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Abstract

The passive mechanical response of arterial walls continues to be a topic of great inter-

est. Inflation tests with human thoracic aorta specimens were performed with the aim of

fitting a material model. The experimental data was used in a nonlinear regression analysis

to identify the material parameters. The aortic tissue was assumed to be an incompressible

hyperelastic material. We used a 5–parameter strain energy density function based on a

combination of an isotropic Neo–Hookean expression and a Fung–type orthotropic expres-

sion. The computational model for identifying the material parameters was based on the

boundary value problem of an inflated thick–walled tube with axial pre–strains. The cir-

cumferential residual strains were included. The internal structure of the arterial walls was

not considered. The fitted material models correspond very well with the experimental data.

Significant stiffening under large strains was observed. It was concluded that the combined

model of the strain energy density function is suitable for the aortic mechanical response

description. The material parameters satisfy the convexity conditions.

Keywords: aorta, constitutive modeling, fung-type model, inflation test, hyperelasticity, neo-
Hookean model.

1 Introduction

The mechanical behavior and constitutive modeling of arterial walls continues to be a topic of
great interest. The constitutive equations are needed in every computational model and in devel-
oping modern treatment techniques. The most frequent approach for obtaining the constitutive
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relations is based on the assumption of hyperelasticity of the arterial wall. Many forms of the
strain energy density function determining the constitutive relations have been proposed in the
last thirty years. The most successful of these are based on an exponential expression of the
functional dependence between stored energy and strain. These types of strain energy functions
are derived from the functional form originally proposed by Fung et al [1]. A detailed review of
frequently used strain energy functions can be found in Holzapfel, Gasser and Ogden [2]. Here we
see that the latest constitutive models take into account the composite structure of the arterial
wall. Great attention is being paid to collagen fiber reinforcement, see, e.g., the studies published
by Gasser, Ogden and Holzapfel [3] and by Zulliger et al [4]. In recent years a structural ap-
proach has received much greater attention in arterial wall biomechanics. This is also shown by
the growing number of layered models that take arterial wall layers into account. The number
of studies where the arterial wall is modeled as a layered structure continues to increase, see
[5], [6], [7] and more recent papers [2], [8] and [9]. Especially we would like to mention here the
most recent paper published by Holzapfel [10], where the same constitutive model is used to
identify the material parameters of arterial layers by means of uniaxial extension tests. In spite
of the increasing number of structurally motivated investigations, there is still only a limited
amount of structural data based on experiments. Generally, however, extending the experimental
data on arterial passive mechanical responses is still of importance. Our study therefore aims
to investigate the passive mechanical response of the human aorta, and to identify its material
parameters.

2 Methods

Inflation and uni–axial extension tests were performed with specimens of human thoracic aorta
in order to fit the material model. Tissue from a 47-year-old female (F47) and from a 54-year-old
male (M54) was obtained during autopsies at the Institute of Forensic Medicine of the University
Hospital Na Kralovskych Vinohradech in Prague. No significant atherosclerotic changes were
found. The time between the presumptive death and the inflation tests was 50 hours in the
case of F47 and 66 hours for M54. The specimens were moved back to the Institute of Forensic
Medicine after the experiments for ethical disposal. In our paper, the aortic wall is modeled
phenomenologically as a homogeneous structure, because histological analyses were not available
when the measurements were made.
The arterial wall was considered as an incompressible, orthotropic and hyperelastic material.

The selected type of strain energy density function was in the form published by Weizsäcker and
Holzapfel in [11] and [12]. This kind of strain energy density function comprises a Neo-Hookean
isotropic part related to the initial state of deformation and a Fung-type orthotropic part related
to large strains:

ψ = ψiso + ψaniso = c1 (I1 − 3) + c2
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Here c1 , c2 , b1 , b2 and b3 are material parameters. The first invariant of a right Cauchy–
Green strain tensor is denoted I 1 , and E ii means components of the Green strain tensor. The
reference coordinate system is cylindrical, and axes t, z and r coincide with the circumferential,
axial and radial direction, respectively. This is a phenomenological type of strain energy density
function, but some structural aspects are also considered here. The neo-Hookean part represents
the energy stored in non-collagenous components of the wall (e.g. elastin, smooth muscle cells and
proteoglycans). The energy stored in the non-collagenous matrix of the arterial wall composite
is related mainly to the low strain domain. On the other hand, the Fung-type part of the strain
energy function is related to stiffening under large strains, which is assumed to be related to
elongation of the collagenous fibers. At first, the collagenous fibers are undulated, and under
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large strains they are elongated and then, due to the high fiber stiffness, exponential arterial wall
stiffening is observed; more information can be found in Roach and Burton [15] or in Hayashi [16].
For further details about the model used here, see papers published by Holzapfel and Weizsäcker
[12] and Holzapfel [10]. Holzapfel and Weizsäcker [12] used the same type of strain energy function
to identify the material parameters of a rat abdominal aorta and a tail artery. Carboni et al. [13]
used this model for a porcine coronary left circumflex artery, and Schulze-Bauer [14] used it for
human iliac arteries. Model (1) has not been used before for a human thoracic aorta, to the best
of the authors’ knowledge.
I 1 can be expressed in the following form:

I1 = λ
2

t + λ
2

z + λ
2

r (2)

Here, λi are stretch ratios in the circumferential, axial and radial direction. An arterial segment
is modeled as a thick-walled tube in the inflation test. Under the kinematics of a thick-walled
tube, the stretch ratios can be expressed as follows:

λt =
π r

θ R∗

λz =
l

L
(3)

λr =
∂r

∂R∗

The circumferential stretch ratio λt is obtained as the ratio of the reference circumference to
the current circumference. The current configuration (an inflated and axially pre-strained artery)
is cylindrical, but the reference configuration of an unloaded artery is obtained after a radial cut
of the arterial segment. Due to the presence of circumferential residual strains, the artery will
open up into a partial cylinder. This partial cylinder is characterized by the opening angle α
(θ = π – α), which is a measure of the residual strains. Hence, the reference circumference is
obtained as θR∗. Here R∗ is the reference radius. The current radius in (3a) is denoted as r.
Hence residual strains are included in the computational model. A detailed study of the residual
strains in arteries can be found in Rachev and Greenwald [17]. The entire situation is illustrated
in Fig. 1. The axial stretch ratio λz in (3b) is obtained as the ratio of the current length, l, to the
reference length, L. The radial stretch ratio, λr , as a component of the deformation gradient, can
be expressed as a derivative of the spatial coordinate with respect to the reference ratio, (3c).
However, we adopted the incompressibility condition, which is generally used when a soft tissue
is modeled. Thus, λr can be obtained as a combination of the circumferential and axial stretch
ratios:

λtλzλr = 1 (4)

The stretch ratios can be transformed into Green strains, as follows:

Eii =
1

2
(λ2i − 1) i = t, z, r (5)

The local stress – strain relationships in a hyperelastic continuum are given by the derivatives
of the strain energy density function ψ with respect to the Green strain tensor components:

σii = −p+ λ2i
∂ψ

∂Eii

i = t, z, r (6)

Here σii are components of the Cauchy stress tensor, λi are stretch ratios and p is the unknown
hydrostatic pressure that must be determined through a boundary condition. The presence of
shear stresses and strains is not considered, in accordance with (3) and (6). The stress – strain
relationship will be obtained after differentiation in (6), and will be rewritten in kinematic terms.



176 Horný et al: Identification of the material parameters of an aortic wall

The resultant expressions still contain the unknown material parameters c1 ,c2 , b1 , b2 and b3
that occur in (1). The aim of our study is to find their numerical values. The boundary condition
of a thick-walled tube can be used for this purpose.
A thick-walled tube must satisfy radial force equilibrium. An equation for the radial equilib-

rium of a thick-walled tube is:

dσr

dr
+
σrr − σtt

r
= 0 (7)

and the boundary condition at inner radius r i must be satisfied:

σrr(ri) = −p (8)

There is also a second boundary condition on the outer radius, where the pressure and the radial
stress are assumed to be zero. Denotations used in equations (7) and (8): σrr radial Cauchy stress;
σtt – circumferential Cauchy stress; r – deformed radius; r i – deformed inner radius. When the
incompressibility condition is considered (4), there are only two independent stretch ratios. The
increment of the strain energy when there is a deformation is given as:

dψ = λrλtσzzdλz + λrλzσttdλt + λtλzσrrdλr (9)

When we express (9) taking into account (4) and differentiate (4) and compare back with (9),
we will obtain:

σtt − σrr = λ
2

i

∂ψ
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(10)

Integration of (7) through the arterial wall and the boundary condition gives:

σrr (ri) =

ro
∫

ri

σtt − σrr

r
dr (11)

Substituting (10) into (11) gives:

σrr (ri) =

ro
∫

ri

λ2t
∂ψ

∂Ett

dr

r
(12)

The denotation through (9) to (12) corresponds to that used above. Equation (12) is fun-
damental to our analysis. It can be integrated numerically and the value of the radial stress is
determined. This provides a method for identifying the material parameters that remain in the
derivative of ψ. Two things need to be mentioned here. First, the radial equilibrium equation
is essentially related to the thick–walled computational model of the artery. Second, it is clear
that the incompressibility condition is also essential, and the strain energy density function in
(1) takes this into account. This is the case when the three dimensional state of the stress is pre-
dicted with a two-dimensional strain energy density function. The limitations and possibilities of
a two–dimensional formulation of the strain energy density function are discussed, e.g., in [2].
Hence, equation (12) can be used in a regression analysis of the experimental data. The

following section will describe experiments in which an artery is inflated and axially prestrained,
and the outer radius, axial prestrains and internal pressure are measured. After this data has
been obtained, regression analysis can be performed according to (13), as follows.

∂

∂ak

n
∑

j=1

(σrr (rij, λt, λz, a1, .., a5)− pij)
2 = 0 k = 1, . . . , 5 (13)
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Figure 1: Deformation states of an artery. Left side – an opened segment (zero stress state,
reference state); middle – a closed segment; right – loaded state (spatial configuration).

The standard least squares method was used in our study, and the numerical values of the
material parameters were found, using the Levenberg–Marquardt method to solve the nonlinear
regression equations. The material parameters in (13) are now denoted a1 ,. . . . In equation (13), pi
means the internal pressure when j is measured. Finally, it should be noted that the inner radius
is obtained taking into account the incompressibility condition and comparing the volumes in the
reference (zero stress) configuration and the spatial (loaded) configuration. A similar approach
to identifying the material parameters in the constitutive equation, based on a thick-walled tube
with residual strains, can be found in Matsumoto and Hayashi [18].

3 Experiments

The inflation experiments were performed using a pressure – diameter experimental device that
was developed in our laboratory. This apparatus includes a pressure generator, two pressure
probes to control the internal pressure, an optical system to measure the outer radius, and
an adjustable system for fixing the specimen. Different values of the axial pre–strain can be
set up using this apparatus. The whole experimental system is documented in Figure 2. The
outer diameter was recorded using a digital camera, and an accurate value for the diameter was
determined via an image analysis. An injection was used as the pressure generator, and was
operated manually. All measurements were static, with a step change of the internal pressure
and fixed axial pre–strain.
The inflation experiments were performed under the following conditions. A tubular sample

of F47 was subjected to four pressurization cycles in the pressure range 0 kPa – 28 kPa – 0 kPa
under axial pre–stretch λz = 1.32 and four cycles in the pressure range 0 kPa – 28 kPa – 0 kPa
under λz = 1.4, respectively. In the case of M54, there were 6 cycles in the range 0 kPa – 18 kPa
– 0 kPa under λz = 1.3 and 3 cycles in the pressure range 0 kPa – 20 kPa – 0 kPa under λz
= 1.42, respectively. The opening angles were measured after a radial cut of specially prepared
rings of the arteries before pressurization. All experiments were performed at room temperature
and the specimens were stored at a temperature approximately of 4◦C.
It should to be noted that arteries are not ideally cylindrical and their walls include places where
the cylindrical shape is affected by branching. The specimens used in our study were obtained
from the thoracic aorta, which includes a few pairs of fine costal arteries. These were cut, but
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Parameters c1 c2 b1 b2 b3 I2

Dimension [kPa] [kPa] [1] [1] [1] [1]
F47 27.55 0.3133 25 5.869 0.9391 0.96
M54 25.76 0.9315 7.985 6.566 0.3101 0.97

Table 2: Summary of the identified material parameters

Figure 2: The artery placed into the experimental setup.

the pressurization of the artery required that the remaining holes in the artery be closed. This
was performed by inserting a condom into the artery. It is assumed that the mechanical behavior
of the whole structure was not significantly influenced by the much thinner and more flexible
condom.

4 Results and discussion

Measured morphological data: F47 – thickness in reference state H = 2.2 mm; opening angle α
= 75◦, reference outer radius R∗

o = 17.19 mm; reference inner radius R∗

i = 14.99 mm, outer
radius of the closed but not pressurized artery ro = 10.49 mm; inner radius of the closed but not
pressurized artery r i = 8.29 mm –; M54 – thickness in reference state H = 2.04 mm; opening
angle α = 83◦, reference outer radius R∗

o = 19.33 mm; reference inner radius R∗

i = 17.29 mm,
outer radius of the closed but not pressurized artery ro = 10.88 mm; inner radius of the closed
but not pressurized artery r i = 8.84 mm.
The inflation tests seemed to be reproducible after several pre–cycles. In accordance with the
concept of pseudoelasticity, see [16] or [1] and [2], only the loading parts of the inflation tests
were included in the regression. The third and fourth cycle for each axial pre–strain, λz = 1.32
and 1.4, were selected for identification of the material parameters in the case of F47, and the
four and sixth cycle upon axial pre-strains λz = 1.3 and first and third upon λz = 1.42 in
the case of M54. The adjustment of the experimental data is shown in Figure 3. The systems of
nonlinear regression equations (13) were solved by the Levenberg – Marquardt method. Estimated
values of the material parameters are shown in Table 1. The fitted models achieved values of
the determination coefficient of I 2 = 0.96 in the case of F47, and I 2 = 0.97 in the case of M54.
The material model of the combined strain energy density function (1) fits the experimental
data of the inflated and elongated aorta very well. Unfortunately, to the best knowledge of the
authors there is no available data in the literature about the mechanical response of a human
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Figure 3: Adjustment of experimental data. The table placed below the diagram summarizes the
data as follows: M54 1.3 EXP 4 – aorta M54; λz = 1.3; experimental point; fourth cycle; F47
MOD – aorta F47; fitted model point.

aorta governed by model (1) for a direct comparison. However, it is well known that biological
tissues show large individual differences, so that any comparison could be problematic. However,
if we compare the material parameters in Table 1 with [12], we can conclude that they exhibit
stress–like parameters of the same order.

The legend to Figure 3 is shown below the figure. Note that the observation points are
displayed as full or empty circles and diamonds. The blue circles refer to the F47 artery, while
the black diamonds refer to M54. The full and empty signs distinguish different loading cycles.
The material of the arterial walls exhibits significant stiffening under large strains. The typical
S–shape of the pressure – radius curve is shown. Note the good agreement between the measured
data and the model in the low pressure domain, because model (1) was proposed with the aim
of achieving better results here, see the papers published by the authors of combination (1) in
[11], [12] and in section 4 in [19] and [20]. In [20], we find other values of the material parameters
published by Holzapfel, Weizsäcker et al, related to a rat aorta.

The material parameters related to meaningful deformation states could not be selected ar-
bitrarily. We would like to point out that the estimated material parameters in Table 1 satisfy
the convexity conditions. They are positive and satisfy the relation:

4b1 b2 − b23 > 0 (14)

A general discussion of material models for arterial walls is available in [2], and there is a
discussion of model (1) in [10].
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5 Conclusion

The inflation–extension tests of a human thoracic aorta presented here were performed with the
aim of fitting the material model. The computational model of a thick–walled tube with axial
pre–strains was used to obtain a suitable equation for nonlinear regression. The residual strains
in the circumferential direction were included. The passive mechanical response of an artery was
governed by a combined model of the strain energy density function (1). This combined model
includes an isotropic Neo–Hookean expression related to the low strain response and a Fung–type
expression related to large strains and the anisotropy of the wall. Hence, the artery was mod-
eled as an incompressible, orthotropic and nonlinear hyperelastic homogeneous continuum. The
nonlinear regression was based on the boundary condition of a pressurized thick–walled tube at
the inner radius. The experimentally measured data were compared with the prediction of the
model. The standard least squares method was used to estimate the material parameters. The
numerical values of the parameters were obtained by solving nonlinear regression equations by
the Levenberg–Marquardt method.
A typical S–shaped pressure–radius relation was found in both specimens. The pressure – ra-
dius curve is nonlinear, with significant stiffening under large strains. The plotted experimental
data and the model predictions display good agreement. This is supported by the values of the
determination coefficient I 2 = 0.96 – 0.97. The identified material parameters satisfy the con-
vexity conditions, and have positive values. Hence, we can conclude that material model (1) with
the parameters from Table 1 is a suitable material model for the passive arterial response to
mechanical loads.
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