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Aims & objectives: What is axial prestretch?

• Human abdominal aorta in autopsy with marks
• Arteries grow axially prestretched
• This is expressed by means of ini
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Aims & objectives: Prestretch declines in aging 
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• Arteriosclerosis (calcification and 
fragmentation of elastic membranes 
in medium layer in an arterial wall) is 
accompanied by the decline 
in the prestretch



Aims & objectives: Heart pumps blood in pulses 

• Pressure pulse is transmitted by arteries as a mechanical wave



Aims & objectives: How does axial prestretch of aorta 
change pressure pulse wave velocity? 
• Human aorta is nonlinearly elastic tube
• Human aorta is axially prestretched
• This prestretch depends on age 
• Which means it changes during our lives
• How do such changes affect pressure pulse velocity?



Methods: Simulation based on computational model 
with assumptions simplifying the problem 
• Transmission of the pressure pulse wave is very complicated fluid-

structure interaction where a complexity arises especially from
o nonlinear and viscoelastic behavior of the aortic wall
o nonlinearly viscose behavior of the blood
o pulsatile character of the blood flow 
o complex geometry
o existence of residual stresses in the wall 



Methods: Simulation was based on assumptions as 
follow 
• Inertial effects in aortic wall motion are negligible
• Aorta is thin-walled tube which bears axial load due to the prestretch Fred, 

as well as the load arising from closed ends of the tube
• In such a case, equilibrium equations of aortic segment are given by (1)
• σrr, σθθ, σzz – radial, circumferential and axial stress, P – pressure, r and h

are deformed radius and thickness 
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Methods: Simulation was based on assumptions as 
follow 
• Mechanical behavior of the aortic wall is incompressible, anisotropic, and 

hyperelastic and follows elastic potential W expressed in (2)
• µ, k1, k2 denote material parameters, and I1, I4, and I6 are deformation 

invariants 
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Methods: Simulation was based on assumptions as 
follow 
• Kinematics of the inflation 

and extension of the cylindrical 
segment of the aorta 
is given by (3)

• Constitutive equation for aortic wall is given by (4)
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Methods: Simulation was based on assumptions as 
follow 
• Adopting long wave assumption and neglecting viscous effects in 

pressure wave propagation, 1D model for conservation of mass and 
momentum give (5) that is Moens-Kortweg solution considering linearized 
blood flow but nonlinear elasticity of the wall

• Pressure pulse wave velocity c is computed 
from (5) considering pressure–deformation 
behavior determined from nonlinear elastostatics
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Results

Axial prestretch λzZ
ini = 1, 1.1,…,1.4



Conclusions:
Simplified computational model based on 
combination of nonlinear elastostatics for 
aortic wall and linearized inviscid 1D 
blood flow suggests that at physiological 
pressures:

o Pressure pulse velocity depends on the prestretch almost linearly
o Pressure pulse velocity decreases when axial prestretch increases
o We hypothesize that the prestretch helps to maintain optimal value 

of the pulse velocity 
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