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Abstract. It is well known that in their in situ position, arteries are axially pre-
stretched. They retract upon excision as a consequence. Studies of the prestretch 
have shown that it depends on location in arterial tree. Axial prestretch increases 
with increasing distance from the heart. It has also been shown that the prestretch 
changes with age. Aging damages internal architecture of arteries and conse-
quently longitudinal pretension is gradually loosen. Results obtained in labora-
tory experiments document that there is specific value of the prestretch under 
which axial deformation of the pressurized artery is negligible. Under such con-
ditions, mechanical work performed by the pressure on axial displacements is 
negligible which is advantageous from biomechanical point of view. In the pre-
sent study, by adopting the Gent model of the strain energy density function to 
characterize mechanical properties of the artery and assuming that this artery sat-
isfies assumptions of the membrane theory, it will be shown that the value of 
prestretch, which minimizes axial displacement, also maximizes internal volume 
attained in the pressurization of the tube. 
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1 Introduction 

Arteries in situ are significantly prestretched in an axial direction [1-4]. It is manifested 
as a retraction that is observed in autopsy or surgery when arteries are excised. The 
axial prestretch is expressed as the ratio of in situ to ex situ length of a cylindrical seg-
ment of an artery. Axial prestretch in arteries strongly depends on age [3-5]. It gradually 
decreases until totally relaxed state and even pre-compressed arteries can be observed 
[4-6]. The prestretch also depends on anatomical location [1, 4-7]. It increases with 
increasing distance from the heart and is well correlated with the cross-sectional area 
of the vascular wall [7].   
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Ex vivo mechanical tests with enzymatically treated arteries [8,9] and genetically 
modified animal models [10,11] suggest crucial role of elastin for bearing the pre-
stretch. Fundamental role of elastic membranes in the axial prestretching is in accord-
ance with distally increasing magnitude of the prestretch [7]. Caudally decreasing num-
ber of elastic lamellae, which sustain approximately constant axial force in the whole 
aorta [7], lead to increased force per lamella which results in increasing prestretch. 

The axial prestretch of arteries has important physiological function. It was found 
that in vivo value of the prestretch enables arteries to sustain minimal changes in axial 
deformation and axial force during pressure cycle [12-14]. Originally, it was assumed 
that nearly zero axial deformation during pressure pulse transition is a consequence of 
significant tethering (attachment to surrounding tissue) [12]. Experimental studies, 
however, showed that longitudinal immobility of arteries is related to a biological tun-
ing that couples constitutive properties, internal structure and physiological range of 
arterial loading. 

To be more specific, it was found that a typical in vitro inflation behavior of an artery 
held at constant length is such that there is a value of the axial prestretch above which 
force–pressure relationship creates increasing curve and under prestretch smaller than 
this value the force–pressure relationship is decreasing [13-15]. Contrary, pressuriza-
tion experiments with constant axial load have shown that for small values of the load 
the arteries elongate during pressurization, whereas with large values of the axial load 
they shorten [16-18]. It is generally accepted that in vivo value of the prestretch (and 
axial force) is exactly the value under which an artery neither shortens nor elongates in 
pressure cycle. By some authors, this value is referred to as the inversion stretch or the 
stretch at inversion point [16-18]. 

Previous studies of the axial prestretch have revealed that it is mechanically favora-
ble for human arteries to operate in the prestretched state [12-18]. It minimizes mechan-
ical work necessary to transmit pressure pulse because no axial displacements of the 
wall during pressure cycle means no work spent on these displacements. Since real 
arteries are rather viscoelastic than elastic, it also means, that there will be no energy 
dissipated in axial movement of the artery wall. In the present paper we would like to 
show another interesting property which can be observed when nonlinear elastic tube 
is inflated at constant axial load. It will be shown that at axial prestretching correspond-
ing to the inversion point, when no axial movement is exhibited during inflation, also 
maximum internal volume of the pressurized tube is attained. Since large arteries serve 
as a conduit in blood transport, it suggests that they operate in mechanically optimal 
regime which allows maximum of the blood to be transferred in one pressure cycle. 

2 Methods                    

Our study will not deal with any specific artery, instead we will focus our attention only 
to general properties known from arterial elasticity. By means of analytical model, it 
will be shown that maximal internal volume of the pressurized tube corresponds to 
loading at inversion axial stretch. To this end, the artery considered in our model is 
assumed to be made from Gent hyperelastic material [19,20]. The Gent hyperelastic 
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model is well-known in elastomer mechanics and soft tissue elasticity and is frequently 
used in biomechanical studies describing physiological principles in arterial mechanics. 
It was used for example by Horný et al. [21] in their study of aging impact on the pre-
tension sustained by the human abdominal aorta, by Horgan and Saccomandi [22] and 
Sang et al. [23] to study the inflation-extension behavior of an artery and in [22] to 
study longitudinal oscillations of arterial strip. It is isotropic nonlinear material model 
exhibiting large strain stiffening which is a property common to all soft tissues.  

Constitutive model. The specific form of the strain energy density function W corre-
sponding to the Gent model is expressed in (1).    
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Here µ is stress-like material parameter which at infinitesimal strains corresponds  
to the shear modulus and Jm is dimensionless parameter modulating nonlinear behavior 
of the material. I1 is the first principal invariant of the right Cauchy-Green strain tensor 
C. C = FTF where F denotes tensor of the deformation gradient. The material is as-
sumed to be incompressible and its constitutive equation is written in the form of (2). 
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In (2), σ denotes Cauchy stress tensor, I denotes second order unit tensor and p is 
Lagrangean multiplier enforced by incompressibility constraint which has to be deter-
mined from force boundary condition. 

Kinematics of inflation–extension response. The studied artery is considered to be 
long thin-walled tube with closed ends which, in the reference configuration, has a mid-
dle radius R, thickness H, and length L. Assume that during pressurization, the motion 
of a material particle located originally at (R, Θ, Z), which is sufficiently distant from 
the ends, is described by the equations summarized in (3). 

 ,      ,      ,      rR zZr R h H z Zθλ λ λ θΘ= = = = Θ  (3) 

Here r and h respectively denote deformed middle radius and thickness. The equa-
tions (3) express the fact that the tube uniformly inflates and extends and that it does 
not twist. Stretches λkK (k = r, θ, z; K = R, Θ, Z) are the components of the deformation 
gradient F. Consequently, F = diag[λrR,λθΘ,λzZ]. Incompressibility constraint then reads 
det(F) = λrRλθΘλzZ = 1. 

Equilibrium of thin-walled tube. The equilibrium equations of a thin-walled closed 
tube loaded by an internal pressure P can be written in the form (4). Here σrr, σθθ, and 
σzz respectively, denote the radial, circumferential, and axial component of the Cauchy 
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stress tensor. The radial component was considered to be zero due to the thin-wall as-
sumption. 

 0            
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red
rr zz

FrP rP
h h rhθθσ σ σ

π
= = = +  (4) 

Fred in (4c) denotes additional axial force which ensures longitudinal prestretch of 
the tube. This loading remains constant during the pressurization of the tube. However, 
the axial deformation may change according to the mechanical state which results from 
a combination of equilibrium and constitutive equations and loading by internal pres-
sure.  

Geometry and material parameters. Constitutive parameters characterizing artery 
material were adopted from literature. In [21] Horný et al. conducted uniaxial tensile 
tests with cylindrical segments of the human abdominal aorta and approximated me-
chanical response by the model (1). For the purposes of our calculations, parameters 
corresponding to 48 years old female individual were chosen. Specific values used in 
the study are in Table 1.    

Table 1. Material parameters and dimensions. 

age gender Jm µ R H 
48 female 0.22 23 5.81 1.62 

years  - kPa mm mm 

Simulation of inflation-extension behavior. Quasistatic inflation-extension behavior 
of the artery was simulated numerically in Maple 2015. The system of equations 
describing response to internal pressure and axial loading is obtained by substitution of 
(1) to (2) and subsequent substitution (2) into (4). Finally deformed radius and thickness 
in (4) are substituted from (3) and λrR = (λθΘλzZ)-1 is used to eliminate the radial stretch. 
One equation, (4a), is used to determine p coming from the incompressibility constraint. 
The result is the system of two nonlinear equations which contain material parameters, 
reference dimensions and P, Fred, λθΘ, and λzZ. The final form of the governing 
equations is expressed in (5) and (6).  
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One may select two variables as independent and remaining quantities are computed 
from equations modeling the problem. Our solution is obtained in two steps. First, axial 
prestretch of the tube is induced by assigning λzZ = λzZ

ini at P = 0. In this step, the system 
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(5-6) is used to compute Fred necessary to preelongate the tube. Simultaneously the 
initial circumferential stretch λθΘini is obtained. In the second step, (5-6) is used to 
compute λθΘ and λzZ at a given P and Fred. The sequence 0.5(i – 1) kPa for i = 1,..,41 
was used to simulate the pressurization of the tube. The axial prestretch λzZ

ini considered 
in our study was 1 + 0.02(i – 1) for i = 1,..,14 that includes typical values of the 
prestretch in the human abdominal aorta expected at 48 years old individual [3,4,21].  

3 Results and Discussion 

The results obtained in our simulation are summarized in Figure 1 – 3. The inflation-
extension response expressed by means of P–λθΘ and P–λzZ relationships at constant 
axial load corresponding to λzZ

ini = 1, 1.02, 1.04,.., 1.26 is in Figure 1. Colors of the 
curves uniquely correspond to selected values of λzZ

ini and specific value of the axial 
prestretch is evident from the right panel of the figure (P–λzZ). The figure clearly shows 
that there is a certain value of the prestretch under which the tube changes its response 
from inflation–extension to inflation–shortening. This is exactly inversion axial stretch 
and this mechanical response is highlighted by dotted curve and denoted by λzZ

inv. 
Numerical computation showed that, in specific case, it is approximately equal to 1.036. 

 
Fig. 1. Inflation-extension response obtained from model. λzZini = 1, 1.02, 1.04,.., 1.26 was used 
in calculation. Inversion axial prestretch, under which tube does not move axially, is highlighted 
by dotted line. 

Figure 2 documents a relationship between inflating pressure and relative internal vol-
ume v, v = πr2l/(πR2L) = λθΘ2λzZ. It is clear that maximal volume of the tube is attained 
when the tube is inflated at inversion axial stretch (dotted curve). If axes of the figure 
were changed (pressure as vertical axis and volume as horizontal axis), it would be 
evident that at the same time the inflation at inversion stretch also leads to minimal 
work performed during pressurization of the tube because it corresponds to minimal 
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area under P–v curve. To be exact, we should talk about work per unit volume instead 
of work because relative volume instead of volume as such is variable on the axis. 

Finally, Figure 3 shows traces of the kinematics of tube inflation in a phase space of 
the deformation. Left panel is for λzZ–λθΘ dependence and right panel shows depend-
ence of relative volume v on λzZ. Applied axial prestretch is indicated by color of the 
curve. Both λzZ–λθΘ and v–λzZ also contains contours of constant pressure at P = 0, 1, 
2.5, 5, 10, and 20 kPa. They are depicted with thin dotted curves. One observes that 
λzZ

inv intersects contours of the constant pressure at their maximal volume which again 
documents that the inversion prestretch leads to optimal inflation conditions.   

 
Fig. 2.  Relative volume–pressure relationship at various λzZini. Dotted curve corresponds to in-
version prestretch under which maximal volume is attained. Additionally to maximal volume, 
the figure clearly shows that minimal work is also spent when tube is inflated under inversion 
prestretch λzZinv. 

Although previous studies focused on the axial prestretch of arteries have pointed out 
that the prestretch is mechanically favorable, it was not, to the best of our knowledge, 
explicitly stated that the inversion stretch leads to maximal volume of the inflated tube. 
It suggests that tuning of the blood transport is highly sophisticated and optimized from 
the biomechanical point of view.    

Our present result is however only one piece of a jigsaw puzzle of mechanical 
principles acting in our cardiovascular system. One should not overestimate it because 
there are other questions which have to be considered and were not adressed in our 
study. Particularly, the present result was obtained for one specific selection of material 
parameters. In order to reach physiologial relevance it has to be generalized and proved 
for other, more accurate models of arterial wall which will consider anisotropic 
behavior of the wall. We also have to note that the thin-wall assumption should be 
accepted with caution because it is known that arteries exhibit residual strains which 
cannot be modeled under this assumption. The results are also limited by the fact that 
our study was based on quasistatic formulation but true blood pressure propagation is 
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a wave problem. However, our present contribution is only a preliminary study and in 
future we plan to refine it in a more accurate computational model.  

 
Fig. 3. Kinematics of inflation–extension response depicted in phase space. The left panel shows 
that ∂λzZ/∂λθΘ = 0 at inversion stretch and right panel documents that contours of constant pres-
sure have maximum v at λzZinv.  

Finally, it is concluded that results obtained from the simplified model suggest that 
axial prestrech in human arteries ensures not only the constancy of axial force and axial 
deformation during the pressure cycle but also the maximum volume attained in the 
inflation of an artery. 
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