteries.  

 



Horny L, Netusil M, Vonavkova T (2014) Axial prestretch and circumferential distensibility in biomechanics of abdominal aorta. Biomechanics and 

Modeling in Mechanobiology 13(4):783-799. DOI: 10.1007/s10237-013-0534-8 MANUSCRIPT http://dx.doi.org/10.1007/s10237-013-0534-8  

  

 7

Using the procedures described above, λθΘ(P) and λzZ(P) in the thin-walled, and λθΘ(r,P) and λzZ(P) in 

the thick-walled approach were determined for all involved donors numerically in Maple 16. The 

results were used to compute variations in the stretches during the pressure cycle  

εiI = λiI(PSYS) – λiI(PDIA) for iI  = θΘ and zZ, to create P–λθΘ and P–λzZ dependences, and to quantify 

changes of the axial stress in the course of the pressurisation. Changes of the axial stress were 

quantified as relative increments between diastole and systole [σzz(PSYS) – σzz(PDIA)]/σzz(PDIA).  

In what follows, the results of the thick-walled model and thin-walled model will not be 

distinguished by special symbols for quantities in hand but they always will be distinguished by the 

radius at which they were obtained.  This indicates that the results computed at ri and ro are always 

given by the thick-walled model with incorporated residual strain and the results computed with the 

thin-walled model are always related to rm. 

 

2.4 Stiffness 

 

Chen et al. (2008) have suggested incorporating the assumption of the constant ratio between 

circumferential and longitudinal elastic modulus of the artery wall during the pressure cycle to 

overcome the impossibility of measuring axial stress in the constitutive parameter identification 

procedure conducted with living subjects. To evaluate this hypothesis, components of the elasticity 

tensor C (tensor of elastic module) in the material description have been computed. The material 

description was used to hold consistency with the definition of the strain energy density (1) defined 

also in the material description.  

C is defined as the derivative (10) of the second Piola–Kirchhoff stress tensor S with respect to the 

Green–Lagrange strain tensor E, Holzapfel (2000) ch. 6.6. 

     
S

E

∂
=

∂
C       (10)  

The Second Piola–Kirchhoff stress tensor S measures the stress state of a body using material 

description. One can say that  S is defined with respect to the material (undeformed) configuration. 

This is in contrast to the Cauchy stress tensor σ which measures the stress state of a body in the 

deformed configuration (spatial description). Both stress tensors can be mutually transformed using 

(11) because the deformation gradient F creates a map from an  undeformed to a deformed 

configuration. The equation (11) involves the inverse of F since transformation proceeds in the 

opposite direction – from deformed to undeformed configuration.    
1S F F TJ − −= σ      (11) 

J in (11) denotes the ratio between volume of a body in the deformed and undeformed configuration 

and, in our specific case, for the incompressible material J = 1. Since in our study only diagonal 

components of second order tensors are involved, the equation (11) reduces to SKK = λkK 
-2σkk. 

 

Thin-walled model. CΘΘΘΘ and CZZZZ were computed from (10) with the substituted material 

counterpart of (2) which can be written in the form of (12). 

( )
1

2S E I
E

W
p

−∂
= − +

∂
     (12) 
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Specific expression for p is obtained from the radial component of the equation (12). Considering (11), 

SRR = λrR 
-2σrr holds and p can be written as p = (2ERR + 1)·∂W/∂ERR – σrr. In the case of the thin-walled 

model, –P/2 is substituted into the radial Cauchy stress σrr.   

 

Thick-walled model. In the thick-walled model, the situation is somewhat more complicated. We will 

use equations (9b) and (9c) with substituted (9a). They will be transformed into the components of S. 

This results in (13) and (14). 

  ( ) ( )
1

2 1 2 1
ˆ ˆor

r

W W dx
S E E

E E x

−

ΘΘ ΘΘ ΘΘ

ΘΘ ΘΘ

∂ ∂
= − + +

∂ ∂∫     (13) 

  ( ) ( )
1

2 1 2 1
ˆ ˆor

ZZ ZZ

rZZ
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S E E

E E x

−

ΘΘ

ΘΘ

∂ ∂
= − + +

∂ ∂∫     (14) 

Using the product rule for differentiation, equations (13) and (14) give (15) and (16), respectively. 
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  (15) 
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∫

∫

  (16) 

To compute derivatives of the integrals in (15) and (16), the chain rule in the form  

∂(-)/∂EKK = [∂(-)/∂r]·[∂r/∂EKK] (K = Θ and Z) is adopted. Since the differentiation is conducted with 

respect to r and r simultaneously is a variable integration bound (the integrals are understood as the 

functions of the lower bound), the procedure leads to equations (17) and (18). Note that  

d(∫rrof(x)dx)/dr = -f(r). 

 ( ) ( )
2

2

2

1
2 2 1 2 1

ˆ ˆ ˆor

r

S W W dx W r
C E E

E E x E r EE

−ΘΘ

ΘΘΘΘ ΘΘ ΘΘ

ΘΘ ΘΘ ΘΘ ΘΘΘΘ

∂ ∂ ∂ ∂ ∂
= = + + + +

∂ ∂ ∂ ∂∂ ∫  (17) 
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2

2

2

2 1 1
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2 1

ˆ ˆ ˆor

ZZ
ZZZZ ZZ

rZZ ZZ ZZZZ

ES W W dx W r
C E E

E E x E E r EE

− ΘΘ

ΘΘ

ΘΘ ΘΘ

+∂ ∂ ∂ ∂ ∂
= = + + + +

∂ ∂ + ∂ ∂∂ ∫  (18) 

 

What remains to be clarified are derivatives ∂r/∂EΘΘ and ∂r/∂EZZ. The expression r = r(EΘΘ,EZZ) 

can be obtained considering a volume preservation during the deformation:  

πl(ro
2 – r2) = ψL(ρo

2 – ρ2). This relation equals the volume of elongated (to length l) and pressurized 

tube limited by outer deformed radius ro and variable radius r to the volume of the stress-free (opened 

up) cylindrical sector (of the length L) limited by outer radius ρo and variable radius ρ. Considering λzZ 

= l/L, one obtains (19) substituting ρ from above mentioned volume preservation into λθΘ = πr/(ψρ). 
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π
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ψ
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− −

    (19) 

After some algebra, the expression (20), which relates r to λθΘ and λzZ, is obtained from (19). 

    
( )
( )
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One can arrive to the final expression r = r(EΘΘ,EZZ) substituting stretches with Green–Lagrange strain 

components, λθΘ = (2EΘΘ + 1)½  and λzZ = (2EZZ + 1)½. Finally, the stiffness ratio CΘΘΘΘ/CZZZZ and its 

relative increment between diastole and systole (normalised with respect to diastole) can be computed. 

 

2.5 Blood pressure in ageing 

 

It is well known that the  character of pressure pulses in human arteries changes with age (Greenwald 

2007; O’Rourke and Hashimoto 2007). With regard to this fact, we adopted numerical values of the 

diastolic and systolic pressure from recent epidemiological study conducted by Wilkins et al. (2010). 

They evaluated results of Canadian Health Measures Survey 2007 – 2009. Specific values used in our 

study are listed in Table 2. They were obtained as linear interpolation (with respect to variable age) of 

the data found in Figure 1 in Wilkins et al. (2010). The data in the original source is gender specific 

and represents the average in the population. That is, the averaged value is obtained considering 

healthy, successfully treated, unsuccessfully treated and untreated hypertensive/hypotensive 

population in the given ageing period.  

 

2.6 Correlation 

 

The linear correlation coefficient R was computed for all treated quantities to obtain a basic estimate 

of their dependence on age. It is supplemented with the test of the hypothesis R = 0 (against alternative 

R ≠ 0) based on the statistics T = R[(n – 2)/(1 – R2)]½ which was evaluated by p–value (here n is the 

number of observations). Results were considered to be statistically significant at the level 0.05 within 

this study.    

 

 

 

3. Results 
 

In the present simulation, we would like to show how the mechanical response of human abdominal 

aorta changes because of both changed constitutive parameters and decreased longitudinal prestretch. 

Details of involved donors are listed in Table 1 (geometry and material parameters) and in Table 2 

(estimated prestretch and diastolic and systolic pressure). 
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3.1 Initial axial prestretch 
 

Data describing initial axial prestretch was collected during autopsies as described in Horny et al. 

(2013a). The regression equation (3) was fitted to the resulting sample with parameters a = 2.4016 

[1/year]; b = -0.1957 [-]. Regression curve and data are depicted in Figure 1. Limits for interval of 

95%-confidence of a prediction (an interval into which a future observation will fall with a probability 

equal to 0.95) are also depicted. Within the text, these limits are denoted λzZ,ULini (upper) and λzZ,LLini 

(lower).  Linear correlation coefficient for ln(λzZini)–ln(Age)  R = -0.903 (p–value < 0.001) confirmed 

a strong correlation between age and axial prestretch. Specific values for λzZini, λzZ,ULini, and λzZ,LLini  

used in the simulations are listed in Table 2. 

 

 
Figure 1. Dependence of initial axial prestretch 

(found in autopsy) on age. Regression model for 

expected value λzZini – thick red curve; upper limit 

λzZ,ULini and lower limit λzZ,LLini of 95%-prediction 

interval – green dashed curves; observations – blue 

points. Estimated parameters for regression equation (3) 

are a = 2.4016 [1/year]; b = -0.1957 [-].The data was 

adopted from Horny et al. (2013a). Since the lower limit 

of the prediction interval approaches 1 at the age of 61 

years (no axial prestretch) and governed by (4) follows 

with values smaller than 1 (i.e. axial precompresion), it 

was decided to prescribe λzZ,LLini = l for age > 61 years. 

This was motivated by two facts: (1) Horny et al. 

(2013a) did not report  any precompressed artery in their 

sample, (2) it is not clear whether the constitutive 

equations used in this study are suitable to describe 

precompressed arteries. 

 

 

 

 

 

The prediction interval for λzZini based on (4) gives the lower limit smaller than 1 for age > 61 

(Figure 1). This is the consequence of the used methodology (expectation ± uncertainty given as a 

function of a variance). Nevertheless, Horny et al. (2013a)  did not  report any abdominal aorta with 

λzZini < 1 (i.e. precompressed artery). Considering this fact in what follows, we have decided to 

substitute the exact results of the equation (4) with λzZ,LLini = 1 for donors with age higher than 61.   
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Table 1. Age, gender, geometry and constitutive parameters of involved donors; adopted from Labrosse et al. (2013). 

ID† F49 F50 F63 F65 M38 M42 M57 M60 M61a M61b M66 M67a M67b M70a M70b M71 M77 

Opening 

angle [°] 
252 323 96 248 117 125 322 156 270 335 253 118 174 208 201 118 135 

Ri 

[mm] 
5.9 6.7 5.4 6.2 5.3 6.5 7.5 6.3 7.7 7.3 7.2 8 7.9 7.1 7.4 10 7 

H 

[mm] 
1.51 1.14 0.96 1.21 1.22 1.56 1.28 1.69 1.22 1.62 1.78 1.58 1.26 1.23 1.64 1.72 1.5 

c0 

[kPa] 
8.4 8.4 23 1.6 14.7 41.8 0.8 7.6 2.4 2.3 9.4 3.5 2.2 14 1.8 17 1.2 

c1 

[-] 
5.09 15.21 4.07 9.26 3.04 1.54 6.74 2.96 37.53 6.82 7.81 24.47 56.69 16.09 18.62 13 41.08 

c2 

[-] 
8.18 9.67 7.2 11.77 7.38 1.44 12.44 10.23 34.01 19.16 12.5 27.9 41.66 7.38 35.99 11.85 49.51 

† ID indicates sex (female/male) and age [years] of donors. 

 

3.2 Inflation-extension response 

 

Prescribed referential geometry, initial prestretch and constitutive parameters (Table 1 and 2) enabled 

the systems (7) and (8) to be solved with respect to λθΘ and λzZ for defined internal pressure P. Two 

representatives of P–λθΘ and P–λzZ are shown in Figure 2 (M38) and Figure 3 (F65). For the sake of 

comparison, the results of the thick-walled model with incorporated residual strain as well as the 

results of the thin-walled model are depicted. Changes in the inflation characteristic induced by the 

prestretch are demonstrated for λzZini = 1.0, 1.1, 1.2, 1.3, 1.4 with P = 0–20 kPa. The higher the axial 

prestretch, the lower the initial circumferential stretch is. It is clearly evident that axial deformation at 

physiological pressures (10 – 16 kPa) depends on initial prestretch; a property of the so-called 

inversion point is exhibited. The inversion point is the value of axial prestretch in the P–λzZ diagram 

which, in an idealised case, divides the diagram into  inflation–extension and  inflation–shortening 

behaviour (Ogden and Saccomandi 2007; Schulze-Bauer et al. 2003). Considering P–λθΘ, an increased 

axial prestretch induces a left-side shift as expected. However, it also makes an inflexion point on P–

λθΘ more discernible and decreases the steepness of the curve at physiological pressures. 

The effect of the initial axial prestretch modelled by (3) and (4) is shown in detail in Figure 4 for 

M61 (computed with thin-walled model). The upper panel shows the P–λzZ curve and lower panel P–

λθΘ.  Expected behaviour (λzZini corresponding just to the regression equation (3)) is depicted with a 

blue solid curve laying in between curves computed with λzZ,LLini (black dots) and λzZ,ULini (red dashes) 

which are based on (4). It is clearly noticeable that aorta M61 exhibits higher variation of the 

circumferential stretch in pressure cycle P ∈ [10kPa;16kPa] for higher axial prestretch λzZ,ULini than for 

smaller λzZ,LLini.  
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Table 2. Initial axial prestretches for donors involved in the simulation estimated with regression model (3) and its prediction 

intervals (4). The table is ordered in the same way as Table 1. Estimated parameters in (3) a = 2.4016 [1/years]; b = -0.1957 [-

]; and in (4) t0.95/2(363)·Se = 0.0707; Mean(lnxi) = 3.8414; and Σ(lnxi - Mean(lnxi))2 = 0.0184.   

ID† F49 F50 F63 F65 M38 M42 M57 M60 M61a M61b M66 M67a M67b M70a M70b M71 M77 

λzZini 

[-] 
1.121 1.117 1.067 1.061 1.179 1.156 1.089 1.078 1.074 1.074 1.055 1.055 1.055 1.046 1.046 1.043 1.026 

λzZ,ULini  

[-] 
1.204 1.199 1.146 1.139 1.265 1.240 1.168 1.157 1.153 1.153 1.132 1.132 1.132 1.123 1.123 1.119 1.102 

λzZ,LLini  

[-] 
1.045 1.041 0.995* 0.988* 1.098 1.077 1.014 1.004 1 1 0.983* 0.983* 0.983* 0.974* 0.974* 0.971* 0.956* 

λzZ(PSYS)#  

[-] 
1.141 1.158 1.107 1.159 1.149 1.358 1.170 1.088 1.067 1.067 1.079 1.060 1.063 1.154 1.037 1.082 1.040 

λzZ(PDIA)#  

[-] 
1.127 1.146 1.087 1.142 1.145 1.307 1.154 1.072 1.066 1.057 1.067 1.055 1.059 1.129 1.032 1.068 1.035 

PDIA§ 

[kPa] 
9.7 9.7 9.8 9.8 10.1 10.3 10.4 10.3 10.3 10.3 10.1 10 10 9.9 9.9 9.8 9.5 

PSYS§ 

[kPa] 
15.1 15.2 16.8 17 15.3 15.4 16.1 16.2 16.2 16.2 16.4 16.5 16.5 16.6 16.6 16.6 16.8 

† ID indicates sex (female/male) and age [years] of donors. *λzZ,LLini  < 1 suggests that arteries may be axially precompressed instead of 
prestretched. However, Horny et al. (2013b) did not report precompressed arteries in their data sample. Considering also that this values 

(λzZ,LLini < 1) occur due to the statistical methodology (± deviation from expected value), λzZ,LLini = 1 was prescribed rather than the initial 

precompression. #λzZ at PSYS and PDIA computed for expected value of λzZini in the thin-walled model. §Gender specific mean values for 
Canadian population based on Wilkins et al. (2010).  

 

3.3 Circumferential and longitudinal stretch variation  

 

Figure 4 demonstrates how stretch variation εiI (iI = θΘ and zZ) is defined. Vertical lines in the figure 

intersect the horizontal axis at end-points of the segments corresponding to  

εiI = λiI(PSYS) – λiI(PDIA)). The stretch variations εiI predicted by the thick-walled model (residual strains 

incorporated) at ri using expected value of the prestretch λzZini are depicted in Figure 5 (blue solid 

circles in the left upper panel). A marked decrease in εθΘ is even significantly correlated with age  

(R = -0.572, p–value = 0.02). Longitudinal systolic-diastolic stretch variation also decreases with age, 

but statistical significance was not attained (Figure 5, right upper panel). However, the most important 

fact is that the results of the simulation show that one should expect a non-zero difference in axial 

stretch between systolic and diastolic pressure. The range of εzZ is approx. 0.005 – 0.025 for expected 

values of λzZini.  This  can be interpreted as 0.5% – 2.5% of some reference length.  

To evaluate how this result could be affected by uncertainty of the axial prestretch, λzZ,LLini and 

λzZ,ULini were used to compute εiI (iI = θΘ and zZ). Results based on the thick-walled tube model 

(residual strain incorporated) for both axial and circumferential direction are also presented in Figure 

5. Here red open squares correspond to the upper limit (higher prestretch) and black open circles to the 

lower limit. Regressions lines were omitted to keep the figure clear although the results of the 

correlation analysis were similar to those obtained for the expected value of the prestretch. 

Specifically, none of the initial axial prestretch (λzZ,LLini and λzZ,ULini) gave significant correlation 

between age and εzZ, and all εθΘ were significantly negatively correlated with age.  

Much more interesting than the numerical characterisation of the correlation with age is the 

position of the points.  In particular, we would like to point out the difference in positions for 

circumferential and axial behaviour. Axial response, as can be expected, shows higher stretch variation 

when lower prestretch limit is used (black open circles). This is in contrast to circumferential response, 
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where higher εθΘ is attained when the higher initial axial stretch is used (red open squares). This 

suggests, to the best of authors’ knowledge, up to now a not yet published hypothesis that the axial 

prestretch not only minimises longitudinal motion of the artery upon pressure cycle, but also endows 

the artery with higher circumferential distensibility (in comparison with less prestretched artery 

characterised with the same material parameters). It is also worth noting that some of the highly 

prestretched aortas show diastolo-systolic shortening (εzZ negative) in contrast to the weakly 

prestretched. 

 

 
Figure 2. Inflation-extension behaviour of a 38 year old male 

donor (M38). The upper panel shows P–λzZ and lower panel P–

λθΘ. Predictions for thick-walled (residual strain incorporated) 

model for λθΘ are computed at ri (red) and ro (blue) and results 

based on the thin-walled model are computed at middle radius rm 

(green). However, λzZ is constant at all radii hence upper panel, 

P–λzZ, includes only two colours. Each triplet (P–λθΘ) or doublet 

(P–λzZ) of curves corresponds to specific initial axial stretch λzZini 

= 1 (continuous curve), 1.1 (long dashed), 1.2 (dashed), 1.3 

(dotted), and 1.4 (diamonds). The easiest way to understand the 

panels is to consider that in P–λzZ axial prestretch increases from 

the left to the right, in contrast to P–λθΘ where axial prestretch 

increases from the right to the left.   This figure manifests two 

basic points: (a) the axial behaviour of the tube for P ∈ 

[10kPa,16kPa] changes from axial extension (low initial axial 

prestretch) to axial shortening (high initial axial prestetch); and 

(b) the higher initial axial stretch gives P–λθΘ curves with 

elevated position of the inflection point (elevated on P–axis). 

Notice that while P–λzZ curves show only small differences 

between computational models (thick/thin), P–λθΘ curves show 

that at high pressures and high axial prestretches λθΘ(ro) and 

λθΘ(rm) mutually converge more rapidly than λθΘ(ri) and λθΘ(rm). 
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Figure 3. Inflation-extension behaviour of a 65 year old female 

donor (F65). The panels are arranged in the same way as in Figure 2. 

The graphs show two differences when compared with M38 in Figure 

2. First, P–λzZ curve for λzZini = 1 does not exhibit initial shortening. It 

begins with axial extension. Second, the inflection point does not 

appear on P–λθΘ curve for λzZini = 1. However, curves for higher axial 

prestetch do show the inflection. Note that the existence of an 

inflection point makes P–λθΘ curve S-shaped and results in higher 

circumferential distensibility εθΘ = λθΘ(16kPa) – λθΘ(10kPa) (in 

contrast to J-shaped curve without an inflection). 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4. Inflation-extension response of a 61 year old male donor 

(M61a) – detail. The results of the simulation based on thin-walled 

approximation.  The   blue solid curve was computed with expected 

value λzZini = 1.074; red dashed curve was computed with λzZ,ULini = 

1.153; and black dotted curve was computed with λzZ,LLini = 1. Shaded 

rectangle emphasises the region of physiological pressures. Vertical 

lines aid to identify stretch variation  

εiI = λ iI(16kPa) – λ iI(10kPa) (iI = θΘ and zZ). 
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3.4 Fred 

 

The computed reduced axial force Fred, which generates the initial axial prestretch, is depicted in 

Figure 6. It is compared with values obtained for the human abdominal aorta in ex vivo elongation 

tests (at P = 0) in Horny et al. (2013b). The figure shows the results of the simulations with expected 

values as well as lower and upper limit of λzZini computed with the thin-walled model. Expected values 

of the initial axial stretch demonstrates that  prestretching force is significantly correlated with age  

(R = -0.514, p–value = 0.04). Note that the lower limit of λzZini was prescribed to be 1 for donors older 

than 61.  In such a case Fred = 0.     

 
Figure 5. Diastolic-systolic stretch variations. The upper panels 

show variation of circumferential and axial stretch at ri and lower 

panel shows specific values of diastolic (PDIA) and systolic (PSYS) 

pressure applied in the computations. Due to nonlinear large 

strain stiffening, εzZ decreases with increased axial prestretch, 

which is in contrast to circumferential behaviour (εθΘ attained 

higher values for highly axially prestretched aortas).  

 

 

 

 

 

 

 

 
Figure 6. Prestretching axial force. Predictions of Fred 

computed with the thin-walled model are depicted: blue solid 

circles were obtained with expected values of λzZini; red open 

squares were obtained with the upper limit; and black open circles 

were obtained when the lower limit of the initial axial stretch was 

used. The blue solid line is the linear regression model of the 

dependence of Fred (obtained for expected values of the prestretch) 

on age: Fred = 2.115 – 0.023·Age for Age ∈ [38;77] years. Outside 

of this domain, one should consider the regression model as an 

extrapolation which is indicated by the dotted line.  The results are 

compared with experiments adopted from Horny et al. (2013b). 

Note that due to the assumption Fred computed with λzZ,LLini for age 

> 61 years is 0. The regression model (4) predicts λzZ,LLini < 1 for 

age > 61 years; however, this is a  consequence of the used 

methodology expectation ± uncertainty. Since very little is known 

about initially pre-compressed arteries λzZ,LLini(Age > 61 years) = 1 

was prescribed in our simulation. 
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3.5 Axial stress  

 

Almost constant axial stress during diastolic–systolic pressure variation has at times been  mentioned 

in the literature. The predictions of (9c) for σzz were used to evaluate this hypothesis in the present 

data sample. Four representative examples (M38, M57, F50, and M60) of the axial stress considering 

expected value (solid blue curves), upper (dashed red curves), and lower limit (black dotted curves) of 

the initial axial stretch are in Figure 7 drawn over circumferential stretch corresponding to P = 0..20 

kPa (cf. with Fig. 2 in Dobrin and Doyle 1970). Axial stress was computed employing a thick-walled 

model (residual strain incorporated) at the inner radius ri. Systole and diastole are highlighted with 

green solid circles on the curves. It is obvious that although axial stress indeed increases slowly from 

the left to the right (as described in Dobrin and Doyle 1970),  the diastole and systole are found on the 

steep part of the curves (diastolic point is always the left-hand one). This is demonstrated with M38, 

F57, and M60. However, F50 shows that it may not be always true. 

 
Figure 7. Variation of axial stress σzz(ri) in the course 

of the pressurisation. The curves are based on the thick-

walled model with incorporated residual strain. 

Circumferential stretch on horizontal axis starts from 

values smaller than 1 due to simultaneous effect of the 

initial axial stretch and residual strain. Predictions 

obtained with the expected value of λzZini are depicted 

with blue solid curves; red dashed curves were obtained 

with λzZ,ULini; and λzZ,LLini  was used to create black dotted 

curves. Solid circles on the curves highlight the positions 

of diastolic (the left circle) and systolic (right circle) 

pressure. 

 

 

 

 

 

 

To quantify diastolic-systolic increment in σzz numerically, Figure 8 depicts the stress increment 

normalised with respect to the diastole for all involved donors. The upper panel shows increments 

obtained with the thick-walled model with incorporated residual strain for σzz(ri) and σzz(ro), and lower 

panel was obtained in the thin-walled approximation (mean axial stress at rm). The symbols are used in 

the same way as in the previous figures (to distinguish inner and outer radius, small and large symbols 

are used, respectively). It is clear from the figure that the lowest changes of the axial stress are 

obtained using the upper limit of the initial axial stretch. The same is confirmed in the thin-walled 

model. The lower panel shows that average change of σzz is in the range 0.2 – 0.5 for highly 

prestretched aortas whereas weakly prestretched aortas show average change of approx. 0.7. 
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Significant correlation between variation of axial stress and age was obtained at rm and ro and the 

lower the initial prestretch, the higher correlation coefficient was obtained (the highest one,  

R = 0.790 p–value < 0.001, was at ro).  

 
Figure 8. Relative change of the axial stress induced by diastolic–

systolic pressure increment. The upper panel shows the results 

computed with the thick-walled model (residual strain incorporated) at 

the inner radius (small symbols) and at the outer radius (large 

symbols). The lower panel shows results obtained by thin-walled 

approximation. The symbols are used in the same way as in Figure 5 

and 6. The figure shows that higher initial axial prestretch is 

accompanied with smaller changes of the axial stress. Correlation 

coefficients and regression lines correspond to expected initial 

prestretch.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.6 Stiffness ratio CΘΘΘΘ/ CZZZZ 

 

The ratio between components of elasticity tensor was computed for all involved individuals. The 

results are summarised in Figures 9, 10 and 11. To show an order of the  magnitude of the components 

of elasticity tensor, numeric values are compared in Figure 9 for inner, outer, and middle radius of the 

aortas initially prestrained to the expected axial prestretch and pressurised to PDIA and PSYS. Significant 

correlation between age and the components of C were only found in case of CΘΘΘΘ  computed at rm 

for PSYS at all prestretches (R ≈ 0.52  p–value ≈ 0.04). All other cases were not significant.  

The stiffness ratio CΘΘΘΘ/CZZZZ is depicted in Figure 10. All effects are herein summarised – the 

effect of finite thickness of the wall; effect of the pressure; and the effect of initial prestretch. Two 

facts are demonstrated by Figure 10. First, the stiffness ratio depends strongly on radial position within 

the thickness of the artery wall. In average CΘΘΘΘ/CZZZZ < 1 is at the inner radius (top panels in Figure 
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10), however CΘΘΘΘ/CZZZZ > 1 holds at outer radius (bottom panels). Second, with regard to the effect 

of the prestretch, thin-walled model for rm and thick-walled model at ro show that higher prestretch is 

accompanied with the lower stiffness ratio (and reciprocally lower prestretch with the higher stiffness 

ratio). However, there are some cases at the inner radius which deviate from this rule. Correlation 

analysis revealed significant dependence of the stiffness ratio on age only in case of thin-walled 

model. It was found R = 0.514 with p–value = 0.04 for PSYS and PDIA  at expected initial axial stretch.  

 
Figure 9. Components of referential elasticity tensor C for 

expected axial prestretch. Upper panels show the stiffness in 

circumferential direction (CΘΘΘΘ) and lower panels in axial 

direction (CZZZZ). The symbols indicate the method and position: 

red solid boxes – at ri with thick-walled model; black solid circles – 

at rm with thin-walled model; and blue solid diamonds – at ro with 

thick-walled model. The regression line indicates significant 

correlation between age and CΘΘΘΘ at rm for PSYS (R = 0.515 p–

value = 0.04). Note that logarithmic scale is used on vertical axes. 

 

 

 

 

 

 

 

 

 

Relative increments of the stiffness ratio induced by diastolic–systolic variation of internal 

pressure are depicted in Figure 11. The increments are normalised with respect to the ratio at diastolic 

pressure. In contrast to the stiffness ratio as such, highly prestretched aortas showed higher relative 

increments of the stiffness ratio from diastole to systole than weakly prestretch aortas. Significant 

negative correlation with age was found in the case of relative increments computed with the thick-

walled model at inner radius (R = -0.600 p–value = 0.02 for expected prestretch, and R = -0.539 p–

value = 0.03 for upper axial prestretch).   
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Figure 10 Stiffness ratio. The figure summarises results 

obtained for stiffness ratio at inner, middle and outer radius of 

the aortas. Three important things can be derived from the 

figure: (1) weakly prestretched aortas give higher stiffness 

ration; (2) the stiffness ratio varies significantly through the 

thickness of the wall; and (3) aortas may exhibit different 

stiffness ratios in different ageing periods.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Relative increment of the stiffness ratio. Highly 

prestretched aortas gave a higher relative increment in the 

stiffness ratio during pressure cycle.  
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4. Discussion 
 

Our study focused on the effect of age-related decrease in the initial longitudinal prestretch of human 

abdominal aorta on its distensibility, axial stress, and circumferential-to-axial stiffness ratio. Changes 

induced by the variation of the pressure (systole – diastole) were also evaluated. Since our 

bibliographic search did not find a complete description of human abdominal aorta anywhere  (i.e. 

specimens with documented geometry, experimentally determined constitutive parameters and axial 

prestretch in one study), the characteristics of arteries were adopted from two different papers. 

Geometry and constitutive description were taken from Labrosse et al. (2013) who conducted 

experimental ex vivo inflation (with free axial extension) of the human abdominal aorta. Statistics of 

the axial prestretch in the same anatomical location were reported by Horny et al. (2013a) who 

performed autopsy measurement on the sample of 365 human cadavers. Since this approach induces 

some uncertainty in the true value of the prestretch, all computations were performed with expected 

prestretch (i.e. prestretch exactly corresponding to the regression equation (3)), and also with upper 

and lower limit of 95%-confidence interval of a prediction (so-called prediction interval; equation (4)).  

 Our study modelled the inflation-extension response by considering the aorta to be a prestrained, 

anisotropic and nonlinear homogenous tube with closed ends by the methods of  elastostatics. Two 

analytical approaches were used. First was the thin-walled model which operates with mean wall 

stresses acting at middle radius of the tube and its results were considered to be basic estimates of the 

mechanical response. However, this model cannot capture the effect of residual strain on the stress 

state of an artery. To this end,  the thick-walled model with incorporated residual strain was also used 

in the situations when transmural distribution of quantities was of interest.   

 

4.1 Stretch variation of prestretched artery 

 

The results suggest that, although axial prestretch significantly decreases due to ageing (Figure 1), it 

can crucially affect mechanical response. This fact is clearly observable in systolic-diastolic variation 

of the circumferential stretch εθΘ. Circumferential stretch variation was found to decline with age 

(Figure 5), but our  study demonstrated that highly prestretched arteries (λzZ,ULini) can be more 

distended in the circumferential direction by the same internal pressure in comparison with their less 

prestretched (λzZ,LLini) counterparts. This property was revealed in the thick-walled (at ri and ro) and 

also in the thin-walled (at rm) model. The results were qualitatively similar, hence, the variation only at 

the inner radius is presented (Figure 5).   

To the best of authors’ knowledge, preceding studies have not pointed out this fact which might 

certainly warrant re-examination  in the future (experiments are necessary to validate this finding).  

Results suggest that axial prestretch could play a more important role than merely a way how to 

endow abdominal aorta with a property of almost constant axial length during the pressure cycle 

(Dobrin 1978; Dobrin et al. 1990; van Loon et al. 1977). We should note there are studies reporting 

results from which a similar conclusion could be obtained, although they are focused on different 

anatomical locations. However, their authors did not investigate this property in detail; cf. Figure 5 in 

Sommer et al. (2010) and Figure 4 in Sommer and Holzapfel (2012) for human carotid artery, and also 

Figure 4 in Schulze-Bauer et al. (2003) for human iliac artery.  



Horny L, Netusil M, Vonavkova T (2014) Axial prestretch and circumferential distensibility in biomechanics of abdominal aorta. Biomechanics and 

Modeling in Mechanobiology 13(4):783-799. DOI: 10.1007/s10237-013-0534-8 MANUSCRIPT http://dx.doi.org/10.1007/s10237-013-0534-8  

  

 21

Possible explanation of this interesting fact is that the axial prestretch may align collagen fibres 

(main load-bearing component of artery wall responsible for arterial anisotropy; Holzapfel et al. 2000) 

to axial direction and the wall subsequently shows higher stretch variation in the circumferential 

direction. This hypothesis is in accordance with the stiffness ratio in Figure 10. Here open black 

circles (weak prestretch prescribed to aortas)  most frequently lie above red open squares (high 

prestretched prescribed). That is to say that the increase in the prestretch leads to the decrease of the 

circumferential-to-axial stiffness ratio.  

Considering “constancy” of the length, Figures 5 suggests that this is “only” an approximation. 

The simulation indicates axial stretch variation may be expected in the range  

εzZ = -0.01 – 0.04, depending on the specific initial axial prestretch. The right panel in Figure 5 shows 

we should expect higher change in axial stretch during pressure cycle when lower initial axial 

prestretch is applied (black open circles are the most distant from horizontal axis). On the contrary, the 

upper limit of initial axial stretch led to εzZ located closely to the horizontal axis. In some cases, the 

model predicts a negative value which is the shortening of the artery when pressurised from diastole to 

systole. However, these results come from simulation, not experiment.  

We should avoid over-interpretation of negative/positive εzZ in specific cases; nevertheless, higher 

initial prestrech led to εzZ = -0.01 – 0.02, in contrast to lower prestretch which gave εzZ = 0.01 – 0.04. 

Thus, using higher λzZini is in accordance with the property of the relatively constant length of the aorta 

mentioned in the literature (Dobrin 1978; Dobrin et al. 1990; van Loon et al. 1977). Nevertheless, in 

the case that age-related changes leading to the loss of the prestretch progress rapidly (i.e. specific 

λzZini is close to the lower limit of the prediction interval), the simulation suggests we should expect 

that the property of almost constant length may be lost. Moreover, considering εzZ as engineering 

strain,  changes of about 2 – 4% could fall into the range measurable by modern imaging (e.g. 

ultrasound) methods (Ahlgren et al. 2012; Cinthio et al. 2006; Karatolis et al. 2013; Larsson et al. 

2011).Therefore, since the lower prestretch corresponds to higher axial distension in pressure cycle 

(intra-pressure cycle deformation), it seems to open a new diagnostic possibility based on longitudinal 

strain measurement governed by the hypothesis that high (for instance higher than 2%) intra-cycle 

axial stretch variation may suggest suboptimal axial prestretch. The word “optimal” is used not only 

with respect to the implication “minimal change in axial stretch during pressure cycle gives higher 

circumferential distensibility, which supports a windkessel function”, but also with respect to the 

hypothesis that no change in axial length implies no energetic  demand for axial displacements 

(Schulze-Bauer et al. 2003) and consequently no dissipation of this energy due to viscoelasticity of the 

artery wall.      

 

4.2 Axial stress and prestretching force 

 

The simulation confirms our previous conclusion (Horny et al. 2013b) that prestretching axial force 

(force induced by λzZini) decreases with age (statistical significance attained). Specific values are 

slightly higher than in Horny et al. (2013b), see Figure 7. The upper limit of the initial axial prestretch 

in some cases did indeed lead to high force (Fred > 3 N). 

The simulation also confirmed that the σzz–λθΘ  relationship is initiated with very slow stress 

increment; c.f. Figure 7 with Figure 2 in Dobrin and Doyle (1970). However, the positions of diastolic 
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and systolic pressure (indicated with green solid circles on the curves in Figure 7) do not correspond 

with Dobrin and Doyle’s conclusion that axial stress should be almost constant during the pressure 

cycle. It is more clearly evident in Figure 8 where normalised diastolic-systolic increments of axial 

stress are depicted. Depending on the specific prestretch, the simulation suggests we should expect a 

variation of mean axial stress (lower panel) in the order of tens of percentage. The fundamental role of 

sufficient axial prestretch is again clear. The substitution of upper-limit values into the calculation led 

to the smallest increments. This  suggests that insufficiently prestretched arteries, because they feel a 

larger change in axial stress during pressure cycle, may not operate in physiologically optimal 

conditions and could be vulnerable to a mechano-biological reaction attempting to restore homeostasis 

because changes in the axial stress/strain state have been identified as quantities initiating a 

remodelling (Humphrey et al. 2009; Jackson et al. 2002; Lawrence and Gooch 2009). The discrepancy 

with the observation made by Dobrin and Doyle (1970) may be attributed to the fact that they 

conducted their experiments with relatively young and healthy laboratory dogs.  

An  age-related decrease in the prestretch leads to the decrease in the prestretching force and 

consecutively it leads to decreased initial axial stress. This can be concluded from Figure 7 when 

σzz(ri) corresponding to P = 0 (starting points of the curves) is considered. When axial prestretch is 

applied, curves do not begin at λθΘ = 1 (decrease in the radius accompanies initial axial extension). 

Interestingly, some of curves initiate with negative values of axial stress at ri. This is the effect of the 

residual strain which, for high opening angles, qualitatively change transmural stress distribution (see 

Figure 7 in Labrosse et al. 2013). In fact, when residual stress is released in a radial cut of an artery 

and the arterial ring springs to the open sector, a small axial deformation occurs. The prestretch 

induced by Fred is superimposed on this small axial deformation. Figure 7 thus documents that the 

small values of Fred, which accompanies small λzZini, with a simultaneous occurrence of high opening 

angle (see Table 1 for specific values) can result in negative axial stress at ri in non-pressurised but 

axially prestretched artery (for the effect of residual strain on closed, non-prestretched and non-

pressurised artery see e.g. Figure 2 in the review Rachev and Greenwald 2003; or in Chuong and Fung 

1986). This fact, to the best of our knowledge, has also not been previously mentioned in the literature. 

Nevertheless, we should point out that this configuration (axial prestretch superimposed on residually 

stressed artery with no luminal pressure) is never attained in vivo.    

 

4.3 Stiffness ratio 

 

Figures 9, 10 and 11 depict results obtained for components of the elasticity tensor, their 

circumferential-to-axial ratio, and relative diastolo-systolic increment in the stiffness. In contrast to 

axial stress, the ratio seems to satisfy more closely the condition of constancy during pressurisation 

(Figure 11). This suggests that the stiffness ratio could be more suitable for purposes of in vivo 

parameters estimation where some assumption has to be made to overcome the impossibility to 

directly measure axial force and stress (Chen et al. 2008). Figure 10 (middle panels), however, shows 

that this ratio may not be constant during ageing. Moreover, the results of thick-walled model show 

that  CΘΘΘΘ/CZZZZ depends on radial position within the thickness of artery wall (e.g. the stiffness ratio 

at PSYS and expected λzZini was found to be 0.701 ± 0.182 at ri, 1.60 ± 0.657 at rm, and 3.96 ± 3.70 at ro; 

mean ± SD). The results of thick-walled model (residual strain incorporated) suggest that the aortic 
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wall in cardiac cycle is stiffer in axial direction at its inner radius; however, at outer radius it is stiffer 

in circumferential direction. This is the consequence of non-homogenous strain distribution over the 

thickness of the artery. 

 

4.4 Axial prestretch 

 

Axial prestretch as such and its age-related changes was not the main subject of our study  because it 

has  previously been presented elsewhere (Horny et al. 2011, 2012a,b, 2013a). Nevertheless, we would 

like to explicitly emphasise three things. First, our  study used the same regression model of λzZini–age 

in the case of both genders because it was previously found that significant differences in the 

prestretch of abdominal aorta between males and females do not exist (Horny et al. 2012b). In that  

same paper, the authors proved assumptions of the classical linear regression model which is 

important for construction of the prediction intervals. Finally, according to Horny et al. (2013a), we do 

not expect that the post mortem interval and atherosclerotic changes in abdominal aorta can 

significantly deviate used estimates of λzZini from their true values (in fact unknown) at time of the 

death.      

 

4.5 Effect blood pressure uncertainty 

 

In the simulation, mean (but age and gender specific) diastolic and systolic pressures adopted from 

Wilkins et al. (2010) were applied. Used pressures however are only estimates of the true pressures 

sustained by donors in their life. To eliminate the possible effect of varying quality of medical care in 

different countries, blood pressures were adopted from very recent survey conducted in the same 

country (Canada) as the tissue donors came from. For the sake of clarity, we decided to do not 

complicate it with another quantity considered with uncertainty (blood pressure). This is motivated by 

two following facts. First, in future it would be better to verify our results in experiments and our 

article should function as initial motivation. Second, one can, although only roughly, estimate how the 

results will change with changed PDIA and PSYS. Consider that changes in PDIA and PSYS can be 

understood as a movement in the vertical direction of the shaded rectangle in Figure 4 (one can also 

draw such a rectangle into Figure 2 and 3). The figure is created for the range of 0 – 20 kPa. It is clear 

that the positive effect of the prestretch on the stretch variation in the circumferential direction is 

restricted by a monotony of dP/dλθΘ. This is  most clearly  seen in  Figure 2 (lower panel) when the 

highest prestretch (red diamonds) is considered. When PDIA decreases less than approx. 5 kPa, the 

positive effect of the prestretch is lost due to the increasing slope of the curve  (reciprocally an 

increase of PSYS to ≈ 20 kPa has the same effect).  This suggests that to reach maxim circumferential 

stretch variation, it would be optimal for an artery to operate close to the inflection point on P–λθΘ. 

This position, however, depends on specific numerical values of the constitutive parameters.  
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4.6 Limits of the simulation 

 

 Our study has limitations coming from (a) the chosen method, and (b)  from the data used. Firstly, it 

should be pointed out  that the  elastostatics approach was used.  This means that the presented 

simulations correspond to the so-called inflation-extension experiment (the most frequent way of the 

experimental constitutive model determination for cylindrical segments of arteries), but true in vivo 

arterial mechanics consists in pressure pulse wave propagation as a result of dynamical fluid-structure 

interaction. The chosen approach, however, mimics the methods used in in vivo parameters estimation 

procedures presented in recent literature (Åstrand et al. 2011; Masson et al. 2008, 2011; Schulze-Bauer 

and Holzapfel 2003; Stålhand 2009; Stålhand and Klarbring 2005, Wittek et al. 2013). 

It should also be mentioned that recent papers have proven that residual strains in the artery differ 

with respect to its layered structure. This fact is not captured in the simulation because it is based on 

the assumption of a homogenous wall (adopted from Labrosse et al. 2013). Layered structure, 

theoretically, may induce discontinuities and non-smoothness in transmural stress and strain 

distribution; see e.g. Figure 19 in Holzapfel et al. (2000); Figure 5 in Holzapfel and Ogden (2010b). It 

might affect results obtained with a thick-model.   

 

5. Conclusion 

   

The above presented calculations have shown that, although ageing led to significantly decreased 

longitudinal prestretch, the biomechanical response of the human abdominal aorta was changed 

significantly depending on used initial axial stretch within the computation. Particularly, substituting 

the upper limit of the confidence of prediction for the initial axial prestretch gave mechanical 

responses which can be characterised by  (a) lower variation in axial length, and (b) higher 

circumferential distensibility, in contrast to the responses obtained for arteries with low initial axial 

prestretch. The simulation also showed a significant effect of the axial prestretch on the variation of 

mean axial stress during the pressure cycle. Finally, the obtained results are in accordance with the 

hypothesis that the circumferential-to-axial stiffness ratio is the quantity relatively constant within this 

cycle.            
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