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Abstract: Materials based on polylactic acid (PLA) are now extensively utilized across various fields, 

including biomedical engineering, where they are increasingly favored for the development of 

implantable devices and tissue replacements. Due to its ease of melting, PLA is also among the most 

commonly used materials in 3D printing. This makes PLA-based materials highly attractive for the 

production of customized implants and personalized medical devices. To support the design of such 

components, the computer simulations involved must rely on reliable constitutive models. The current 

approaches for PLA-based 3D printed material models include linear elasticity, linear viscoelasticity or 

elastoplasticity, hyperelasticity, and advanced nonlinear theories dealing with irreversible processes. 

While linear theories are undoubtedly simplistic, nonlinear models frequently result in complex 

descriptions which are dependent on too many material parameters. In this context, our study aims to 

show the ability of the Quasi-Linear Theory of Viscoelasticity to accurately reproduce the tensile test 

results for PLA-based materials produced using Fused Deposition Modeling. We will demonstrate this 

with tensile test results performed on PLA-PHB strips with TAC added as a plasticizer. The nonlinear 

stress-strain curves obtained from the experiments were successfully fitted by using a model compatible 

with finite strain theory, comprising only three material parameters. One of these parameters relates to 

equilibrium elasticity, while the other two correspond to the Maxwell element, which describes 

dissipative behavior. These results highlight the potential of this modeling approach to capture the 

essential aspects of the mechanical response using a minimal parameter set, which offers a promising 

balance between simplicity and predictive power for applications in simulation-based design. 

 

Keywords: Additive manufacturing, Constitutive model, Polyhydroxybutyrate, Polylactic acid, Tensile 
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1. Introduction 

Materials based on polylactic acid (PLA) are now widely used in various fields, including biomedical 

engineering, where they are increasingly popular in the development of implantable devices and tissue 

replacements (Lasprilla et al., 2012; Saini et al., 2016; Grémare et al., 2018; Siyajeu et al., 2023; Gao 

and Drozdov, 2024). Notably, PLA's relatively good biocompatibility makes it advantageous for medical 

applications (Onuki et al., 2008; Ramot et al., 2016; Saini et al., 2016; Shilov et al., 2022; Trebuňová et 

al., 2023). Another appealing property of PLA is its degradability, which can be beneficial in designing 

implants intended to serve as temporary supports until the body replaces them with newly formed tissue 

(Weir et al., 2004; Madhavan Nampoothiri et al., 2010; Pelegrini et al., 2016; Findrik Balogová et al., 

2021; Horný et al., 2025). 
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The physical and chemical properties of PLA materials, along with the aforementioned degradability, 

significantly depend on the production method employed (Farah et al., 2016). For instance, macroscopic 

mechanical properties such as strength and elasticity can vary dramatically depending on whether we 

are working with membranes, bands, or tubes prepared by electrospinning which are designed for 

interaction with soft tissues, or with parts created through 3D printing - typically using Fused Deposition 

Modeling (FDM) technology - intended for orthopedic or dental applications (Sankaran et al., 2014a; 

Lopresti et al., 2020; Grémare et al., 2018; Vukasovis et al., 2019; Kechagias and Zaoutsos, 2023; Kohan 

et al. 2022; Dukle and Sankar, 2024a; Horný et al., 2025). To illustrate, Lopresti et al. (2020) reported 

that the Young’s modulus for spatially omnidirectional PLA electrospun material ranges from 5 to 20 

MPa, while FDM-printed strips achieve a Young’s modulus of approximately 3000 MPa (Vukasovic et 

al., 2019). In terms of strength Sankaran et al. (2014b), for example, reported an average strength of 

11.19 MPa for PLA scaffolds used in cardiovascular engineering, Vukasovic et al. (2019) recorded an 

ultimate tensile strength ranging from 50 to 70 MPa in 3D-printed materials.  

When focusing specifically on 3D-printed products, substantial differences in mechanical properties can 

still be observed depending on the particular 3D-printing technology employed. The FDM technique 

used in our study to produce specimens for mechanical testing is widely favored due to its low cost, ease 

of use, and ability to rapidly fabricate customized geometries from biocompatible and biodegradable 

materials such as PLA. These features make FDM particularly attractive for applications in biomedical 

engineering and the development of personalized implants. However, FDM also presents certain 

limitations. Surface finish and dimensional accuracy may pose a challenge (Fountas et al., 2022) and 

can fall short compared to photopolymerization-based methods such as PolyJet or stereolithography 

(Abdulhameed et al., 2009). Regarding the mechanical properties examined in this work, namely 

elasticity and strength, they are highly sensitive, besides infill rate, to process parameters such as printing 

temperature, layer thickness, and interlayer bonding quality and porosity (Fountas et al., 2023; 

Seyedsalehi et al., 2021). 

Moreover, the dispersion of these properties is also due to the fact that PLA is mostly used in 

combination with other molecules and materials. These combinations can take place at various length 

scales, such as the nano-scale, where copolymers are formed, the micro-scale, where composites are 

formed, or the macro-scale, where materials are combined as a sandwich construction. At the nano-

scale, for example, lactic acid is successfully combined with ε-caprolactone, which typically reduces the 

stiffness of the resulting material, as PLA itself is relatively stiff compared to polycaprolactone (PCL) 

(Mikes et al., 2021). Their copolymer, poly(L-lactide-co-ε-caprolactone), frequently referred to as 

PLCL, has been reported as a promising material for the development of vascular replacements 

(Sankaran et al., 2014a; Horakova et al., 2018; Ozdemir et al., 2024; Horný et al., 2025). At the 

macroscopic level, which corresponds to the use of 3D printing or extrusion technology, the stiffness of 

PLA can be mitigated by incorporating polyhydroxybutyrate (PHB), which, like PLA, is an aliphatic 

polyester but demonstrates an even better degradation profile than PLA (Findrik Balogová et al., 2021; 

Kohan et al., 2022; Čajková et al., 2024). 

As mentioned earlier, 3D-printed PLA materials are typically relatively stiff from a biomechanical 

perspective (Farah et al., 2016). Their tensile curves exhibit a nonlinear stress-strain relationship 

(Vukasovic et al., 2019; Custodio et al., 2021; Volgin and Shishkovsky, 2021; Luo et al., 2022; Afshar 

et al., 2023; Mrozik and Pejkowski, 2023; Fountas et al., 2023; Zaoutsos and Kechagias, 2025), which 

is a characteristic they share with PLA materials obtained through electrospinning (Dai et al., 2018; 

Lopresti et al., 2022; Viera et al., 2024) although the magnitude may differ due to disparate stiffnesses. 

A concave stress-strain curve, typical of FDM-processed PLA material, resembles the mechanical 

behavior observed in industrial thermoplastics (Rösler et al., 2007; Brinson and Brinson, 2008; 

Bergström, 2015). In contrast to linear elasticity, where the data allow for a unique interpretation leading 

to the Young’s modulus or, more generally, to the tensor of elastic constants, the nonlinear case is 

complicated by the fact that the components of the elasticity tensor are no longer constants. 

When the material response is considered elastic, the hyperelasticity theory is often utilized (Holzapfel, 

2000), particularly for finite deformations. Hyperelastic materials are described by the elastic potential 

W, which represents the strain energy density, and the stress tensor components are obtained as 
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derivatives of W with respect to the strain tensor components (Holzapfel, 2000; Bergström, 2015). An 

even more complex description of the behavior is required if we want to consider the dissipative 

processes that manifest as viscoelasticity, elastoplasticity or viscoelastoplasticity (Bergström 2015). 

Each of these scenarios can arise in the mechanical behavior of PLA-based 3D printing materials, and 

the choice of theory depends on the specific objectives of the study. 

The linear elasticity theory is most frequently employed by authors focusing on materials science rather 

than mechanics per se. In these cases, articles often report elastic constants determined at the origin of 

the tensile curve (Vukasovic et al., 2019; Gonabadi et al., 2020; Rajpurohit et al., 2022). Small-strain 

theory is also occasionally applied in papers utilizing elastoplastic models (Monaldo et al., 2023; Zarna 

et al., 2023), linear viscoelastic models (Issabayeva and Shishkovsky, 2023), and within nonlinear 

contexts (Luo et al., 2022; Adibeig et al., 2023; Foroughi et al., 2023; Mrozik and Pejkowski, 2023; Ji 

et al., 2024). However, models based on infinitesimal strains cannot be reliably used at finite strains, as 

they do not satisfy objectivity requirements (Holzapfel, 2000). The hyperelastic theory, sometimes used 

to express the material nonlinearity of PLA-based 3D printed materials (Asfahr et al., 2023; Issabayeva 

and Shishkovsky, 2023; Zarna et al., 2023), is compatible with objectivity requirements. However, it 

does not account for irreversible phenomena such as creep or stress relaxation (Holzapfel, 2000; 

Bergström, 2015). A fully nonlinear viscoelastoplastic description, like the Three Network Model 

(Bergström, 2015; Volgin and Shishkovsky, 2021), is rare, perhaps due to its complexity. 

While PLA-based materials are known for their nonlinear behavior, especially under large deformations, 

there is a lack of comprehensive viscoelastic models that can capture both the material’s time-dependent 

and nonlinear mechanical responses. Therefore, the primary motivation of this paper is to demonstrate, 

through the most elementary possible example, how a relatively simple constitutive model that is 

compatible with finite strain theory and allows for viscoelastic phenomena will describe the nonlinear 

tensile curves obtained for a 3D-printed PLA material. In the following sections, Fung’s theory of Quasi-

Linear Viscoelasticity (QLV), which is based on the multiplicative decomposition of relaxation effects 

and material nonlinearity, will be applied. FDM printed PLA-PHB strips, prepared in our laboratory, 

will be used to demonstrate the capability of QLV. Incorporating such a viscoelastic model enables more 

accurate predictions of PLA’s performance in real-world applications, including biomedical implants, 

where both elastic and viscoelastic properties influence the material’s functionality. 

 

 

2. Materials and Methods 

 

2.1 PLA-PHB specimens  

Samples for mechanical testing were prepared using FDM (also known as Fused Filament Fabrication, 

FFF) 3D printing technology at the Department of Biomedical Engineering and Measurement of the 

Faculty of Mechanical Engineering of the Technical University of Košice, Slovakia. The filament, with 

a diameter of 1.75 mm, was developed in house from pellets using the Filament Maker Composer series 

450 (3devo, The Netherlands). It was composed of a blend containing PLA (85 wt%, Purasorb®, 

Corbion, Netherlands) and PHB (15 wt%, Biomer® P300, Biomer, Germany), to which Tricytyl-2-

Acetyl Citrate (TAC, 25-30 wt%) was added as a plasticizer (TAC used in this blend was purchased 

from two suppliers: Foconsci Chemical Industry, China, and CD Formulation, USA). The filament 

production process is illustrated in Figure 1. 
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Samples were printed as rectangular strips measuring 5 mm x 1 mm x 120 mm (width x thickness x 

length) from the PLA-PHB filaments using a DeltiQ2 printer (Trilab, Czech Republic). Fig. 1A 

documents the printing process. The PLA-PHB samples for the mechanical experiments were prepared 

in four distinct batches, labeled A to D. These batches varied in terms of plasticizer proportion (A vs. 

B), plasticizer manufacturer (B vs. C), and the printing infill density (A vs. D). Detailed differences 

between the groups are provided in Table 1. For all samples, the extruder temperature was set to 175 

°C, and the printing speed was maintained at 30 mms-1. A rectilinear structure was chosen for the infill. 

 

 

Fig. 1 Preparation of material for 3D printing from polymer granules (A) by mixing, melting, and extrusion (B) 

into the resulting filament (C). 

 

Table 1. Summary of the experimental specimens. 

Group Samples Infill [%] PLA [wt%] PHB [wt%] TAC [wt%] Suppliers 

A 6 100 85 15 25 Purasorb-Biomer-FCI 

B 6 100 85 15 30 Purasorb-Biomer-FCI 

C 6 100 85 15 30 Purasorb-Biomer-CDF 

D 5 50 85 15 25 Purasorb-Biomer-FCI 
FCI = Foconsci Chemical Indrustry, CDF = CD Formulation 

 

 

2.2 Uniaxial tensile tests 

A monotonous uniaxial tensile test was conducted in order to characterize the mechanical response of 

the PLA-PHB samples. The experiments were performed using a Zwick/Roell multipurpose tensile 

testing machine (Zwick/Roell, Germany), specifically designed for the testing of soft tissues and 

polymeric materials. The applied force was measured by HBK U9C +/- 25N (accuracy class 0.2; 

Hottinger Brüel & Kjær, Germany) force transducers, and the deformation of the samples during testing 

was recorded by a built-in video-extensometer (5MPx camera IDS uEye 3.0; IDS, Germany) at a 20 Hz 

sampling rate. The printed samples were cut in half to create two testing specimens, each measuring 60 

mm in length. The experiments were conducted at a loading rate of 0.2 mms-1, resulting in a deformation 

rate of approximately 0.004 s⁻¹, until specimen failure occurred. The ultimate tensile strength (Pmax) was 

determined as the maximum force divided by the reference cross-sectional area. A specimen mounted 

in the machine is depicted in Fig. 2B. 
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Fig. 2 – Printing of the PLA-PHB specimen (A), the specimen in the testing machine (B). 

 

2.3 Constitutive model 

The primary objective of our paper is to demonstrate that Quasi-Linear Viscoelasticity (QLV) theory 

can accurately reproduce the nonlinear strain curves observed during the mechanical testing of FDM-

fabricated PLA-based materials. QLV was introduced by Y. C. Fung in the 1970s, and a detailed 

explanation can be found in Fung’s original works (Fung, 1972, 1993, 1994) as well as in standard 

monographs on viscoelasticity and constitutive modeling (Drapaca et al., 2007; Wineman, 2009; 

Merodio and Ogden, 2020). Recent applications of QLV in tissue biomechanics are documented in 

studies by De Pascalis et al. (2014, 2018) and Petřivý and Horný (2022). 

QLV employs the standard Boltzmann integral, which is formulated within the framework of finite strain 

theory. The fundamental idea is that viscous effects and material nonlinearity can be separated and are 

assumed to be mutually independent. The general QLV constitutive equation in symbolic notation is 

expressed in (1). Here, S denotes the second Piola-Kirchhoff stress tensor, t   represents the time at 

which the mechanical response is evaluated, whereas  is the time associated with the deformation 

history. Se denotes the second Piola-Kirchhoff stress corresponding to the elastic response of the material 

which is determined from the elastic potential W. Tensor G represents the reduced relaxation function 

and, in its most general form, is a fourth-order tensor that characterizes the viscous part of the material 

response. 
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Formulating the constitutive equation (1) using the second Piola-Kirchhoff stress is advantageous 

because the objectivity of the time derivative of the stress is immediately ensured since S is expressed 

in the material description (Holzapfel 2000). By using additive decomposition of the stress into the 

isochoric and deviatoric part, and applying the per partes integration rule, and incompressible behavior, 

(1) can be converted to the form of (2), which is expressed using the Cauchy stress . In (2), F is the 

deformation gradient tensor,  is the second order identity tensor, p is hydrostatic stress component that 

must be determined from the boundary conditions, and GD and Se
D are the deviatoric part of the 

relaxation function G and the deviatoric part of the elastic stress Se. The algebraic manipulations 

involved in deriving equation (2) are somewhat lengthy and are detailed in Petřivý and Horný (2022) or 

De Pascalis et al. (2014). 
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To make the elastic part of the mechanical response compatible with finite strain theory, a hyperelastic 

description is employed. In such a case, equation (3) can be used to express Se
D (De Pascalis et al., 

2014). 
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C is the right Cauchy-Green deformation tensor, C = FTF, I1 and I2 are the first and second principal 

invariants of C, and W1 and W2 are abbreviations for ∂W/∂I1 and ∂W/∂I2, respectively. 

To keep the model as simple as possible, it was decided to employ very elementary form of functions 

expressing the mechanical response of the material. Thus, the elastic part of the mechanical response is 

described by neo-Hooke strain energy density function (4), and the relaxation behavior is represented 

by a single normalized exponential function (5). In (4), μ is the stress-like material parameter that, at 

infinitesimal strains, corresponds to the shear modulus. Similarly, in (5), g and R are material parameters 

that, within the context of the linear viscoelasticity theory, can be associated with the Maxwell element. 
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2.4 Identification of material parameters 

The material parameters were estimated using the NLPSolve optimization procedure implemented in 

Maple 2022 (MapleSoft, Canada). The objective function was defined as the sum of the squared errors 

between the stress predicted by the model, MOD, and the experimental stress, EXP, obtained as the 

measured force per deformed cross-section area. To document the success of the resulting estimates of 

the constitutive parameters, the coefficient of determination, R2, was used, which represents a 

normalized measure of agreement between the model and the observations and is based on the objective 

function used. Based on the incompressibility assumption, the Cauchy stress under uniaxial tension is 

given by EXP = F/S0, where F is the measured force, S0 is the reference cross-sectional area, and  is 

the stretch obtained as the ratio of the deformed to the initial distance between marks on the specimen. 

MOD is obtained by substituting (4) and (5) into (2) with the simultaneous application of (3), resulting 

in the final expression given in (6). 
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The NLPSolve (Non-Linear Program Solve) procedure in Maple 2022 used for parameter identification 

was relatively fast and delivered stable convergence within several minutes per task on a workstation 

with 32 GB DDR5 RAM, 1 TB SSD, and 16-core 4.1 GHz CPU (Windows 11). 

 

2.5 Statistical analysis 

In order to verify the existence of differences between the results of tensile tests with samples prepared 

under different conditions, the resulting estimates of the constitutive parameters (μ, g, R) and Pmax were 

subjected to statistical post hoc analysis. The Kruskal-Wallis test was employed to reveal deviations in 

the mean values. In this case, the null hypothesis states that the medians in groups A to D are equal. 

Subsequently, Dunn’s test was used to detect differences between individual pairs of groups. A 

significance threshold of  = 0.05 was applied throughout. All statistical analyses were performed using 

Excel (Microsoft, USA) and its add-in Real Statistics (Real Statistics Resource Pack, Release 8.9.1, 

https://real-statistics.com). 
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3 Results and Discussion 

 

A total of 23 valid tensile tests were conducted with four groups of 3D-printed PLA-PHB strips. The 

compositions of the samples and the number of samples in each group are presented in Table 1. 

Estimated material parameters and tensile strength are shown in Table 2. The results of the uniaxial 

tensile tests are illustrated in Fig. 3 and separately for each sample group in Fig. 4.  

As can be seen from the stress-strain curves, the samples exhibited a highly non-linear, concave 

behaviour similar to that known for PLA-based materials (Sankaran et al., 2014b; Gonabadi et al., 2020; 

Lopresti et al., 2020; Custodio et al., 2021; Zarna et al., 2023; Luo et al., 2022; Foroughi et al., 2023; 

Mrozik and Pejkowski, 2023). While the shapes of the curves are similar for all samples, the overall 

stiffness varies between the sample groups. The influence of infill density is clearly evident as the 50% 

infill samples have significantly lower stiffness and especially the lowest strength.  

 

 

 

Fig. 3 – Results of all uniaxial tensile tests along with their corresponding model predictions (A). Time course of 

deformation of the specimens during the tensile tests (B).  

 

The ultimate tensile strength found in the investigated groups A, B and C (100% infill) was 2.7 ± 0.54 

MPa, 2.734 ± 0.30 MPa and 2.216 ± 0.303 MPa respectively, whereas in group D (50% infill) it was 

1.295 ± 0.083 MPa (mean ± sample standard deviation). The comparison of groups B and C also shows 

that the use of a plasticiser from different manufacturers can result in different mechanical properties, 

even though the material composition is the same. The effect of different TAC suppliers can be attributed 

to the different molecular weights of TAC (402.48 g/mol for FCI vs. 360.44 g/mol for CDF). 

 

The main aim of this study is to develop a constitutive model for the observed mechanical response. A 

simple QLV model was applied to fit the experimental data, and the optimized values of the constitutive 

parameters are presented in Table 2. The model predictions, displayed in Fig. 4, demonstrate that the 

model represented by equation (6) effectively reproduces the observed mechanical behavior. The 

coefficients of determination reported in Table 2 range from 0.977 to 0.999, with an average value of 

0.992. This corresponds to a very good agreement between model and observation, and it is worth noting 

that this is achieved with a model that has only 3 material parameters. 
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Table 2 – Constitutive model parameters (, g, R) for all PLA-PHB samples, coefficient of determination R2, 

and maximum nominal stress Pmax achieved during the experiments. 

   [MPa] g [-] R [s] R2 Pmax [MPa] 
G

ro
u

p
 A

 
1 216.4 0.899 1.643 0.989 3.270 

2 185.7 0.893 1.750 0.998 2.985 

3 89.37 0.999 4.648 0.995 3.241 

4 101.5 0.999 6.630 0.999 2.474 

5 181.7 0.792 1.271 0.996 2.237 

6 94.22 0.793 2.251 0.999 1.992 

mean ± SD 144.8 ± 56.0 0.896 ± 0.092 3.032 ± 2.137 0.996 ± 0.004 2.7 ± 0.541 

G
ro

u
p

 B
 

1 183.2 0.954 1.075 0.996 3.015 

2 119.7 0.861 1.401 0.996 3.003 

3 113.3 0.826 1.374 0.989 2.590 

4 113.2 0.886 1.411 0.995 2.843 

5 81.56 0.867 2.276 0.999 2.731 

6 88.94 0.843 1.494 0.998 2.223 

mean ± SD 116.7 ± 35.9 0.873 ± 0.045 1.505 ± 0.404 0.996 ± 0.003 2.734 ±0.30 

G
ro

u
p

 C
 

1 140.0 0.951 1.883 0.979 2.638 

2 181.9 0.942 1.428 0.981 2.343 

3 123.1 0.941 2.067 0.993 2.275 

4 120.0 0.979 1.767 0.977 2.259 

5 166.6 0.899 1.309 0.981 2.043 

6 91.16 0.925 1.937 0.994 1.738 

mean ± SD 137.1 ± 33.1 0.940 ± 0.027  1.732 ± 0.3 0.984 ± 0.007 2.216 ± 0.303 

G
ro

u
p

 D
 1 11.08 0.909 8.822 0.996 1.394 

2 10.18 0.901 9.953 0.997 1.343 

3 10.58 0.900 10.01 0.998 1.311 

4 10.88 0.904 8.765 0.995 1.242 

5 17.71 0.925 4.772 0.983 1.183 

mean ± SD 12.09 ± 3.16 0.908 ± 0.01 8.464 ± 2.15 0.994 ± 0.006 1.295 ± 0.083 

 

Standard hyperelastic models are able to fit the initial stiff behavior, as has been demonstrated with 

similar materials in the literature (Vieira et al., 2011; Shojaeiarani et al., 2019; Laycock et al., 2024). 

However, purely elastic models for PLA-based materials often struggle to accurately represent the 

response at larger strains, where the stress-strain curve flattens rapidly. They may also require an 

excessive number of constitutive parameters (Asfahr et al., 2023; Issabayeva and Shishkovsky, 2023; 

Zarna et al., 2023). This is because most strain energy density function models were developed to 

reproduce the large strain stiffening behavior of macromolecular chains (Holzapfel, 2000; Bergström, 

2015). However, in the case of thermoplastics, dissipative phenomena play a more significant role in 

decreasing the slope of the tangent to the stress-strain curve at large strains compared to elastomers, 

where the entropic effects associated with the spatial arrangements of macromolecular chains dominate 

(Houwink and de Decker, 1971; Rösler et al., 2007; Brinson and Brinson, 2008).  

Some works resort to the assumption of linear viscoelasticity (Lei et al., 2018; Issabayeva and 

Shishkovsky, 2023; Gao and Drozdov, 2024), which allows to sufficiently represent the observed 

behavior under uniaxial stress state. However, these models are difficult to generalize to the level of 

describing 3D stress and strain states. Several models have been proposed that combine both 

nonlinearity and viscoelasticity principles in the constitutive description (Luo et al., 2022; Adibeig et 

al., 2023; Foroughi et al., 2023; Mrozik and Pejkowski, 2023; Ji et al., 2024). Although these works 

provide results that successfully capture the experimental data, as mathematical models they are 

formulated within the framework of infinitesimal strain theory, which severely limits their applicability 

to the computational modeling of real components. Conversely, fully nonlinear models (finite strains 

and material) with inelastic elements, such as the Three Network Model (Bergström, 2015), require 

numerous material parameters. This complexity makes it difficult to design experiments and conduct 

subsequent regression analyses, raising concerns regarding whether a true global minimum of the 

objective function is reached and whether the estimated parameter values are independent of each other. 
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An example of the application of the viscoelastoplastic Three Network Model to PLA is provided by 

Volgin and Shishkovsky (2021), which necessitates 12 parameters. 

In contrast, this study aims to show that it is possible to model the concave behavior typical of PLA-

based materials using the theory of QLV. By adopting this method, the model described in equation (6) 

was able to fit the data effectively. Furthermore, the model employs only three constitutive parameters, 

which are easily interpretable. Specifically, the model consists of an elastic spring based on the neo-

Hookean hyperelastic model (parameter μ) and a relaxation component based on the Maxwell 

rheological element (parameters g and τR). This approach therefore seems appropriate in cases where a 

hyperelastic model gives unsatisfactory results on the one hand, but a complex nonlinear viscoelastic or 

viscoelastoplastic model is too robust for the problem under investigation on the other. 

 

 

 

Fig. 4 – Detailed comparison of the viscoelastic models and experimental data. Specific values of the model 

parameters are presented in given Table 2. 

 

The model certainly has its limitations, as its efficiency has only been demonstrated on uniaxial tensile 

experiments performed at a single deformation rate. Furthermore, it should be mentioned that 

incompressibility was assumed in order to keep the model as simple as possible, although it is not based 

on real observations on the tested specimens and some works show the compressible behavior of 3D 

printed PLA materials (Song et al., 2017). The assumption of incompressibility was only used to 

simplify the formulas expressing the material response. Obviously, the whole theory as given in Eqs. 

(1) to (5) is also ready for compressible behavior, which would lead to the need to introduce an additional 

parameter; see De Pascalis et al. (2014) for more details. Nevertheless, the assumption of 

incompressibility is commonly applied to both PLA-based and other thermoplastic materials (Rubio-

López et al., 2016; Sweeney et al., 2021). 
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3.1 Statistical Comparison of Material Parameters 

To assess how printing conditions, reflected by sample groups A–D, influence the mechanical response 

obtained in the experiments, the Kruskal–Wallis test was performed for each constitutive model 

parameter (μ, g, R) and ultimate tensile stress Pmax. Table 3 summarizes the results and shows that at the 

significance level 0.05 differences were observed for all parameters with an exception of g. Post-hoc 

analysis was complemented with Dunn’s test to reveal pair-wise differences which are documented in 

Tables 4 and 5.   

 

Table 3. Kruskal-Wallis test of between-group results. 

Parameter  p-value 

 [MPa]  0.006 

g [-]  0.123 

R [s]  0.006 

Pmax [MPa]  0.003 

 

Table 4. Dunn’s pos thoc p-values for  (above diagonal elements) and g (below diagonal elements). 

  B C D 

A - 0.395 0.932 0.002 

B 0.383 - 0.350 0.026 

C 0.142 0.020 - 0.002 

D 0.595 0.172 0.385 - 

 

Table 5. Dunn’s post hoc p-values for R (above diagonal elements) and Pmax (below diagonal elements). 

  B C D 

A - 0.173 0.610 0.032 

B 0.832 - 0.395 0.001 

C 0.217 0.148 - 0.009 

D 0.002 0.001 0.051 - 

 

Statistical analysis confirms what one can derive from Fig. 3 and 4. There are differences between the 

groups in their mechanical responses and in terms of the constitutive model parameters. They are most 

significantly expressed via initial shear modulus  and relaxation time R where the Kruskall-Wallis test 

showed differences and the pair-wise comparison showed that all the groups differ. The differences can 

be explained by the different content of infill and plasticizer as follows from a comparison of Tables 3 

to 5 with Table 1, which documents the preparation of materials.  For the viscoelastic parameter g, 

although most pairwise differences were not significant, a notable exception was found between Groups 

B and C (p = 0.019), suggesting that even subtle changes in plasticizer composition can affect 

viscoelastic behavior (see the responses between Group B and C in Fig. 3A and in detail in Fig. 4B and 

4C). Finally, an absence of significant differences in Pmax between C and D group suggests that some 

changes in preparation conditions may compensate each other. In this case, the decrease in infill (D) is 

likely balanced by a decrease in molecular weight, and in the end differences in the ultimate tensile 

stress are statistically insignificant.  
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4 Conclusion 

 

The mechanical behavior of 3D-printed samples composed of PLA, PHB, and TAC was investigated in 

this study. Uniaxial tensile tests were conducted on four sample groups with different material 

compositions. The specimens exhibited a concave behavior typical of PLA-based composites with 

differences in stiffness between groups, indicating a significant effect of plasticizer type and infill 

density.  

Our study demonstrated that the theory of Quasi-Linear Viscoelasticity, which can be classified as one 

of the simpler approaches among fully nonlinear theories describing the inelastic behavior of solids, is 

capable of reproducing the experimental behavior with a relatively small number of material parameters. 

The model provided excellent agreement across all sample groups, highlighting its suitability for the 

constitutive description of PLA-based materials used in additive manufacturing. 

Nevertheless, the approach has its limitations. The model was calibrated using uniaxial tensile data at a 

single deformation rate and under assumption of incompressibility, which may not fully represent 

multiaxial or rate-dependent behaviors. Future studies should explore the influence of strain rate and 

extend the analysis to additional deformation modes or loading conditions, such as cyclic loading, in 

order to assess the broader applicability of the model. 

The design of the constitutive model used and its success in modeling the tensile test also suggest that 

the nonlinearity of the mechanical response of PLA, as demonstrated by the stress-strain curves, may 

not stem from the material’s elastic properties, but rather from irreversible phenomena, which are 

represented by viscoelasticity in our model. Naturally, the model can be further refined, for instance by 

incorporating plastic effects; however, doing so would require introducing additional material 

parameters, which would counteract our original objective of demonstrating the capabilities of a three-

parameter model. For this reason, we leave such extensions to future investigations.     

From an application viewpoint, the simplicity and predictive accuracy of the QLV model make it a 

practical candidate for preliminary design and material selection processes in 3D-printed biomedical, 

packaging, or consumer products where PLA–PHB blends are commonly used. Furthermore, the 

efficient identification of viscoelastic parameters enables potential integration into the finite element 

simulations of printed components, especially in early-stage prototyping. 
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